3D Distance from a Point to a Triangle
|
|
|
- Paul Perry
- 10 years ago
- Views:
Transcription
1 3D Distance from a Point to a Triangle Mark W. Jones Technical Report CSR-5-95 Department of Computer Science, University of Wales Swansea February 1995 Abstract In this technical report, two different methods for calculating the distance between a point and a triangle in 3D space will be described. It will be shown that it is far more efficient to calculate the distance by using a rotation to make the problem 2D. Both methods are tested with relation to the production of 3D data from polygonal meshes (voxelisation). 1 Introduction The problem of finding the distance from a point to a triangle in 3D space arose with repsect to producing 3D data from a polygonal mesh. In this case the input to the process of voxelisation [1] is a triangular mesh, and the output is voxel data a 3D array of data values. Voxelisation is needed to overlay synthetic objects into collected data. For examples with application to the integration of objects and medical data see Wang and Kaufman [2] and for the integration of objects with terrain data for flight simulation see Cohen and Gotsman [3]. The problem is that of finding the distance from a point È to a triangle È ½ È ¾ È, where È is a point in three dimensional space. This is more difficult than it seems at first due to the different possibilities that exist. The point È could be closest to the plane of the triangle, closest to an edge, or closest to a vertex. In Section 2 a method of calculating that distance in 3D is given, and in Section 3 a method which reduces the problem to 2D is described. Section 4 presents results demonstrating that the 2D method is more efficient than the 3D method. 2 3DMethod Approaching the problem in three dimensions requires the projection of È onto the plane of triangle È ½ È ¾ È to create È (Figure 1). N p V2 P2 P 3 P 2 α P3 P 1 V3 V 1 P 1 Figure 1: Calculating the distance of È from È ½ È ¾ È. 1
2 The normal Æ Ô of È ½ È ¾ È can be calculated as The angle, «between the normal Æ Ô and È ½ È is calculated Æ Ô È ½ È ¾ È ½ È (1) Ó «È ½È Æ Ô È ½ È Æ Ô The length of the vector È È can be found using (2) È È È È ½ Ó «(3) The vector È È can then be determined È È È È ÆÔ ÆÔ (The negative sign is used since È È has direction opposite to that of Æ Ô.) È can then be calculated as (4) È È È È (5) If it was the case that the projection of È onto the plane lay within the triangle È ½ È ¾ È,the length È È (Equation 3) would be the distance of È from È ½ È ¾ È. If instead È falls outside the triangle, the distance to the triangle is the distance to the closest edge or vertex to È. In order to determine which edge or vertex È is closest to, the position of È in relation to the three vectors Î ½, Î ¾ and Î must be found, (Figure 1) where Î ½ È ¾È ½ È ¾ È ½ È È ½ È È ½ Î ¾ È È ¾ È È ¾ È½È ¾ È ½ È ¾ Î È ½È È ½ È È¾È È ¾ È If ½ Î ½ È ½ È µ Æ Ô,then ½ if È is anticlockwise of Î ½. Similarly, ¾ and can be calculated for the other vectors. Using ½, ¾ and the position of È in relation to the vectors Î ½, Î ¾ and Î can be determined. It further has to be determined if È is inside the triangle, and if so the distance from the triangle is the distance calculated in Equation 3. If È is clockwise of Î ¾ and anticlockwise of Î ½, it is outside the triangle if È È ½ È È ¾µ Æ Ô (7) and similarly for the other cases. If È is found to be outside the triangle, it is either closest to a vertex, or the side. For example, assume È is closest to È ½È ¾. (it is easy to apply the following to the remaining edges) The direction Ê, ofè to È is given by (6) and the angle is Ê È È ¾ È È ½µ È ½ È ¾ (8) The length È È is calculated using Ó È È ½ Ê È È ½ Ê (9) and È È is È È È È ½ Ó (10) 2
3 È È È È Ê Ê The point È, which is the projection of È onto the line È ½È ¾ is (11) È È È È (12) Let Ø È È ½ (13) È ¾ È ½ If Ø ½, È is between È ½ and È ¾ and the distance of È from the line is È È as calculated in Equation 10. The distance of È to È ½ È ¾ is Ô È È ¾ È È ¾ µ. If Ø, È is closest to vertex È ½ and can be calculated as the distance È ½ È. If Ø ½, È is closest to È ¾. Therefore the distance of È to È ½ È ¾ È has been calculated. It should be noted that Equations 1 and 6 can be precalculated for efficiency. 3 2DMethod The second approach is that of converting the problem into a two dimensional problem. The simplest way to achieve this is by calculating the translation and rotation matrix to rotate the triangle È ½ È ¾ È so that È ½ lies on the origin, È ¾ liesontheþ axis, and È lies in the ÝÞ plane. This transformation matrix can be calculated once for each triangle in a preproccessing step, and can then be used to transform È to È. È can be trivially projected onto the triangles plane giving È by ignoring its Ü coordinate since the triangle is in the ÝÞ plane. If È is inside the triangle È ½ È ¾ È, the distance from the point to the triangle is simply the Ü coordinate of È. Using È, determination of the closest part of triangle È ½ È ¾ È to È can be found by using the edge equation [4], and once determined the distance can be found in a standard way. The edge equation is simply: Ü Ýµ Ü µ Ý µ (14) for a line passing through µ with gradient with respect to a point Ü Ýµ. If the point is to the left of the line, if to the right, and if, it is on the line. In Figure 2 we see the different possibilities. P 31 P 3 P 11 P 1 Figure 2: Calculating point position relative to triangle. If È is left of È È ½ it is closest to È È ½ if it is to the right of È È ½ and to the left of È ½ È ½½. The proximity to the other edges of the triangle can be similarly determined. For È to be closest to vertex È ½ it must be right of È ½ È ½½ and left of È ½ È ½¾, where È ½ È ½¾ is defined at right 3
4 angles to È ½ È ¾. Using just these edge equations, the closest vertex or edge of È ½ È ¾ È to È can be determined. The lines È ½ È ½½, È ½ È ½¾, È È ½, È È ¾, etc. and their directions can be precomputed, thus enabling simple applications of the edge equation to determine which part of the triangle the point È is closest to. Once determined, the distance can be calculated to that part in the normal way. 4 Results The voxelisation process was implemented as in [1], with two distance functions one the 3D version of Section 2, and one the 2D version of Section 3. The voxelisation process was carried out using both distance functions, and times were compared for various datasets. It can be seen from Table 1 that the 2D method was consistently faster than the 3D method, and in fact took a quarter of the time to compute the same dataset. The reason for such a marked difference in computation times could be put down to the number of square roots that must be computed. For the 3D method four square roots are required ( È ½ È, Ê, È È ½ and È È ), as opposed to one final distance calculation square root for the 2D method. Data set No. of Distance Time taken Ratio triangles computations 2D method 3D method 3D 2D Octahedron Dodecahedron Soccerball Teapot King Queen Bishop Pawn Knight Rook Table 1: Table showing voxelization timings In conclusion, a two dimensional method for computing the distance of a point from a triangle has been compared against a standard three dimensional method. The results indicate that the two dimensional method performs far more efficiently than the three dimensional method, and is suited for any application where distance measurements to three dimensional triangles are required. The method was tested with particular attention to the process of voxelisation, which requires intensive use of point to triangle measurement. References [1] M. W. Jones. Voxelisation of polygonal meshes. In Proceedings of 13th Annual Conference of Eurographics (UK Chapter) (Loughborough, March 28-30, 1995), pages , March [2] S. W. Wang and A. E. Kaufman. Volume sampled voxelization of geometric primitives. In Proc. Visualization 93, pages IEEE CS Press, Los Alamitos, Calif., [3] D. Cohen and C. Gotsman. Photorealistic terrain imaging and flight simulation. IEEE Computer Graphics and Applications, 14(2):10 12, March
5 [4] J. Pineda. A parallel algorithm for polygon rasterization. In Proc. SIGGRAPH 88 (Atlanta, Georgia, August 1-5, 1988), volume 22(4), pages ACM SIGGRAPH, New York, August
Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.
1 Linear Transformations Prepared by: Robin Michelle King A transformation of an object is a change in position or dimension (or both) of the object. The resulting object after the transformation is called
Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Sample Exam Questions 2007
Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Questions 2007 INSTRUCTIONS: Answer all questions. Spend approximately 1 minute per mark. Question 1 30 Marks Total
Common Core Unit Summary Grades 6 to 8
Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations
Computer Applications in Textile Engineering. Computer Applications in Textile Engineering
3. Computer Graphics Sungmin Kim http://latam.jnu.ac.kr Computer Graphics Definition Introduction Research field related to the activities that includes graphics as input and output Importance Interactive
Solving Simultaneous Equations and Matrices
Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering
Automatic 3D Reconstruction via Object Detection and 3D Transformable Model Matching CS 269 Class Project Report
Automatic 3D Reconstruction via Object Detection and 3D Transformable Model Matching CS 69 Class Project Report Junhua Mao and Lunbo Xu University of California, Los Angeles [email protected] and lunbo
Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees
Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees Apex in a pyramid or cone, the vertex opposite the base; in
Interactive 3D Medical Visualization: A Parallel Approach to Surface Rendering 3D Medical Data
Interactive 3D Medical Visualization: A Parallel Approach to Surface Rendering 3D Medical Data Terry S. Yoo and David T. Chen Department of Computer Science University of North Carolina Chapel Hill, NC
Triangle Scan Conversion using 2D Homogeneous Coordinates
Triangle Scan Conversion using 2D Homogeneous Coordinates Marc Olano 1 Trey Greer 2 University of North Carolina Hewlett-Packard ABSTRACT We present a new triangle scan conversion algorithm that works
Introduction to Computer Graphics
Introduction to Computer Graphics Torsten Möller TASC 8021 778-782-2215 [email protected] www.cs.sfu.ca/~torsten Today What is computer graphics? Contents of this course Syllabus Overview of course topics
Shape Dictionary YR to Y6
Shape Dictionary YR to Y6 Guidance Notes The terms in this dictionary are taken from the booklet Mathematical Vocabulary produced by the National Numeracy Strategy. Children need to understand and use
Figure 1.1 Vector A and Vector F
CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have
INTRODUCTION TO RENDERING TECHNIQUES
INTRODUCTION TO RENDERING TECHNIQUES 22 Mar. 212 Yanir Kleiman What is 3D Graphics? Why 3D? Draw one frame at a time Model only once X 24 frames per second Color / texture only once 15, frames for a feature
Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.
Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.
VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203.
VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203. DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Year & Semester : III Year, V Semester Section : CSE - 1 & 2 Subject Code : CS6504 Subject
Geometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi
Geometry of Vectors Carlo Tomasi This note explores the geometric meaning of norm, inner product, orthogonality, and projection for vectors. For vectors in three-dimensional space, we also examine the
Solving Geometric Problems with the Rotating Calipers *
Solving Geometric Problems with the Rotating Calipers * Godfried Toussaint School of Computer Science McGill University Montreal, Quebec, Canada ABSTRACT Shamos [1] recently showed that the diameter of
Using Photorealistic RenderMan for High-Quality Direct Volume Rendering
Using Photorealistic RenderMan for High-Quality Direct Volume Rendering Cyrus Jam [email protected] Mike Bailey [email protected] San Diego Supercomputer Center University of California San Diego Abstract With
Computer Graphics CS 543 Lecture 12 (Part 1) Curves. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)
Computer Graphics CS 54 Lecture 1 (Part 1) Curves Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) So Far Dealt with straight lines and flat surfaces Real world objects include
MATHS LEVEL DESCRIPTORS
MATHS LEVEL DESCRIPTORS Number Level 3 Understand the place value of numbers up to thousands. Order numbers up to 9999. Round numbers to the nearest 10 or 100. Understand the number line below zero, and
[G.CO.2, G.CO.4, G.CO.5]
Name: Date: Geometric Transformations Multiple Choice Test Bank 1. A triangle has vertices at A (1, 3), B (4, 2), and C (3, 8). Which transformation would produce an image with vertices A (3, 1), B (2,
Mean Value Coordinates
Mean Value Coordinates Michael S. Floater Abstract: We derive a generalization of barycentric coordinates which allows a vertex in a planar triangulation to be expressed as a convex combination of its
Algebra Geometry Glossary. 90 angle
lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:
Section 1.1. Introduction to R n
The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to
1 Symmetries of regular polyhedra
1230, notes 5 1 Symmetries of regular polyhedra Symmetry groups Recall: Group axioms: Suppose that (G, ) is a group and a, b, c are elements of G. Then (i) a b G (ii) (a b) c = a (b c) (iii) There is an
Equations Involving Lines and Planes Standard equations for lines in space
Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity
Teacher Page. 1. Reflect a figure with vertices across the x-axis. Find the coordinates of the new image.
Teacher Page Geometr / Da # 10 oordinate Geometr (5 min.) 9-.G.3.1 9-.G.3.2 9-.G.3.3 9-.G.3. Use rigid motions (compositions of reflections, translations and rotations) to determine whether two geometric
Rendering Microgeometry with Volumetric Precomputed Radiance Transfer
Rendering Microgeometry with Volumetric Precomputed Radiance Transfer John Kloetzli February 14, 2006 Although computer graphics hardware has made tremendous advances over the last few years, there are
Geometry and Measurement
The student will be able to: Geometry and Measurement 1. Demonstrate an understanding of the principles of geometry and measurement and operations using measurements Use the US system of measurement for
Lecture 9: Geometric map transformations. Cartographic Transformations
Cartographic Transformations Analytical and Computer Cartography Lecture 9: Geometric Map Transformations Attribute Data (e.g. classification) Locational properties (e.g. projection) Graphics (e.g. symbolization)
Content. Chapter 4 Functions 61 4.1 Basic concepts on real functions 62. Credits 11
Content Credits 11 Chapter 1 Arithmetic Refresher 13 1.1 Algebra 14 Real Numbers 14 Real Polynomials 19 1.2 Equations in one variable 21 Linear Equations 21 Quadratic Equations 22 1.3 Exercises 28 Chapter
GeoGebra. 10 lessons. Gerrit Stols
GeoGebra in 10 lessons Gerrit Stols Acknowledgements GeoGebra is dynamic mathematics open source (free) software for learning and teaching mathematics in schools. It was developed by Markus Hohenwarter
New York State Student Learning Objective: Regents Geometry
New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students
SOLIDS, NETS, AND CROSS SECTIONS
SOLIDS, NETS, AND CROSS SECTIONS Polyhedra In this section, we will examine various three-dimensional figures, known as solids. We begin with a discussion of polyhedra. Polyhedron A polyhedron is a three-dimensional
Generating Signed Distance Fields From Triangle Meshes IMM-TECHNICAL REPORT-2002-21
Generating Signed Distance Fields From Triangle Meshes IMM-TECHNICAL REPORT-2002-21 J. Andreas Bærentzen and Henrik Aanæs Informatics and Mathematical Modelling (IMM) Technical University of Denmark DK-2800
A Short Introduction to Computer Graphics
A Short Introduction to Computer Graphics Frédo Durand MIT Laboratory for Computer Science 1 Introduction Chapter I: Basics Although computer graphics is a vast field that encompasses almost any graphical
521493S Computer Graphics. Exercise 2 & course schedule change
521493S Computer Graphics Exercise 2 & course schedule change Course Schedule Change Lecture from Wednesday 31th of March is moved to Tuesday 30th of March at 16-18 in TS128 Question 2.1 Given two nonparallel,
Geometric algebra rotors for skinned character animation blending
Geometric algebra rotors for skinned character animation blending briefs_0080* QLB: 320 FPS GA: 381 FPS QLB: 301 FPS GA: 341 FPS DQB: 290 FPS GA: 325 FPS Figure 1: Comparison between animation blending
Degree Reduction of Interval SB Curves
International Journal of Video&Image Processing and Network Security IJVIPNS-IJENS Vol:13 No:04 1 Degree Reduction of Interval SB Curves O. Ismail, Senior Member, IEEE Abstract Ball basis was introduced
Realtime 3D Computer Graphics Virtual Reality
Realtime 3D Computer Graphics Virtual Realit Viewing and projection Classical and General Viewing Transformation Pipeline CPU Pol. DL Pixel Per Vertex Texture Raster Frag FB object ee clip normalized device
The Essentials of CAGD
The Essentials of CAGD Chapter 2: Lines and Planes Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/essentials-cagd c 2000 Farin & Hansford
Such As Statements, Kindergarten Grade 8
Such As Statements, Kindergarten Grade 8 This document contains the such as statements that were included in the review committees final recommendations for revisions to the mathematics Texas Essential
Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary
Shape, Space, and Measurement- Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two- and three-dimensional shapes by demonstrating an understanding of:
WORK SCHEDULE: MATHEMATICS 2007
, K WORK SCHEDULE: MATHEMATICS 00 GRADE MODULE TERM... LO NUMBERS, OPERATIONS AND RELATIONSHIPS able to recognise, represent numbers and their relationships, and to count, estimate, calculate and check
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 1 NON-CONCURRENT COPLANAR FORCE SYSTEMS 1. Be able to determine the effects
Geometric Camera Parameters
Geometric Camera Parameters What assumptions have we made so far? -All equations we have derived for far are written in the camera reference frames. -These equations are valid only when: () all distances
Part-Based Recognition
Part-Based Recognition Benedict Brown CS597D, Fall 2003 Princeton University CS 597D, Part-Based Recognition p. 1/32 Introduction Many objects are made up of parts It s presumably easier to identify simple
Chapter 8 Geometry We will discuss following concepts in this chapter.
Mat College Mathematics Updated on Nov 5, 009 Chapter 8 Geometry We will discuss following concepts in this chapter. Two Dimensional Geometry: Straight lines (parallel and perpendicular), Rays, Angles
CAMI Education linked to CAPS: Mathematics
- 1 - TOPIC 1.1 Whole numbers _CAPS curriculum TERM 1 CONTENT Mental calculations Revise: Multiplication of whole numbers to at least 12 12 Ordering and comparing whole numbers Revise prime numbers to
Orthogonal Projections
Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors
Robust NURBS Surface Fitting from Unorganized 3D Point Clouds for Infrastructure As-Built Modeling
81 Robust NURBS Surface Fitting from Unorganized 3D Point Clouds for Infrastructure As-Built Modeling Andrey Dimitrov 1 and Mani Golparvar-Fard 2 1 Graduate Student, Depts of Civil Eng and Engineering
What's the Spin? - Discover Properties of Geometric Rotations
What's the Spin? - Discover Properties of Geometric Rotations Geometry Major Topics: Rotations and their relation to reflections NCTM Principles and Standards: Content Standards Geometry Apply transformations
a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a
Bellwork a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a c.) Find the slope of the line perpendicular to part b or a May 8 7:30 AM 1 Day 1 I.
2. If C is the midpoint of AB and B is the midpoint of AE, can you say that the measure of AC is 1/4 the measure of AE?
MATH 206 - Midterm Exam 2 Practice Exam Solutions 1. Show two rays in the same plane that intersect at more than one point. Rays AB and BA intersect at all points from A to B. 2. If C is the midpoint of
Impedance Matching. Using transformers Using matching networks
Impedance Matching The plasma industry uses process power over a wide range of frequencies: from DC to several gigahertz. A variety of methods are used to couple the process power into the plasma load,
Angles that are between parallel lines, but on opposite sides of a transversal.
GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,
FOREWORD. Executive Secretary
FOREWORD The Botswana Examinations Council is pleased to authorise the publication of the revised assessment procedures for the Junior Certificate Examination programme. According to the Revised National
11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space
11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of
12.5 Equations of Lines and Planes
Instructor: Longfei Li Math 43 Lecture Notes.5 Equations of Lines and Planes What do we need to determine a line? D: a point on the line: P 0 (x 0, y 0 ) direction (slope): k 3D: a point on the line: P
KEANSBURG SCHOOL DISTRICT KEANSBURG HIGH SCHOOL Mathematics Department. HSPA 10 Curriculum. September 2007
KEANSBURG HIGH SCHOOL Mathematics Department HSPA 10 Curriculum September 2007 Written by: Karen Egan Mathematics Supervisor: Ann Gagliardi 7 days Sample and Display Data (Chapter 1 pp. 4-47) Surveys and
Essential Mathematics for Computer Graphics fast
John Vince Essential Mathematics for Computer Graphics fast Springer Contents 1. MATHEMATICS 1 Is mathematics difficult? 3 Who should read this book? 4 Aims and objectives of this book 4 Assumptions made
THREE DIMENSIONAL GEOMETRY
Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,
1. Abstract 2. Introduction 3. Algorithms and Techniques
MS PROJECT Virtual Surgery Piyush Soni under the guidance of Dr. Jarek Rossignac, Brian Whited Georgia Institute of Technology, Graphics, Visualization and Usability Center Atlanta, GA [email protected],
Welcome to Math 7 Accelerated Courses (Preparation for Algebra in 8 th grade)
Welcome to Math 7 Accelerated Courses (Preparation for Algebra in 8 th grade) Teacher: School Phone: Email: Kim Schnakenberg 402-443- 3101 [email protected] Course Descriptions: Both Concept and Application
12-1 Representations of Three-Dimensional Figures
Connect the dots on the isometric dot paper to represent the edges of the solid. Shade the tops of 12-1 Representations of Three-Dimensional Figures Use isometric dot paper to sketch each prism. 1. triangular
Bedford, Fowler: Statics. Chapter 4: System of Forces and Moments, Examples via TK Solver
System of Forces and Moments Introduction The moment vector of a force vector,, with respect to a point has a magnitude equal to the product of the force magnitude, F, and the perpendicular distance from
A HYBRID APPROACH FOR AUTOMATED AREA AGGREGATION
A HYBRID APPROACH FOR AUTOMATED AREA AGGREGATION Zeshen Wang ESRI 380 NewYork Street Redlands CA 92373 [email protected] ABSTRACT Automated area aggregation, which is widely needed for mapping both natural
alternate interior angles
alternate interior angles two non-adjacent angles that lie on the opposite sides of a transversal between two lines that the transversal intersects (a description of the location of the angles); alternate
Pre-Algebra 2008. Academic Content Standards Grade Eight Ohio. Number, Number Sense and Operations Standard. Number and Number Systems
Academic Content Standards Grade Eight Ohio Pre-Algebra 2008 STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express large numbers and small
Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass
Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of
Behavioral Animation Modeling in the Windows Environment
Behavioral Animation Modeling in the Windows Environment MARCELO COHEN 1 CARLA M. D. S. FREITAS 1 FLAVIO R. WAGNER 1 1 UFRGS - Universidade Federal do Rio Grande do Sul CPGCC - Curso de Pós Graduação em
Prentice Hall Algebra 2 2011 Correlated to: Colorado P-12 Academic Standards for High School Mathematics, Adopted 12/2009
Content Area: Mathematics Grade Level Expectations: High School Standard: Number Sense, Properties, and Operations Understand the structure and properties of our number system. At their most basic level
The Dot and Cross Products
The Dot and Cross Products Two common operations involving vectors are the dot product and the cross product. Let two vectors =,, and =,, be given. The Dot Product The dot product of and is written and
Georgia Standards of Excellence Curriculum Map. Mathematics. GSE 8 th Grade
Georgia Standards of Excellence Curriculum Map Mathematics GSE 8 th Grade These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement. GSE Eighth Grade
Number Sense and Operations
Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents
Vectors 2. The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996.
Vectors 2 The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996. Launch Mathematica. Type
Geometric Transformation CS 211A
Geometric Transformation CS 211A What is transformation? Moving points (x,y) moves to (x+t, y+t) Can be in any dimension 2D Image warps 3D 3D Graphics and Vision Can also be considered as a movement to
Hyperbolic Islamic Patterns A Beginning
Hyperbolic Islamic Patterns A Beginning Douglas Dunham Department of Computer Science University of Minnesota, Duluth Duluth, MN 55812-2496, USA E-mail: [email protected] Web Site: http://www.d.umn.edu/
CREATING 3D digital content for computer games,
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1 Model Synthesis: A General Procedural Modeling Algorithm Paul Merrell and Dinesh Manocha University of North Carolina at Chapel Hill Abstract
Questions. Strategies August/September Number Theory. What is meant by a number being evenly divisible by another number?
Content Skills Essential August/September Number Theory Identify factors List multiples of whole numbers Classify prime and composite numbers Analyze the rules of divisibility What is meant by a number
Geometry Course Summary Department: Math. Semester 1
Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give
Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress
Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation
egyptigstudentroom.com
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *5128615949* MATHEMATICS 0580/04, 0581/04 Paper 4 (Extended) May/June 2007 Additional Materials:
Big Ideas in Mathematics
Big Ideas in Mathematics which are important to all mathematics learning. (Adapted from the NCTM Curriculum Focal Points, 2006) The Mathematics Big Ideas are organized using the PA Mathematics Standards
GEOMETRY CONCEPT MAP. Suggested Sequence:
CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons
Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks
Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson
Machine Learning and Data Mining. Regression Problem. (adapted from) Prof. Alexander Ihler
Machine Learning and Data Mining Regression Problem (adapted from) Prof. Alexander Ihler Overview Regression Problem Definition and define parameters ϴ. Prediction using ϴ as parameters Measure the error
Dual Marching Cubes: Primal Contouring of Dual Grids
Dual Marching Cubes: Primal Contouring of Dual Grids Scott Schaefer and Joe Warren Rice University 6100 Main St. Houston, TX 77005 [email protected] and [email protected] Abstract We present a method for
Finite Elements for 2 D Problems
Finite Elements for 2 D Problems General Formula for the Stiffness Matrix Displacements (u, v) in a plane element are interpolated from nodal displacements (ui, vi) using shape functions Ni as follows,
39 Symmetry of Plane Figures
39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that
Torgerson s Classical MDS derivation: 1: Determining Coordinates from Euclidean Distances
Torgerson s Classical MDS derivation: 1: Determining Coordinates from Euclidean Distances It is possible to construct a matrix X of Cartesian coordinates of points in Euclidean space when we know the Euclidean
Computational Geometry. Lecture 1: Introduction and Convex Hulls
Lecture 1: Introduction and convex hulls 1 Geometry: points, lines,... Plane (two-dimensional), R 2 Space (three-dimensional), R 3 Space (higher-dimensional), R d A point in the plane, 3-dimensional space,
How To Create A Surface From Points On A Computer With A Marching Cube
Surface Reconstruction from a Point Cloud with Normals Landon Boyd and Massih Khorvash Department of Computer Science University of British Columbia,2366 Main Mall Vancouver, BC, V6T1Z4, Canada {blandon,khorvash}@cs.ubc.ca
9 MATRICES AND TRANSFORMATIONS
9 MATRICES AND TRANSFORMATIONS Chapter 9 Matrices and Transformations Objectives After studying this chapter you should be able to handle matrix (and vector) algebra with confidence, and understand the
Basic Understandings
Activity: TEKS: Exploring Transformations Basic understandings. (5) Tools for geometric thinking. Techniques for working with spatial figures and their properties are essential to understanding underlying
Problem set on Cross Product
1 Calculate the vector product of a and b given that a= 2i + j + k and b = i j k (Ans 3 j - 3 k ) 2 Calculate the vector product of i - j and i + j (Ans ) 3 Find the unit vectors that are perpendicular
Visualization of General Defined Space Data
International Journal of Computer Graphics & Animation (IJCGA) Vol.3, No.4, October 013 Visualization of General Defined Space Data John R Rankin La Trobe University, Australia Abstract A new algorithm
