GPU(Graphics Processing Unit) with a Focus on Nvidia GeForce 6 Series. By: Binesh Tuladhar Clay Smith

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "GPU(Graphics Processing Unit) with a Focus on Nvidia GeForce 6 Series. By: Binesh Tuladhar Clay Smith"

Transcription

1 GPU(Graphics Processing Unit) with a Focus on Nvidia GeForce 6 Series By: Binesh Tuladhar Clay Smith

2 Overview History of GPU s GPU Definition Classical Graphics Pipeline Geforce 6 Series Architecture Vertex and Fragment Processors Traditional Architecture vs Super Scalar Architecture GPU features Functional and Shader Model 3.0 Fragment Processor Performance Future of GPU s

3 History Early GPU s -designed for primitive graphics operations 1990 s -2D graphics accelerators evolved Mid 1990 s late 1990 s -CPU assisted 3D graphics for PC s and gaming consoles - 3D hardware supporting T&L Modern GPU s -Programmable Graphics Pipeline with pixel and vertex shaders

4 GPU Definition Graphics rendering device GPU Rendering Wire Frame 3D Object

5 Definition contd... Consists of processor which is used for floating point calculations and rendering of 2D/3D images Processors either attached to graphics card or integrated in system board Decreases work load of CPU Gives improved system performance and gives realistic effect to images, videos and games

6 Classical Graphics Pipeline VERTEX T & L evolved to vertex TRIANGLE Traingle, point, line setup PIXEL ROP Flat shading, texturing, eventually pixel shading Blending, Z buffering, antialiasing MEMORY Wider and faster over years

7 Definition Contd... GPU interfaces with the CPU using fast buses like AGP (uptp 2GB/sec for 8X AGP PCI Express (upto 8GB/sec) Bus speeds are important because textures and vertex data needs to come from CPU to GPU

8 GeForce 6 Series Architecture

9 GeForce 6 Series Vertex Processor Vertex data received from host CPU Allow programs that performs transformation, skinning and other per-vertex operations. All operations are 32 bit floating point (fp32) precision per component Vertex cache present- stores vertex data These vertices are grouped intyo primitives- points, lines, traingles

10 Cull/Clip, Rasterization and Z-Cull Cull/Clip - Removes invisible primitives and performs plane equation on data for rasterization Rasterization -computes pixel coverage and uses Z-cull to discard pixels blocked by objects Z-Cull - eliminates pixel based on the depth

11 GeForce 6 Series Fragment Processor Fragment a candidate pixel texture and fragments unis operates on quads (squares of 4 pixels) Works on groups of 100 of pixels at a time in SIMD fashion Uses texture caches or units to fetch data from memory

12 Fragement Processor Contd... Shader units can perform 8 math ops (w/o texture fetch) or 4 math ops (with texture fetch ) in each clock cycle Fog calculation done in the end out = FogColor * fogfraction + SrcColor * (1-fogFraction) Pixels almost ready for framebuffer

13 Z-Compare and Blending Fragments aree passed through Z-compare and Blending units Operations: Depth testing Stencil tests Alpha operations Final color write to target surface

14 Memory Divided into independent partitions each with its own DRAM s Independent partitions increase latency and efficiency regardless of size of data transferred Gives GPU a wide 256 bits of flexible memory subsystem Allows streaming for small memory accesses (32 bytes) at 35 GB/sec In low end system, system memory shared as graphics memory

15 Traditional Architecture TEXTURE SHADER = 4 Ops/Pixel 1 Texture/Pixel at full speed 4 Components 1 Op/Component 4 Ops/Pixel Traditional non scalar shader architecture has only one shader unit Can process only upto 4 operations per cycle

16 Super-scalar Architecture SHADER Unit 1 TEXTURE 4 Components 1 Op/Component 4 Ops/Pixel OR 1 Texture/Pixel at Full Speed superscalar architecture has a second shader unit doubles pixel operations per cycle SHADER Unit 2 4 Components 1 Op/Component 4 Ops/Pixel Can process upto 8 operations per cycle = 8 Ops/Pixel

17 GPU Features Functional Features Geometric Instancing Vertex stream frequency - hardware support for looping over a subset of vertices Example: rendering the same objectmultiple times at diff locations (grass, soldiers, people in stadium)

18 GPU Features Contd... Early culling and clipping - remove nonvisible primitives at high rate Rasterization - rendering supports point sprites Aliased and anti-aliased lines Aliased and antialiased triangles Z-Cull - Allows high-speed removal of hidden surfaces Occlusion Query - Keeps a record of the number of fragments passing or failing the depth test and reports it to the CPU

19 GPU Features Contd... Texturing -Textures can now directly be fetched into the vertex program. Shadow Buffer Support - Fetches shadow buffer as a projective texture and performs z compares of the shadow buffer data to distance from light.

20 Shader Model 3.0 Features Increased instruction count (upto instructions.) Fragment processor; multiple render targets. Dynamic flow control branching Vertex texturing More temporary registers.

21 Shader Model 3.0 Features Contd.. Co-issue -Two separate operations can concurrently execute on different parts of a four-wide register Dual Issue -Independent instructions can be executed on independent units in computational pipeline

22 Fragment Processor Performance fp32 and fp16 precision support for intermediate calculations Ability to perform four wide, coissue multiply-add(mad) or four-term dot product (DP4), plus a four-wide, coissueable and dual-issuable multiply instruction per clock in series. Dedicated fp16 normalization hardware

23 Future of GPU s High end graphics card to support graphical applications games requiring high resolutions and faster refresh rates Increase speeds of hardware such as memory and processor More compact, low power, low cost GPU s Empirical testing of infield operation

24 Bibliography Emmett Kilgariff, Randima Fernando (2005). "The GeForce 6 Series GPU Architecture." Excerpted from GPU Gems 2 Copyright 2005 by NVIDIA Corporation. Available online at: James Fung (2005), Computer Vision on GPU, University of Toronto, Available online at: Ajit Datar, Apurva Padhye Graphics Processing Unit Architecture (GPU Arch), Available online at: NVIDIA (2006)"Technical Brief NVIDIA GeForce 8800 GPU Architecture Overview" November 2006 Copyright 2006 NVIDIA Corporation. Available online at: NVIDIA (2004) Technical Brief The GeForce 6 Series of GPUs High Performance and Quality for Complex Image Effects, 2004 by Nvidia Corporation. Available online at: Files%5Cb2eb9657-4f0f-4df6-86bd- 739ee6fcef58/GeForce6SeriesofGPUs_v1.pdf]

Computer Graphics Hardware An Overview

Computer Graphics Hardware An Overview Computer Graphics Hardware An Overview Graphics System Monitor Input devices CPU/Memory GPU Raster Graphics System Raster: An array of picture elements Based on raster-scan TV technology The screen (and

More information

The Evolution of Computer Graphics. SVP, Content & Technology, NVIDIA

The Evolution of Computer Graphics. SVP, Content & Technology, NVIDIA The Evolution of Computer Graphics Tony Tamasi SVP, Content & Technology, NVIDIA Graphics Make great images intricate shapes complex optical effects seamless motion Make them fast invent clever techniques

More information

Chapter 2 GRAPHICAL PROCESSING UNITS. 2.1 Overview

Chapter 2 GRAPHICAL PROCESSING UNITS. 2.1 Overview Chapter 2 GRAPHICAL PROCESSING UNITS 2.1 Overview Knowledge of the operations supported by GPUs and how data is processed in GPUs is necessary in order to understand how GPUs can be leveraged for cryptographic

More information

GPU Architecture. Michael Doggett ATI

GPU Architecture. Michael Doggett ATI GPU Architecture Michael Doggett ATI GPU Architecture RADEON X1800/X1900 Microsoft s XBOX360 Xenos GPU GPU research areas ATI - Driving the Visual Experience Everywhere Products from cell phones to super

More information

3D Graphics for Embedded Systems

3D Graphics for Embedded Systems EuroGraphics Italian Chapter Catania, Feb 24 th 2006 3D Graphics for Embedded Systems From standards, through R&D to applicable innovations Massimiliano Barone Imaging, Rendering, Human Machine Interaction

More information

Recent Advances and Future Trends in Graphics Hardware. Michael Doggett Architect November 23, 2005

Recent Advances and Future Trends in Graphics Hardware. Michael Doggett Architect November 23, 2005 Recent Advances and Future Trends in Graphics Hardware Michael Doggett Architect November 23, 2005 Overview XBOX360 GPU : Xenos Rendering performance GPU architecture Unified shader Memory Export Texture/Vertex

More information

Shader Model 3.0. Ashu Rege. NVIDIA Developer Technology Group

Shader Model 3.0. Ashu Rege. NVIDIA Developer Technology Group Shader Model 3.0 Ashu Rege NVIDIA Developer Technology Group Talk Outline Quick Intro GeForce 6 Series (NV4X family) New Vertex Shader Features Vertex Texture Fetch Longer Programs and Dynamic Flow Control

More information

Graphics Cards and Graphics Processing Units. Ben Johnstone Russ Martin November 15, 2011

Graphics Cards and Graphics Processing Units. Ben Johnstone Russ Martin November 15, 2011 Graphics Cards and Graphics Processing Units Ben Johnstone Russ Martin November 15, 2011 Contents Graphics Processing Units (GPUs) Graphics Pipeline Architectures 8800-GTX200 Fermi Cayman Performance Analysis

More information

GPU Architecture Overview. John Owens UC Davis

GPU Architecture Overview. John Owens UC Davis GPU Architecture Overview John Owens UC Davis The Right-Hand Turn [H&P Figure 1.1] Why? [Architecture Reasons] ILP increasingly difficult to extract from instruction stream Control hardware dominates µprocessors

More information

GPGPU Computing. Yong Cao

GPGPU Computing. Yong Cao GPGPU Computing Yong Cao Why Graphics Card? It s powerful! A quiet trend Copyright 2009 by Yong Cao Why Graphics Card? It s powerful! Processor Processing Units FLOPs per Unit Clock Speed Processing Power

More information

Programming Graphics Hardware. Randy Fernando, Cyril Zeller

Programming Graphics Hardware. Randy Fernando, Cyril Zeller Randy Fernando, Cyril Zeller Overview of the Tutorial 10:45 Introduction to the Hardware Graphics Pipeline Cyril Zeller 12:00 Lunch 14:00 High-Level Shading Languages Randy Fernando 15:15 break 15:45 GPU

More information

GPUs: Doing More Than Just Games. Mark Gahagan CSE 141 November 29, 2012

GPUs: Doing More Than Just Games. Mark Gahagan CSE 141 November 29, 2012 GPUs: Doing More Than Just Games Mark Gahagan CSE 141 November 29, 2012 Outline Introduction: Why multicore at all? Background: What is a GPU? Quick Look: Warps and Threads (SIMD) NVIDIA Tesla: The First

More information

OpenGL Performance Tuning

OpenGL Performance Tuning OpenGL Performance Tuning Evan Hart ATI Pipeline slides courtesy John Spitzer - NVIDIA Overview What to look for in tuning How it relates to the graphics pipeline Modern areas of interest Vertex Buffer

More information

Image Processing and Computer Graphics. Rendering Pipeline. Matthias Teschner. Computer Science Department University of Freiburg

Image Processing and Computer Graphics. Rendering Pipeline. Matthias Teschner. Computer Science Department University of Freiburg Image Processing and Computer Graphics Rendering Pipeline Matthias Teschner Computer Science Department University of Freiburg Outline introduction rendering pipeline vertex processing primitive processing

More information

Xbox 360 GPU and Radeon HD Michael Doggett Principal Member of Technical Staff Marlborough, Massachusetts October 29, 2007

Xbox 360 GPU and Radeon HD Michael Doggett Principal Member of Technical Staff Marlborough, Massachusetts October 29, 2007 Xbox 360 GPU and Radeon HD 2900 Michael Doggett Principal Member of Technical Staff Marlborough, Massachusetts October 29, 2007 Overview Introduction to 3D Graphics Xbox 360 GPU Radeon 2900 Pipeline Blocks

More information

High-Performance Software Rasterization on GPUs. NVIDIA Research

High-Performance Software Rasterization on GPUs. NVIDIA Research High-Performance Software Rasterization on GPUs Samuli Laine Tero Karras NVIDIA Research Graphics and Programmability Graphics pipeline (OpenGL/D3D) Driven by dedicated hardware Executes user code in shaders

More information

Touchstone -A Fresh Approach to Multimedia for the PC

Touchstone -A Fresh Approach to Multimedia for the PC Touchstone -A Fresh Approach to Multimedia for the PC Emmett Kilgariff Martin Randall Silicon Engineering, Inc Presentation Outline Touchstone Background Chipset Overview Sprite Chip Tiler Chip Compressed

More information

Introduction to Computer Graphics

Introduction to Computer Graphics Introduction to Computer Graphics Torsten Möller TASC 8021 778-782-2215 torsten@sfu.ca www.cs.sfu.ca/~torsten Today What is computer graphics? Contents of this course Syllabus Overview of course topics

More information

NVIDIA GeForce GTX 580 GPU Datasheet

NVIDIA GeForce GTX 580 GPU Datasheet NVIDIA GeForce GTX 580 GPU Datasheet NVIDIA GeForce GTX 580 GPU Datasheet 3D Graphics Full Microsoft DirectX 11 Shader Model 5.0 support: o NVIDIA PolyMorph Engine with distributed HW tessellation engines

More information

Shader Model 3.0, Best Practices. Phil Scott Technical Developer Relations, EMEA

Shader Model 3.0, Best Practices. Phil Scott Technical Developer Relations, EMEA Shader Model 3.0, Best Practices Phil Scott Technical Developer Relations, EMEA Overview Short Pipeline Overview CPU Bound new optimization opportunities Obscure bits of the pipeline that can trip you

More information

Introduction to GP-GPUs. Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1

Introduction to GP-GPUs. Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1 Introduction to GP-GPUs Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1 GPU Architectures: How do we reach here? NVIDIA Fermi, 512 Processing Elements (PEs) 2 What Can It Do?

More information

Image Synthesis. Transparency. computer graphics & visualization

Image Synthesis. Transparency. computer graphics & visualization Image Synthesis Transparency Inter-Object realism Covers different kinds of interactions between objects Increasing realism in the scene Relationships between objects easier to understand Shadows, Reflections,

More information

Radeon HD 2900 and Geometry Generation. Michael Doggett

Radeon HD 2900 and Geometry Generation. Michael Doggett Radeon HD 2900 and Geometry Generation Michael Doggett September 11, 2007 Overview Introduction to 3D Graphics Radeon 2900 Starting Point Requirements Top level Pipeline Blocks from top to bottom Command

More information

Introduction to GPGPU. Tiziano Diamanti t.diamanti@cineca.it

Introduction to GPGPU. Tiziano Diamanti t.diamanti@cineca.it t.diamanti@cineca.it Agenda From GPUs to GPGPUs GPGPU architecture CUDA programming model Perspective projection Vectors that connect the vanishing point to every point of the 3D model will intersecate

More information

GPUs Under the Hood. Prof. Aaron Lanterman School of Electrical and Computer Engineering Georgia Institute of Technology

GPUs Under the Hood. Prof. Aaron Lanterman School of Electrical and Computer Engineering Georgia Institute of Technology GPUs Under the Hood Prof. Aaron Lanterman School of Electrical and Computer Engineering Georgia Institute of Technology Bandwidth Gravity of modern computer systems The bandwidth between key components

More information

L20: GPU Architecture and Models

L20: GPU Architecture and Models L20: GPU Architecture and Models scribe(s): Abdul Khalifa 20.1 Overview GPUs (Graphics Processing Units) are large parallel structure of processing cores capable of rendering graphics efficiently on displays.

More information

Radeon GPU Architecture and the Radeon 4800 series. Michael Doggett Graphics Architecture Group June 27, 2008

Radeon GPU Architecture and the Radeon 4800 series. Michael Doggett Graphics Architecture Group June 27, 2008 Radeon GPU Architecture and the series Michael Doggett Graphics Architecture Group June 27, 2008 Graphics Processing Units Introduction GPU research 2 GPU Evolution GPU started as a triangle rasterizer

More information

Graphics Processing Unit (GPU) Memory Hierarchy. Presented by Vu Dinh and Donald MacIntyre

Graphics Processing Unit (GPU) Memory Hierarchy. Presented by Vu Dinh and Donald MacIntyre Graphics Processing Unit (GPU) Memory Hierarchy Presented by Vu Dinh and Donald MacIntyre 1 Agenda Introduction to Graphics Processing CPU Memory Hierarchy GPU Memory Hierarchy GPU Architecture Comparison

More information

Computer Graphics (CS 543) Lecture 1 (Part 1): Introduction to Computer Graphics

Computer Graphics (CS 543) Lecture 1 (Part 1): Introduction to Computer Graphics Computer Graphics (CS 543) Lecture 1 (Part 1): Introduction to Computer Graphics Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) What is Computer Graphics (CG)? Computer

More information

CSE 564: Visualization. GPU Programming (First Steps) GPU Generations. Klaus Mueller. Computer Science Department Stony Brook University

CSE 564: Visualization. GPU Programming (First Steps) GPU Generations. Klaus Mueller. Computer Science Department Stony Brook University GPU Generations CSE 564: Visualization GPU Programming (First Steps) Klaus Mueller Computer Science Department Stony Brook University For the labs, 4th generation is desirable Graphics Hardware Pipeline

More information

Console Architecture. By: Peter Hood & Adelia Wong

Console Architecture. By: Peter Hood & Adelia Wong Console Architecture By: Peter Hood & Adelia Wong Overview Gaming console timeline and evolution Overview of the original xbox architecture Console architecture of the xbox360 Future of the xbox series

More information

Real-Time Realistic Rendering. Michael Doggett Docent Department of Computer Science Lund university

Real-Time Realistic Rendering. Michael Doggett Docent Department of Computer Science Lund university Real-Time Realistic Rendering Michael Doggett Docent Department of Computer Science Lund university 30-5-2011 Visually realistic goal force[d] us to completely rethink the entire rendering process. Cook

More information

NVIDIA Quadro K2200. Product Specifications. NVIDIA Quadro K2200 Part No. VCQK2200 PB $ CUDA Cores 640. Maximum Power Consumption

NVIDIA Quadro K2200. Product Specifications. NVIDIA Quadro K2200 Part No. VCQK2200 PB $ CUDA Cores 640. Maximum Power Consumption NVIDIA Quadro K2200 NVIDIA Quadro K2200 Part No. VCQK2200 PB $599.00 84 0 0 36 Product Specifications CUDA Cores 640 GPU Memory Memory Interface Memory Bandwidth System Interface Maximum Power Consumption

More information

OpenGL pipeline Evolution and OpenGL Shading Language (GLSL)

OpenGL pipeline Evolution and OpenGL Shading Language (GLSL) OpenGL pipeline Evolution and OpenGL Shading Language (GLSL) Part 1/3 Prateek Shrivastava CS12S008 shrvstv@cse.iitm.ac.in 1 INTRODUCTION OpenGL Shading Language (GLSL) "mini-programs" written in GLSL are

More information

A Crash Course on Programmable Graphics Hardware

A Crash Course on Programmable Graphics Hardware A Crash Course on Programmable Graphics Hardware Li-Yi Wei Abstract Recent years have witnessed tremendous growth for programmable graphics hardware (GPU), both in terms of performance and functionality.

More information

By: Xinya (Leah) Zhao Abdulahi Abu. Architecture. Logo Source:

By: Xinya (Leah) Zhao Abdulahi Abu. Architecture. Logo Source: By: Xinya (Leah) Zhao Abdulahi Abu Architecture Logo Source: http://gamez-gear.com/ds/images/logos/playstation3logo%20%281%29.gif Outline Evolution of Game Consoles and Gaming Industry PlayStation 3 Architecture

More information

NVIDIA workstation 3D graphics card upgrade options deliver productivity improvements and superior image quality

NVIDIA workstation 3D graphics card upgrade options deliver productivity improvements and superior image quality Hardware Announcement ZG09-0170, dated March 31, 2009 NVIDIA workstation 3D graphics card upgrade options deliver productivity improvements and superior image quality Table of contents 1 At a glance 3

More information

Architecture for Multimedia Systems (2007) Oscar Barreto way symmetric multiprocessor. ATI custom GPU 500 MHz

Architecture for Multimedia Systems (2007) Oscar Barreto way symmetric multiprocessor. ATI custom GPU 500 MHz XBOX 360 Architecture Architecture for Multimedia Systems (2007) Oscar Barreto 709231 Overview 3-way symmetric multiprocessor Each CPU core is a specialized PowerPC chip running @ 3.2 GHz with custom vector

More information

Optimizing Unity Games for Mobile Platforms. Angelo Theodorou Software Engineer Unite 2013, 28 th -30 th August

Optimizing Unity Games for Mobile Platforms. Angelo Theodorou Software Engineer Unite 2013, 28 th -30 th August Optimizing Unity Games for Mobile Platforms Angelo Theodorou Software Engineer Unite 2013, 28 th -30 th August Agenda Introduction The author and ARM Preliminary knowledge Unity Pro, OpenGL ES 3.0 Identify

More information

Lecture Notes, CEng 477

Lecture Notes, CEng 477 Computer Graphics Hardware and Software Lecture Notes, CEng 477 What is Computer Graphics? Different things in different contexts: pictures, scenes that are generated by a computer. tools used to make

More information

Dynamic Resolution Rendering

Dynamic Resolution Rendering Dynamic Resolution Rendering Doug Binks Introduction The resolution selection screen has been one of the defining aspects of PC gaming since the birth of games. In this whitepaper and the accompanying

More information

Xbox 360 System Architecture. Jeff Andrews Nick Baker Xbox Semiconductor Technology Group

Xbox 360 System Architecture. Jeff Andrews Nick Baker Xbox Semiconductor Technology Group Xbox 360 System Architecture Jeff Andrews Nick Baker Xbox Semiconductor Technology Group Hot Chips Presentation Hardware Specs Architectural Choices Programming Environment QA Hot Chips 17 2 Overview Design

More information

Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com

Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com CSCI-GA.3033-012 Graphics Processing Units (GPUs): Architecture and Programming Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com Modern GPU

More information

An Introduction to Modern GPU Architecture Ashu Rege Director of Developer Technology

An Introduction to Modern GPU Architecture Ashu Rege Director of Developer Technology An Introduction to Modern GPU Architecture Ashu Rege Director of Developer Technology Agenda Evolution of GPUs Computing Revolution Stream Processing Architecture details of modern GPUs Evolution of GPUs

More information

UTILIZING GPUS ON CLUSTER COMPUTERS

UTILIZING GPUS ON CLUSTER COMPUTERS UTILIZING GPUS ON CLUSTER COMPUTERS PROJECT WORK IN TDT4715 ALGORITHM CONSTRUCTION AND VISUALIZATION, DEPTH STUDY FALL 2006 LEIF CHRISTIAN LARSEN MAIN SUPERVISOR: DR. ANNE CATHRINE ELSTER CO-SUPERVISOR:

More information

Overview Motivation and applications Challenges. Dynamic Volume Computation and Visualization on the GPU. GPU feature requests Conclusions

Overview Motivation and applications Challenges. Dynamic Volume Computation and Visualization on the GPU. GPU feature requests Conclusions Module 4: Beyond Static Scalar Fields Dynamic Volume Computation and Visualization on the GPU Visualization and Computer Graphics Group University of California, Davis Overview Motivation and applications

More information

This Unit: Putting It All Together. CIS 501 Computer Architecture. Sources. What is Computer Architecture?

This Unit: Putting It All Together. CIS 501 Computer Architecture. Sources. What is Computer Architecture? This Unit: Putting It All Together CIS 501 Computer Architecture Unit 11: Putting It All Together: Anatomy of the XBox 360 Game Console Slides originally developed by Amir Roth with contributions by Milo

More information

Advanced Rendering for Engineering & Styling

Advanced Rendering for Engineering & Styling Advanced Rendering for Engineering & Styling Prof. B.Brüderlin Brüderlin,, M Heyer 3Dinteractive GmbH & TU-Ilmenau, Germany SGI VizDays 2005, Rüsselsheim Demands in Engineering & Styling Engineering: :

More information

Deferred Shading. Shawn Hargreaves

Deferred Shading. Shawn Hargreaves Deferred Shading Shawn Hargreaves Overview Don t bother with any lighting while drawing scene geometry Render to a fat framebuffer format, using multiple rendertargets to store data such as the position

More information

AMD Radeon HD 2900 Highlights

AMD Radeon HD 2900 Highlights C O N F I D E N T I A L 2007 Hot Chips 19 AMD s Radeon HD 2900 2 nd Generation Unified Shader Architecture Mike Mantor Fellow AMD Graphics Products Group michael.mantor@amd.com AMD Radeon HD 2900 Highlights

More information

We have learnt that the order of how we draw objects in 3D can have an influence on how the final image looks

We have learnt that the order of how we draw objects in 3D can have an influence on how the final image looks Review: Last Week We have learnt that the order of how we draw objects in 3D can have an influence on how the final image looks Depth-sort Z-buffer Transparency Orientation of triangle (order of vertices)

More information

Performance Analysis and Optimization

Performance Analysis and Optimization Performance Analysis and Optimization ARM Mali GPU Performance Counters in ARM DS-5 Streamline Performance Analyzer Lorenzo Dal Col Senior Software Engineer, ARM 1 Agenda Introduction to ARM DS-5 and Streamline

More information

CS445 Exam 2 Solutions

CS445 Exam 2 Solutions November 20, 2014 Name CS445 Exam 2 Solutions Fall 2014 1. (max = 15) 5. (max = 21) 2. (max = 8) 6. (max = 16) 3. (max = 10) 7. (max = 16) 4. (max = 14) Final Score: (max=100) Please try to write legibly.

More information

GPGPU: General-Purpose Computation on GPUs

GPGPU: General-Purpose Computation on GPUs GPGPU: General-Purpose Computation on GPUs Randy Fernando NVIDIA Developer Technology Group (Original Slides Courtesy of Mark Harris) Why GPGPU? The GPU has evolved into an extremely flexible and powerful

More information

Computer Graphics. Lecture 1:

Computer Graphics. Lecture 1: Computer Graphics Thilo Kielmann Lecture 1: 1 Introduction (basic administrative information) Course Overview + Examples (a.o. Pixar, Blender, ) Graphics Systems Hands-on Session General Introduction http://www.cs.vu.nl/~graphics/

More information

Introduction to GPU Architecture

Introduction to GPU Architecture Introduction to GPU Architecture Ofer Rosenberg, PMTS SW, OpenCL Dev. Team AMD Based on From Shader Code to a Teraflop: How GPU Shader Cores Work, By Kayvon Fatahalian, Stanford University Content 1. Three

More information

Silverlight for Windows Embedded Graphics and Rendering Pipeline 1

Silverlight for Windows Embedded Graphics and Rendering Pipeline 1 Silverlight for Windows Embedded Graphics and Rendering Pipeline 1 Silverlight for Windows Embedded Graphics and Rendering Pipeline Windows Embedded Compact 7 Technical Article Writers: David Franklin,

More information

Introduction to Game Programming. Steven Osman sosman@cs.cmu.edu

Introduction to Game Programming. Steven Osman sosman@cs.cmu.edu Introduction to Game Programming Steven Osman sosman@cs.cmu.edu Introduction to Game Programming Introductory stuff Look at a game console: PS2 Some Techniques (Cheats?) What is a Game? Half-Life 2, Valve

More information

Modern Graphics Engine Design. Sim Dietrich NVIDIA Corporation sim.dietrich@nvidia.com

Modern Graphics Engine Design. Sim Dietrich NVIDIA Corporation sim.dietrich@nvidia.com Modern Graphics Engine Design Sim Dietrich NVIDIA Corporation sim.dietrich@nvidia.com Overview Modern Engine Features Modern Engine Challenges Scene Management Culling & Batching Geometry Management Collision

More information

Data Parallel Computing on Graphics Hardware. Ian Buck Stanford University

Data Parallel Computing on Graphics Hardware. Ian Buck Stanford University Data Parallel Computing on Graphics Hardware Ian Buck Stanford University Brook General purpose Streaming language DARPA Polymorphous Computing Architectures Stanford - Smart Memories UT Austin - TRIPS

More information

ATI Radeon 4800 series Graphics. Michael Doggett Graphics Architecture Group Graphics Product Group

ATI Radeon 4800 series Graphics. Michael Doggett Graphics Architecture Group Graphics Product Group ATI Radeon 4800 series Graphics Michael Doggett Graphics Architecture Group Graphics Product Group Graphics Processing Units ATI Radeon HD 4870 AMD Stream Computing Next Generation GPUs 2 Radeon 4800 series

More information

Introduction GPU Hardware GPU Computing Today GPU Computing Example Outlook Summary. GPU Computing. Numerical Simulation - from Models to Software

Introduction GPU Hardware GPU Computing Today GPU Computing Example Outlook Summary. GPU Computing. Numerical Simulation - from Models to Software GPU Computing Numerical Simulation - from Models to Software Andreas Barthels JASS 2009, Course 2, St. Petersburg, Russia Prof. Dr. Sergey Y. Slavyanov St. Petersburg State University Prof. Dr. Thomas

More information

Lecture 11: Multi-Core and GPU. Multithreading. Integration of multiple processor cores on a single chip.

Lecture 11: Multi-Core and GPU. Multithreading. Integration of multiple processor cores on a single chip. Lecture 11: Multi-Core and GPU Multi-core computers Multithreading GPUs General Purpose GPUs Zebo Peng, IDA, LiTH 1 Multi-Core System Integration of multiple processor cores on a single chip. To provide

More information

INTRODUCTION TO RENDERING TECHNIQUES

INTRODUCTION TO RENDERING TECHNIQUES INTRODUCTION TO RENDERING TECHNIQUES 22 Mar. 212 Yanir Kleiman What is 3D Graphics? Why 3D? Draw one frame at a time Model only once X 24 frames per second Color / texture only once 15, frames for a feature

More information

Advanced Visual Effects with Direct3D

Advanced Visual Effects with Direct3D Advanced Visual Effects with Direct3D Presenters: Mike Burrows, Sim Dietrich, David Gosselin, Kev Gee, Jeff Grills, Shawn Hargreaves, Richard Huddy, Gary McTaggart, Jason Mitchell, Ashutosh Rege and Matthias

More information

Fast and efficient dense variational stereo on GPU

Fast and efficient dense variational stereo on GPU Fast and efficient dense variational stereo on GPU Julien Mairal, Renaud Keriven and Alexandre Chariot CERTIS ENPC 77455 Marne-la-Vallee cedex 2 France julien.mairal@m4x.org, keriven@certis.enpc.fr, chariot@certis.enpc.fr

More information

Graphics and Computing GPUs

Graphics and Computing GPUs C A P P E N D I X Imagination is more important than knowledge. Albert Einstein On Science, 1930s Graphics and Computing GPUs John Nickolls Director of Architecture NVIDIA David Kirk Chief Scientist NVIDIA

More information

Optimizing AAA Games for Mobile Platforms

Optimizing AAA Games for Mobile Platforms Optimizing AAA Games for Mobile Platforms Niklas Smedberg Senior Engine Programmer, Epic Games Who Am I A.k.a. Smedis Epic Games, Unreal Engine 15 years in the industry 30 years of programming C64 demo

More information

Intel Graphics Media Accelerator 900

Intel Graphics Media Accelerator 900 Intel Graphics Media Accelerator 900 White Paper September 2004 Document Number: 302624-003 INFOMATION IN THIS DOCUMENT IS POVIDED IN CONNECTION WITH INTEL PODUCTS. NO LICENSE, EXPESS O IMPLIED, BY ESTOPPEL

More information

Introduction to GPU Programming Languages

Introduction to GPU Programming Languages CSC 391/691: GPU Programming Fall 2011 Introduction to GPU Programming Languages Copyright 2011 Samuel S. Cho http://www.umiacs.umd.edu/ research/gpu/facilities.html Maryland CPU/GPU Cluster Infrastructure

More information

2: Introducing image synthesis. Some orientation how did we get here? Graphics system architecture Overview of OpenGL / GLU / GLUT

2: Introducing image synthesis. Some orientation how did we get here? Graphics system architecture Overview of OpenGL / GLU / GLUT COMP27112 Computer Graphics and Image Processing 2: Introducing image synthesis Toby.Howard@manchester.ac.uk 1 Introduction In these notes we ll cover: Some orientation how did we get here? Graphics system

More information

Real-Time Graphics Architecture

Real-Time Graphics Architecture Real-Time Graphics Architecture Kurt Akeley Pat Hanrahan http://www.graphics.stanford.edu/courses/cs448a-01-fall Display and Framebuffer Displays Key properties Bandwidth Framebuffers Definitions and key

More information

Hardware design for ray tracing

Hardware design for ray tracing Hardware design for ray tracing Jae-sung Yoon Introduction Realtime ray tracing performance has recently been achieved even on single CPU. [Wald et al. 2001, 2002, 2004] However, higher resolutions, complex

More information

BEAGLEBONE BLACK ARCHITECTURE MADELEINE DAIGNEAU MICHELLE ADVENA

BEAGLEBONE BLACK ARCHITECTURE MADELEINE DAIGNEAU MICHELLE ADVENA BEAGLEBONE BLACK ARCHITECTURE MADELEINE DAIGNEAU MICHELLE ADVENA AGENDA INTRO TO BEAGLEBONE BLACK HARDWARE & SPECS CORTEX-A8 ARMV7 PROCESSOR PROS & CONS VS RASPBERRY PI WHEN TO USE BEAGLEBONE BLACK Single

More information

Optimization for DirectX9 Graphics. Ashu Rege

Optimization for DirectX9 Graphics. Ashu Rege Optimization for DirectX9 Graphics Ashu Rege Last Year: Batch, Batch, Batch Moral of the story: Small batches BAD What is a batch Every DrawIndexedPrimitive call is a batch All render, texture, shader,...

More information

Intel 810 and 815 Chipset Family Dynamic Video Memory Technology

Intel 810 and 815 Chipset Family Dynamic Video Memory Technology Intel 810 and 815 Chipset Family Dynamic Video Technology Revision 3.0 March 2002 March 2002 1 Information in this document is provided in connection with Intel products. No license, express or implied,

More information

The Future Of Animation Is Games

The Future Of Animation Is Games The Future Of Animation Is Games 王 銓 彰 Next Media Animation, Media Lab, Director cwang@1-apple.com.tw The Graphics Hardware Revolution ( 繪 圖 硬 體 革 命 ) : GPU-based Graphics Hardware Multi-core (20 Cores

More information

GPU Parallel Computing Architecture and CUDA Programming Model

GPU Parallel Computing Architecture and CUDA Programming Model GPU Parallel Computing Architecture and CUDA Programming Model John Nickolls Outline Why GPU Computing? GPU Computing Architecture Multithreading and Arrays Data Parallel Problem Decomposition Parallel

More information

GigaVoxels Ray-Guided Streaming for Efficient and Detailed Voxel Rendering. Presented by: Jordan Robinson Daniel Joerimann

GigaVoxels Ray-Guided Streaming for Efficient and Detailed Voxel Rendering. Presented by: Jordan Robinson Daniel Joerimann GigaVoxels Ray-Guided Streaming for Efficient and Detailed Voxel Rendering Presented by: Jordan Robinson Daniel Joerimann Outline Motivation GPU Architecture / Pipeline Previous work Support structure

More information

Deconstructing Hardware Usage for General Purpose Computation on GPUs

Deconstructing Hardware Usage for General Purpose Computation on GPUs Deconstructing Hardware Usage for General Purpose Computation on GPUs Budyanto Himawan Dept. of Computer Science University of Colorado Boulder, CO 80309 Manish Vachharajani Dept. of Electrical and Computer

More information

Comp 410/510. Computer Graphics Spring 2016. Introduction to Graphics Systems

Comp 410/510. Computer Graphics Spring 2016. Introduction to Graphics Systems Comp 410/510 Computer Graphics Spring 2016 Introduction to Graphics Systems Computer Graphics Computer graphics deals with all aspects of creating images with a computer Hardware (PC with graphics card)

More information

Ray Tracing on Programmable Graphics Hardware

Ray Tracing on Programmable Graphics Hardware Ray Tracing on Programmable Graphics Hardware Timothy J. Purcell Ian Buck William R. Mark Pat Hanrahan Stanford University Abstract Recently a breakthrough has occurred in graphics hardware: fixed function

More information

CSE 167: Lecture #18: Deferred Rendering. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

CSE 167: Lecture #18: Deferred Rendering. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 CSE 167: Introduction to Computer Graphics Lecture #18: Deferred Rendering Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Thursday, Dec 13: Final project presentations

More information

Multiprocessor Graphic Rendering Kerey Howard

Multiprocessor Graphic Rendering Kerey Howard Multiprocessor Graphic Rendering Kerey Howard EEL 6897 Lecture Outline Real time Rendering Introduction Graphics API Pipeline Multiprocessing Parallel Processing Threading OpenGL with Java 2 Real time

More information

Shading with Shaders. Computer Graphics, VT 2015 Lecture 6

Shading with Shaders. Computer Graphics, VT 2015 Lecture 6 Shading with Shaders Computer Graphics, VT 2015 Lecture 6 Johan Nysjö Centre for Image analysis Swedish University of Agricultural Sciences Uppsala University Today's topics Shading in modern OpenGL Per-vertex

More information

3D Computer Games History and Technology

3D Computer Games History and Technology 3D Computer Games History and Technology VRVis Research Center http://www.vrvis.at Lecture Outline Overview of the last 10-15 15 years A look at seminal 3D computer games Most important techniques employed

More information

SAPPHIRE R9 270X 4GB GDDR5 WITH BOOST & OC

SAPPHIRE R9 270X 4GB GDDR5 WITH BOOST & OC SAPPHIRE R9 270X 4GB GDDR5 WITH BOOST & OC Specification Display Support Output GPU Video Memory Dimension Software Accessory 3 x Maximum Display Monitor(s) support 1 x HDMI (with 3D) 1 x DisplayPort 1.2

More information

CSE 167: Lecture #3: Projection. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011

CSE 167: Lecture #3: Projection. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 CSE 167: Introduction to Computer Graphics Lecture #3: Projection Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 Announcements Project 1 due Friday September 30 th, presentation

More information

A fast real-time back-face culling approach

A fast real-time back-face culling approach A fast real-time back-face culling approach Vadim Manvelyan vadim2@seas.upenn.edu Advisor: Dr. Norman Badler April 11 2006 Abstract Three-dimensional graphics has been an area of interest in computer science

More information

Shadow Algorithms. Image Processing and Computer Graphics. Matthias Teschner. Computer Science Department University of Freiburg

Shadow Algorithms. Image Processing and Computer Graphics. Matthias Teschner. Computer Science Department University of Freiburg Image Processing and Computer Graphics Shadow Algorithms Matthias Teschner Computer Science Department University of Freiburg University of Freiburg Computer Science Department Computer Graphics - 1 Outline

More information

Optimizing Unity Games for Mobile Platforms. Angelo Theodorou Software Engineer Brains Eden, 28 th June 2013

Optimizing Unity Games for Mobile Platforms. Angelo Theodorou Software Engineer Brains Eden, 28 th June 2013 Optimizing Unity Games for Mobile Platforms Angelo Theodorou Software Engineer Brains Eden, 28 th June 2013 Agenda Introduction The author ARM Ltd. What do you need to have What do you need to know Identify

More information

Computer Graphics. Preliminary Answer. Example. What is Computer Graphics? Computer graphics deals with all aspects of creating images with a computer

Computer Graphics. Preliminary Answer. Example. What is Computer Graphics? Computer graphics deals with all aspects of creating images with a computer What is Computer Graphics? Computer Graphics Objectives - We explore what computer graphics is about and survey some application areas - We start with a historical introduction Computer graphics deals

More information

Impact of Modern OpenGL on FPS

Impact of Modern OpenGL on FPS Impact of Modern OpenGL on FPS Jan Čejka Supervised by: Jiří Sochor Faculty of Informatics Masaryk University Brno/ Czech Republic Abstract In our work we choose several old and modern features of OpenGL

More information

Easy immersion with NVIDIA 3D Stereo NVIDIA Corporation.

Easy immersion with NVIDIA 3D Stereo NVIDIA Corporation. Easy immersion with NVIDIA 3D Stereo 3D Stereoscopic Has Gone Mainstream 3D Enabled Cinemas are Growing 1200 1000 800 600 400 200 0 2005 2006 2007 2008 For Consumers Looking for an Immersive Gaming Experience

More information

GPU architecture II: Scheduling the graphics pipeline

GPU architecture II: Scheduling the graphics pipeline GPU architecture II: Scheduling the graphics pipeline Mike Houston, AMD / Stanford Aaron Lefohn, Intel / University of Washington 1 Notes The front half of this talk is almost verbatim from: Keeping Many

More information

Interactive Information Visualization using Graphics Hardware Študentská vedecká konferencia 2006

Interactive Information Visualization using Graphics Hardware Študentská vedecká konferencia 2006 FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKHO V BRATISLAVE Katedra aplikovanej informatiky Interactive Information Visualization using Graphics Hardware Študentská vedecká konferencia 2006

More information

Graphical displays are generally of two types: vector displays and raster displays. Vector displays

Graphical displays are generally of two types: vector displays and raster displays. Vector displays Display technology Graphical displays are generally of two types: vector displays and raster displays. Vector displays Vector displays generally display lines, specified by their endpoints. Vector display

More information

In the early 1990s, ubiquitous

In the early 1990s, ubiquitous How GPUs Work David Luebke, NVIDIA Research Greg Humphreys, University of Virginia In the early 1990s, ubiquitous interactive 3D graphics was still the stuff of science fiction. By the end of the decade,

More information

Spring 2011 Prof. Hyesoon Kim

Spring 2011 Prof. Hyesoon Kim Spring 2011 Prof. Hyesoon Kim MIPS Architecture MIPS (Microprocessor without interlocked pipeline stages) MIPS Computer Systems Inc. Developed from Stanford MIPS architecture usages 1990 s R2000, R3000,

More information

Computer Graphics. Anders Hast

Computer Graphics. Anders Hast Computer Graphics Anders Hast Who am I?! 5 years in Industry after graduation, 2 years as high school teacher.! 1996 Teacher, University of Gävle! 2004 PhD, Computerised Image Processing " Computer Graphics!

More information