UNCORRECTED PROOF. Unit objectives. Website links Opener Online angle puzzles 2.5 Geometry resources, including interactive explanations

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "UNCORRECTED PROOF. Unit objectives. Website links Opener Online angle puzzles 2.5 Geometry resources, including interactive explanations"

Transcription

1 21.1 Sequences Get in line Unit objectives Understand a proof that the angle sum of a triangle is 180 and of a quadrilateral is 360 ; and the exterior angle of a triangle is equal to the sum of the two interior opposite angles Distinguish between conventions, definitions and derived properties Use a ruler and protractor to measure and draw angles, including reflex angles, to the nearest degree; and construct a triangle, given two sides and the included angle (SAS) or two angles and the included side (ASA) Use straight edge and compasses to construct triangles, given right angle, hypotenuse and side (RHS) Solve geometrical problems using side and angle properties of equilateral, isosceles and right-angled triangles and special quadrilaterals, explaining reasoning with diagrams and text; classify quadrilaterals by their geometrical properties Solve problems using properties of angles, of parallel and intersecting lines, and of triangles and other polygons Use straight edge and compasses to construct the mid-point and perpendicular bisector of a line segment; the bisector of an angle; the perpendicular from a point to a line; the perpendicular from a point on a line Know the definition of a circle and the names of its parts Explain how to find, calculate and use the sums of the interior and exterior angles of quadrilaterals, pentagons and hexagons; and the interior and exterior angles of regular polygons 18 Get in line Website links Opener Online angle puzzles 2.5 Geometry resources, including interactive explanations

2 Notes on the context Recreational maths (puzzles and games that relate to maths) can intrigue and inspire those who are not naturally drawn to maths as a subject. The Englishman Henry Dudeney and the American Sam Loyd, who worked on and published puzzles at much the same time, did not have strong mathematical backgrounds but both found puzzles irresistible. Dudeney and Loyd collaborated for a time, but their working relationship broke down when Dudeney accused Loyd of stealing his ideas and publishing them as his own. Dudeney s original instructions for solving the Haberdasher s problem included constructions using ruler and compasses, e.g. for the bisection of two sides of the triangle. The base of the triangle is cut in the approximate ratio : 2 : A simplified solution is given here: Bisect AC; bisect BC. Roughly divide AB into three in the ratio : 2 : Draw the lines as shown lines meet at right angles inside the triangle. Then rearrange the pieces. For a range of other fun dissection puzzles, which can be downloaded as resource sheets, please visit the relevant unit section at hotlinks. Discussion points What mathematical skills are used in activities A and B? Activity A a) b) Activity B a) b) c) Answers to diagnostic questions 1 Pupil s line 6.3 cm long Pupil s angle of 87, labelled acute 4 a) rectangle b) equilateral triangle c) square d) scalene triangle 5 Square, rectangle, trapezium, parallelogram, rhombus, kite, arrowhead LiveText resources Paper planes Use it! Games Quizzes Get your brain in Gear Audio glossary Skills bank Extra questions for each lesson (with answers) Worked solutions for some questions Boosters Level Up Maths Online Assessment The Online Assessment service helps identify pupils competencies and weaknesses. It provides levelled feedback and teaching plans to match. Diagnostic automarked tests are provided to match this unit. Opener 19

3 2.1 WGM pages to come 20 Get in line

4 Sequences 21

5 2.2 Angles and proof Objectives Understand a proof that: the sum of the angles of a triangle is 180 ; and of a quadrilateral is 360 ; and the exterior angle of a triangle is equal to the sum of the two interior opposite angles Distinguish between conventions, definitions and derived properties Starter (1) Oral and mental objective Display this table and ask pupils to find complements to Starter (2) Introducing the lesson topic Recap alternate and corresponding angles on parallel lines. Using mini whiteboards, ask pupils to draw a pair of parallel lines with a transversal. Ask pupils to mark a pair of corresponding angles and a pair of alternate angles. Main lesson Explain that pupils will be using what they know about angles on parallel lines to prove that the interior angles in a triangle sum to Interior and exterior angles Display this diagram. Which of these angles is an interior angle? B (angles BAC, ACB, CBA) Exterior angle? (angle BCD) A C D What is the sum of the interior angles in a triangle? Angle BCA is 50. Calculate angle BCD. (130 ) Repeat with other values of angle BCA. Give other interior angles in the triangle to check pupils are able to find missing interior and exterior angles. Repeat for a quadrilateral. Q1 3 2 Proof of sum of interior angles in a triangle Display this diagram. Ask pupils to copy the diagram on mini whiteboards and label the other angles which are equal to the circle and triangle. Lead pupils through the proof that if angles on a straight line add up to 180, then the angles in the triangle must also sum to 180. Q4, 6 22 Get in line Resources Starter (2), Main: mini whiteboards Activity B: dynamic geometry software Intervention Functional skills Make an initial model of a situation using suitable forms of representation Framework 2008 ref 1.3, Y8 1.2, Y8 4.1, Y9 4.1, Y9 4.3 PoS 2008 ref

6 3 Proof of sum of interior angles in a quadrilateral Model how pupils can prove that the sum of the exterior angles in a quadrilateral is 360 by drawing a diagonal from a vertex to the opposite vertex, and finding the sums of the angles in the two triangles formed. Q5 Explain the difference between conventions, definitions and derived properties. Many pupils struggle with this so try to provide as many examples as possible and ask pupils to suggest their own examples. Display a simple shape such as a square. How could this shape be defined? What conventions are used to show that the angles are 90 and the sides are the same length? What derived properties can be deduced from the definition of the shape? Q7 Activity A Pupils make up their own triangles and give the sizes of two of the interior angles. They challenge their partners to find the missing interior and exterior angles. Activity B Pupils investigate the interior angles in a triangle using dynamic geometry software. Plenary Display a right-angled triangle. Ask pupils how they would prove that a + b = 90. Homework Homework Book section 2.2. Challenging homework: Pupils investigate finding the proof that the sum of the exterior angles of a triangle is 360. Answers 1 p = 100, 2 a) i) An exterior angle ii) An interior angle iii) An exterior angle b) 75 i) 96 ii) 82 iii) 63 3 a) x = 91, interior angles in quadrilateral sum to 360 ; y = 89, angles on a straight line add up to 180. b) s = 55, t = 55, angles in a triangle sum to 180, isosceles triangle has two equal angles; u = 125, angles on a straight line add up to 180 or exterior angle of a triangle equals the sum of the two interior opposite angles. c) q = 75, angles on a straight line add up to 180 ; p = 47, angles in a triangle sum to 180, or exterior angle of a triangle equals the sum of the two interior opposite angles. d) d = 88, interior angles in quadrilateral sum to 360 ; e = 82, angles on a straight line add up to Angle x is equal to angle a because they are alternate angles. Angle y is equal to angle c because they are alternate angles. x + b + y = 180 because they lie on a straight line. Since x = a and y = c, a + b + c = x + b + y. This proves that angles in a triangle sum to a + b + c = 180 because angles in a triangle sum to 180. d + e + f = 180 because angles in a triangle sum to 180. Therefore (a + b + c) + (d + e + f ) = a + b + c = 180 because angles in a triangle sum to 180. c + x = 180 because they lie on a straight line. a + b + c = c + x 7 a) Derived property b) Convention c) Definition d) Convention Related topics Symmetry and art Discussion points Discuss what constitutes a proof and the difference between demonstrating a rule works and proving that the rule is always true. Common difficulties Pupils can find moving to formal proof difficult so encourage the use of symbols before moving onto letters. LiveText resources Explanations Booster Extra questions Worked solutions 2.2 Angles and proof 23

7 2.3 Constructing triangles Objectives Use a ruler and protractor to measure and draw angles, including reflex angles, to the nearest degree Construct a triangle given two sides and the included angle (SAS) or two angles and the included side (ASA) Use straight edge and compasses to construct a triangle, given right angle, hypotenuse and side (RHS) Starter (1) Oral and mental objective Ask pupils to visualise a square piece of paper. I fold it across one of the diagonals. What shape is made? What are the angles in the shape? I fold the resulting shape in half. What shape do I get? What angles are in the new shape? Ask pupils to explain their reasoning. Starter (2) Introducing the lesson topic Display angles on the board and ask pupils to identify whether they are acute, obtuse or reflex angles. Ask pupils to estimate the size of the angles. Ask pupils to draw an acute angle of 72. Pupils check their angle drawing with their partner. Main lesson Explain that pupils will be constructing triangles using a protractor and a ruler and also compasses and a ruler. They should already have done this, so some of this lesson will be revision. 1 Construct a triangle given two sides and an angle (SAS) Recap on how to draw a triangle given two sides and an angle using a protractor and a ruler. What will you measure and draw first? Q1 2 2 Construct a triangle given two angles and a side (ASA) How do I draw a triangle given two angles and a side using a protractor and a ruler? Q3 4 3 Construct a triangle given three sides (SSS) I know the lengths of all three sides of a triangle. How do I use compasses and a ruler to draw the triangle? Model how to draw a triangle, for example with sides 8 cm, 5 cm, 6 cm. Advise pupils to draw the longest side first. Ensure that they can use compasses correctly. Q6 7 Display a straight line. How do I construct a line perpendicular to this line? Check that pupils know how to do this. Q8 24 Get in line Resources Starter (2): compasses, ruler, protractor Intervention Functional skills Use appropriate mathematical procedures Framework 2008 ref 1.3, Y8 1.2, Y8 4.3, Y9 4.3 PoS 2008 ref

8 4 Construct a right-angled triangle using compasses Display a right-angled triangle. Which side is the hypotenuse? How can you draw a rightangled triangle when you know the length of the hypotenuse and one of the other sides? Model how to use compasses and a ruler to do this. For example draw a sketch of a right-angled triangle then model how to draw the right-angled triangle with a hypotenuse of 15 cm and one side 9 cm. Repeat with another triangle if appropriate. What is the length of the unknown side? Q5, 9 11 Activity A Pupils practise drawing a triangle using a protractor and ruler and then describe it for their partner to draw. Activity B Pupils practise drawing a right-angled triangle using compasses and a ruler and then describe it for their partner to draw. Plenary Ask pupils which triangles are impossible to draw. Give them two minutes to discuss in small groups and then share their answers with the rest of the class. Write a selection of answers on the board. Homework Homework Book section 2.3. Challenging homework: Pupils construct nets using compasses and a straight edge. Answers 1 Correct angles drawn. a) obtuse b) reflex c) reflex d) obtuse 2 Correct triangles drawn. 3 Accurate drawing of triangles. 4 b) = 21 m 5 a) b b) d c) i d) j 6 Accurate drawing of triangle. 7 Accurate drawing of triangle. 8 Perpendicular line drawn. 9 a) Correct scale drawing. b) 6 m 10 a) Correct scale drawing. b) 3.9 m 11 The two shorter sides are 5 cm and 3 cm. These add up to 8 cm, which is shorter than the third side 9 cm. Therefore the shorter sides will never meet. Related topics Discussion points Common difficulties Encourage pupils to check their measurements using a ruler as sometimes the compass can slip. LiveText resources Explanations Booster Extra questions Worked solutions 2.3 Constructing triangles 25

9 2.4 Special quadrilaterals Objectives Begin to identify and use angle, side and symmetry properties of triangles and quadrilaterals Solve geometrical problems using side and angle properties of equilateral, isosceles and right-angled triangles and special quadrilaterals; explaining reasoning with diagrams and text; classifying quadrilaterals by their geometric properties Solve problems using properties of angles, of parallel and intersecting lines, and of triangles and other polygons Starter (1) Oral and mental objective Display the following target board and ask pupils to find complements to Starter (2) Introducing the lesson topic Ask pupils to draw a rectangle on a piece of paper and cut it out. Pupils draw and measure the diagonals of the rectangle. What do you notice about where the diagonals cross? (bisect each other) In pairs, ask pupils to write three sentences to describe the rectangle. Explain that they can comment on things like the sides, angles and symmetry. Take feedback about the sentences they have written. Write a selection on the board. Main lesson Explain that pupils will be investigating the properties of special quadrilaterals. 1 Special quadrilaterals Display a rectangle, square, parallelogram, rhombus, isosceles trapezium, kite and arrowhead and ask pupils to name the ones that they already know. Ask pupils to work in groups each group focuses on a specific quadrilateral and finds its properties. Each group could make a poster of the properties of their shape and this could be displayed during the lesson for the class to use. Share the findings of each group with the rest of the class and summarise the findings on the board. Q Get in line Resources Starter (2): mini whiteboards, paper, scissors Main: poster paper Intervention Functional skills Use appropriate mathematical procedures Framework 2008 ref 1.3, Y8 1.4, Y8 4.1, Y9 1.2 PoS 2008 ref

10 Display this shape and model how to find the missing angles. During each step of their working, ask pupils to explain their reasoning and show 35 this on the board. Q6 10 b a 120 c Activity A Pupils work in pairs, using the properties of quadrilaterals to identify the shape. Activity B In this activity pupils set problems for their partner to solve within a parallelogram. Plenary Give pupils the following description: I am a special quadrilateral. I have one line of symmetry and two pairs of equal sides. I have no parallel lines. Which special quadrilateral am I? (kite) Repeat with other descriptions. Homework Homework Book section 2.4. Challenging homework: Pupils could identify impossible quadrilaterals if sides and angles are given. Answers 1 Yes a square is a rectangle with all sides of equal length. 2 C 3 Number Lines of symmetry of pairs of parallel sides kite, arrowhead 1 isosceles trapezium 2 parallelogram rectangle rhombus square 4 b) Parallelogram c) Opposite sides are equal and parallel; diagonals bisect each other; rotation symmetry of order 2. 5 a) Rhombus b) A, C 6 a = 60, b = 30, c = 60 7 x = z = 140, y = 40 8 a) TUV = 45 b) TVU = 105 c) SVU = ABE = = 18. CBD = = 34. (Angles in a triangle sum to 180.) ABC = 90, therefore EBD = = 38. There are other valid approaches. 10 a) FAB = 65 (Opposite angles in a parallelogram are equal.) b) ABE = 70 (Alternate angles are equal.) c) CBE = 110 (Angles on a straight line sum to 180.) d) BCD = 115 (Angles in a quadrilateral sum to 360.) There are other valid approaches. Related topics Art and Design Technology. Discussion points Is a rectangle a square? Is a parallelogram a rhombus? Common difficulties When pupils are asked to describe the properties it is useful to display key words and a list of what to comment on when describing their shapes. LiveText resources Explanations Booster Extra questions Worked solutions 2.4 Special quadrilaterals 27

11 2.5 More constructions Objectives Use straight edge and compasses to construct: the mid-point and perpendicular bisector of a line segment; the bisector of an angle; the perpendicular from a point to a line; the perpendicular from a point on a line Know the definition of, and the names of parts of a circle Starter (1) Oral and mental objective Introduce the term bisect. Practise finding halves of numbers and measures, for example 5 cm, 3.3 cm, 45. Starter (2) Introducing the lesson topic Ask pupils to draw a circle on mini whiteboards. Ask them to draw and label the diameter, radius, circumference, chord, arc, sector, tangent. Check pupils drawings and identify the parts of a circle on the board. Main lesson What does the term perpendicular mean? Check that pupils know. Explain that pupils will not be using a protractor to measure angles but that they will be drawing perpendicular lines using compasses and a ruler only. Most of this is revision of earlier work. 1 Construct the perpendicular bisector of a line segment How do you draw the perpendicular bisector of a line segment? Take instructions from pupils to check that they know how to do this remind them if necessary. Also check that they keep the compasses rigid while drawing the perpendicular bisector. Q1 3 2 Construct the angle bisector How do you draw the bisector of an angle using compasses only? Remind pupils, if necessary (they should have done this in earlier work), and give them an opportunity to practise. Pupils can check they have bisected the angle accurately by checking with a protractor. Q4 3 Construct the perpendicular from a point on a line segment How do you construct the perpendicular from a point on a line segment? Take instructions from pupils to check that they know how to do this remind them if necessary. Q6, 7 4 Construct the perpendicular from a point to a line segment How do you construct the perpendicular from a point to a line segment? Take instructions from pupils to check that they know how to do this remind them if necessary. Q5, 8 28 Get in line Resources Starter (1): mini whiteboards Main: compasses, rulers, protractors Activity A: dynamic geometry software (optional) Intervention Functional skills Use appropriate mathematical procedures Framework 2008 ref 1.3, Y8 1.2, Y9 1.1, Y9 4.1, Y8 4.3 PoS 2008 ref Website links hotlinks

12 Activity A Pupils practise drawing the perpendicular bisector for a triangle in a circle. If available, dynamic geometry software is useful for this activity. In a triangle, the perpendicular bisectors meet at the circumcentre of the triangle. Activity B Pupils draw polygons within circles and investigate where the perpendicular bisectors of the sides intersect. Plenary Ask pupils how you can draw a circle whose circumference passes through each vertex of a triangle. Give them a few minutes to discuss their ideas in groups and then report back to the class. Write a summary on the board. Pupils will find this easier if they have done Activities A and B. Homework Homework Book section 2.5. Challenging homework: Pupils could make other constructions such as the centroid of a triangle, or use perpendicular bisectors to find the centre of a circle. Answers 1 Perpendicular bisectors correctly drawn. 2 b) Perpendicular bisector correctly drawn. c) It is an equal distance from both houses. 3 Circle with radius, diameter, chord, arc, tangent, circumference correctly labelled. 4 Perpendicular bisectors correctly drawn. 5 Perpendicular correctly drawn. 6 Perpendicular correctly drawn. 7 Perpendicular correctly drawn. 8 a) b) Circles correctly drawn. c) It is a rhombus. Related topics Loci Common difficulties Encourage pupils to check their measurements using a ruler as sometimes the compasses can slip. LiveText resources Explanations Booster Extra questions Worked solutions 2.5 More constructions 29

13 2.6 Angles in polygons Objectives Explain how to find, calculate and use: the sums of the interior and exterior angles of quadrilaterals, pentagons and hexagons; the interior and exterior angles of regular polygons Solve problems using properties of angles, of parallel and intersecting lines, and of triangles and other polygons Starter (1) Oral and mental objective Ask pupils to add and subtract pairs of numbers, for example the answer is 149 what is the question? Ask pupils to list pairs of numbers that you can add to make 149. Repeat for numbers such as 8.6, 0.4, Starter (2) Introducing the lesson topic Recap the sum of the interior angles in a triangle. Which of these sets of angles are angles in a triangle? Explain your reasoning. A 36, 72, 93 B 59, 73, 48 Two angles in a triangle are 48 and 87. Calculate the missing angle. Main lesson 1 Proof of sum of interior angles in a quadrilateral Remind pupils that they proved that the sum of angles in a quadrilateral is 360. Display an irregular quadrilateral. How can you split it up into triangles? Label the angles in one triangle a, b and c and in the other triangle d, e and f. Show how a + b + c = 180 and d + e + f = 180 and therefore angles in a quadrilateral must sum to 360 Q1 2 Sum of the interior angles in polygons Display this table: Shape Number of sides Number of triangles Sum of interior angles triangle = 180 quadrilateral = 360 pentagon hexagon Ask pupils to complete the missing values. For an n-sided polygon, how would you find the number of triangles? (n 2) Sum of interior angles? ((n 2) 180) Q2 4 3 Sum of the exterior angles in polygons Display a quadrilateral. What is an exterior angle? How would you work out the sum of the exterior angles in a polygon? What is the sum? 30 Get in line Resources Activity A: materials for poster making Intervention Functional skills Make an initial model of a situation using suitable forms of representation Framework 2008 ref 1.3, Y8 1.2, Y9 1.2, Y9 4.1 PoS 2008 ref

14 Explain that in a regular polygon all the sides have the same length and the angles are equal. How would you calculate one of the interior angles in a regular hexagon? (720 6 = 120 ) What is the size of one of the exterior angles? (60 ) Discuss both of the following methods: Method (1): = 60 Method (2) 180 interior angle Q5 11 Activity A Pupils make a poster explaining what they know about interior and exterior angles in polygons. Activity B Pupils try to explain which regular polygons tessellate by looking at their interior angles. Plenary Ask pupils if it is possible to draw a polygon whose interior angle sum is Give them a short time to discuss this in small groups and report back to the class. Repeat for other values. Homework Homework Book section 2.6. Challenging homework: Pupils could find examples of real-life regular polygons, and calculate interior and exterior angles. Answers 1 a) Split the shape into two triangles. b) Spit the shape into three triangles. 2 a) Find the sum of the interior angles by dividing the pentagon into three triangles, then divide by 5. b) Subtract the interior angle from a) i) 360 ii) 540 iii) 720 b) The interior and exterior angles lie on a straight line. Angles that form a straight line sum to b) 360 c) 360 d) Sum of exterior angles is always a) 60 b) Regular polygon Number of sides Sum of interior angles Size of each interior angle Sum of exterior angles Size of each exterior angle equilateral triangle square regular pentagon regular hexagon regular octagon a (n 2) 180 b) Interior 157.5, exterior a) i) 20 ii) 162 b) No. The sum of the interior angles in a multiple of 180 and 1300 is not divisible by a) 135 b) 45 c) 22.5 Related topics Art and design, design technology, ICT Common difficulties LiveText resources Explanations Booster Extra questions Worked solutions Sequences 31

15 Puzzle time Notes on plenary activities The activities cover a range of missing angle problems. It would be useful to discuss pupil methods for the latter questions, particularly activities 8 and 9. Emphasise that surplus details are not given in these types of problems all information given will and should be used to reach a solution. What does the arrow notation represent? How can this be used to solve problems? It would be beneficial to summarise the learning in this unit by highlighting the important angle facts producing a checklist for angle problems could also be useful. Solutions to the activities 1 a = b = 30 3 c = 142, d = 65 4 e = 71 5 f = 104, g = 96, h = 84 6 i = 119, j = 61 7 k = l = 45, m = 65, n = 70 9 o = 105, p = 75, q = r = 170 Number grid: Answers to practice SATs-style questions 1 a) Angles on a straight line sum to = 110, so Sally is correct. b) a = 45 (1 mark each) 2 a = 40, b = 140, c = 20 (1 mark each) 3 a) Angle BCD = 105 b) Angle BAD = 75 (1 mark each) 4 6 cm 6 cm 8 cm 8 cm 8 cm 6 cm (1 mark per triangle) 32 Get in line

16 5 a) 3y = 90, so y = 30 (2 marks) b) 2x = 30, so x = 15 (2 marks) 6 a) ABCD: interior angles sum to 360, so angle ADC = 96 and angle EDC = 48 (2 marks) b) Angle DEB = 132 (1 mark) c) DAE is an isosceles triangle: angle DAE = 84, angle ADE = 48 and angle AED = 48 (1 mark) 7 a) s = 32 b) t = 56 (2 marks each) Functional skills The plenary activity practises the following functional skills defined in the QCA guidelines: Select the mathematical information to use Use appropriate mathematical procedures Find results and solutions Puzzle time 33

Maths Toolkit Teacher s notes

Maths Toolkit Teacher s notes Angles turtle Year 7 Identify parallel and perpendicular lines; know the sum of angles at a point, on a straight line and in a triangle; recognise vertically opposite angles. Use a ruler and protractor

More information

SHAPE, SPACE AND MEASURES

SHAPE, SPACE AND MEASURES SHAPE, SPACE AND MEASURES Pupils should be taught to: Use accurately the vocabulary, notation and labelling conventions for lines, angles and shapes; distinguish between conventions, facts, definitions

More information

PROPERTIES OF TRIANGLES AND QUADRILATERALS

PROPERTIES OF TRIANGLES AND QUADRILATERALS Mathematics Revision Guides Properties of Triangles, Quadrilaterals and Polygons Page 1 of 21 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier PROPERTIES OF TRIANGLES AND QUADRILATERALS

More information

Geometry Progress Ladder

Geometry Progress Ladder Geometry Progress Ladder Maths Makes Sense Foundation End-of-year objectives page 2 Maths Makes Sense 1 2 End-of-block objectives page 3 Maths Makes Sense 3 4 End-of-block objectives page 4 Maths Makes

More information

Intermediate Math Circles October 10, 2012 Geometry I: Angles

Intermediate Math Circles October 10, 2012 Geometry I: Angles Intermediate Math Circles October 10, 2012 Geometry I: Angles Over the next four weeks, we will look at several geometry topics. Some of the topics may be familiar to you while others, for most of you,

More information

Unit 8 Angles, 2D and 3D shapes, perimeter and area

Unit 8 Angles, 2D and 3D shapes, perimeter and area Unit 8 Angles, 2D and 3D shapes, perimeter and area Five daily lessons Year 6 Spring term Recognise and estimate angles. Use a protractor to measure and draw acute and obtuse angles to Page 111 the nearest

More information

Angles that are between parallel lines, but on opposite sides of a transversal.

Angles that are between parallel lines, but on opposite sides of a transversal. GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,

More information

Working in 2 & 3 dimensions Revision Guide

Working in 2 & 3 dimensions Revision Guide Tips for Revising Working in 2 & 3 dimensions Make sure you know what you will be tested on. The main topics are listed below. The examples show you what to do. List the topics and plan a revision timetable.

More information

Unit 6 Grade 7 Geometry

Unit 6 Grade 7 Geometry Unit 6 Grade 7 Geometry Lesson Outline BIG PICTURE Students will: investigate geometric properties of triangles, quadrilaterals, and prisms; develop an understanding of similarity and congruence. Day Lesson

More information

Line. A straight path that continues forever in both directions.

Line. A straight path that continues forever in both directions. Geometry Vocabulary Line A straight path that continues forever in both directions. Endpoint A point that STOPS a line from continuing forever, it is a point at the end of a line segment or ray. Ray A

More information

Begin recognition in EYFS Age related expectation at Y1 (secure use of language)

Begin recognition in EYFS Age related expectation at Y1 (secure use of language) For more information - http://www.mathsisfun.com/geometry Begin recognition in EYFS Age related expectation at Y1 (secure use of language) shape, flat, curved, straight, round, hollow, solid, vertexvertices

More information

Estimating Angle Measures

Estimating Angle Measures 1 Estimating Angle Measures Compare and estimate angle measures. You will need a protractor. 1. Estimate the size of each angle. a) c) You can estimate the size of an angle by comparing it to an angle

More information

LEVEL G, SKILL 1. Answers Be sure to show all work.. Leave answers in terms of ϖ where applicable.

LEVEL G, SKILL 1. Answers Be sure to show all work.. Leave answers in terms of ϖ where applicable. Name LEVEL G, SKILL 1 Class Be sure to show all work.. Leave answers in terms of ϖ where applicable. 1. What is the area of a triangle with a base of 4 cm and a height of 6 cm? 2. What is the sum of the

More information

BASIC GEOMETRY GLOSSARY

BASIC GEOMETRY GLOSSARY BASIC GEOMETRY GLOSSARY Acute angle An angle that measures between 0 and 90. Examples: Acute triangle A triangle in which each angle is an acute angle. Adjacent angles Two angles next to each other that

More information

4 Week Modular Course in Geometry and Trigonometry Strand 1. Module 1

4 Week Modular Course in Geometry and Trigonometry Strand 1. Module 1 4 Week Modular Course in Geometry and Trigonometry Strand 1 Module 1 Theorems: A Discovery Approach Theorems are full of potential for surprise and delight. Every theorem can be taught by considering the

More information

Sum of the interior angles of a n-sided Polygon = (n-2) 180

Sum of the interior angles of a n-sided Polygon = (n-2) 180 5.1 Interior angles of a polygon Sides 3 4 5 6 n Number of Triangles 1 Sum of interiorangles 180 Sum of the interior angles of a n-sided Polygon = (n-2) 180 What you need to know: How to use the formula

More information

Name: 22K 14A 12T /48 MPM1D Unit 7 Review True/False (4K) Indicate whether the statement is true or false. Show your work

Name: 22K 14A 12T /48 MPM1D Unit 7 Review True/False (4K) Indicate whether the statement is true or false. Show your work Name: _ 22K 14A 12T /48 MPM1D Unit 7 Review True/False (4K) Indicate whether the statement is true or false. Show your work 1. An equilateral triangle always has three 60 interior angles. 2. A line segment

More information

Geometry of 2D Shapes

Geometry of 2D Shapes Name: Geometry of 2D Shapes Answer these questions in your class workbook: 1. Give the definitions of each of the following shapes and draw an example of each one: a) equilateral triangle b) isosceles

More information

Chapter 1: Essentials of Geometry

Chapter 1: Essentials of Geometry Section Section Title 1.1 Identify Points, Lines, and Planes 1.2 Use Segments and Congruence 1.3 Use Midpoint and Distance Formulas Chapter 1: Essentials of Geometry Learning Targets I Can 1. Identify,

More information

**The Ruler Postulate guarantees that you can measure any segment. **The Protractor Postulate guarantees that you can measure any angle.

**The Ruler Postulate guarantees that you can measure any segment. **The Protractor Postulate guarantees that you can measure any angle. Geometry Week 7 Sec 4.2 to 4.5 section 4.2 **The Ruler Postulate guarantees that you can measure any segment. **The Protractor Postulate guarantees that you can measure any angle. Protractor Postulate:

More information

Lesson 28: Properties of Parallelograms

Lesson 28: Properties of Parallelograms Student Outcomes Students complete proofs that incorporate properties of parallelograms. Lesson Notes Throughout this module, we have seen the theme of building new facts with the use of established ones.

More information

Geometry Vocabulary Booklet

Geometry Vocabulary Booklet Geometry Vocabulary Booklet Geometry Vocabulary Word Everyday Expression Example Acute An angle less than 90 degrees. Adjacent Lying next to each other. Array Numbers, letter or shapes arranged in a rectangular

More information

*1. Derive formulas for the area of right triangles and parallelograms by comparing with the area of rectangles.

*1. Derive formulas for the area of right triangles and parallelograms by comparing with the area of rectangles. Students: 1. Students understand and compute volumes and areas of simple objects. *1. Derive formulas for the area of right triangles and parallelograms by comparing with the area of rectangles. Review

More information

Upper Elementary Geometry

Upper Elementary Geometry Upper Elementary Geometry Geometry Task Cards Answer Key The unlicensed photocopying, reproduction, display, or projection of the material, contained or accompanying this publication, is expressly prohibited

More information

11.3 Curves, Polygons and Symmetry

11.3 Curves, Polygons and Symmetry 11.3 Curves, Polygons and Symmetry Polygons Simple Definition A shape is simple if it doesn t cross itself, except maybe at the endpoints. Closed Definition A shape is closed if the endpoints meet. Polygon

More information

Definitions, Postulates and Theorems

Definitions, Postulates and Theorems Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven

More information

GEOMETRY 101* EVERYTHING YOU NEED TO KNOW ABOUT GEOMETRY TO PASS THE GHSGT!

GEOMETRY 101* EVERYTHING YOU NEED TO KNOW ABOUT GEOMETRY TO PASS THE GHSGT! GEOMETRY 101* EVERYTHING YOU NEED TO KNOW ABOUT GEOMETRY TO PASS THE GHSGT! FINDING THE DISTANCE BETWEEN TWO POINTS DISTANCE FORMULA- (x₂-x₁)²+(y₂-y₁)² Find the distance between the points ( -3,2) and

More information

Conjectures. Chapter 2. Chapter 3

Conjectures. Chapter 2. Chapter 3 Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical

More information

KS3 Maths Learning Objectives (excludes Year 9 extension objectives)

KS3 Maths Learning Objectives (excludes Year 9 extension objectives) KS3 Maths Learning Objectives (excludes Year 9 extension objectives) blue Year 7 black Year 8 green Year 9 NUMBER N1 Place value and standard form N1.1 Place value N1.2 Powers of ten Framework Objectives

More information

Algebra Geometry Glossary. 90 angle

Algebra Geometry Glossary. 90 angle lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:

More information

INFORMATION FOR TEACHERS

INFORMATION FOR TEACHERS INFORMATION FOR TEACHERS The math behind DragonBox Elements - explore the elements of geometry - Includes exercises and topics for discussion General information DragonBox Elements Teaches geometry through

More information

Target To know the properties of a rectangle

Target To know the properties of a rectangle Target To know the properties of a rectangle (1) A rectangle is a 3-D shape. (2) A rectangle is the same as an oblong. (3) A rectangle is a quadrilateral. (4) Rectangles have four equal sides. (5) Rectangles

More information

SGS4.3 Stage 4 Space & Geometry Part A Activity 2-4

SGS4.3 Stage 4 Space & Geometry Part A Activity 2-4 SGS4.3 Stage 4 Space & Geometry Part A Activity 2-4 Exploring triangles Resources required: Each pair students will need: 1 container (eg. a rectangular plastic takeaway container) 5 long pipe cleaners

More information

Analysis in Geometry. By Danielle Long. Grade Level: 8 th. Time: 5-50 minute periods. Technology used: Geometer s sketchpad Geoboards NLVM website

Analysis in Geometry. By Danielle Long. Grade Level: 8 th. Time: 5-50 minute periods. Technology used: Geometer s sketchpad Geoboards NLVM website Analysis in Geometry By Danielle Long Grade Level: 8 th Time: 5-50 minute periods Technology used: Geometer s sketchpad Geoboards NLVM website 1 NCTM Standards Addressed Problem Solving Geometry Algebra

More information

Geometry Regents Review

Geometry Regents Review Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest

More information

1. A person has 78 feet of fencing to make a rectangular garden. What dimensions will use all the fencing with the greatest area?

1. A person has 78 feet of fencing to make a rectangular garden. What dimensions will use all the fencing with the greatest area? 1. A person has 78 feet of fencing to make a rectangular garden. What dimensions will use all the fencing with the greatest area? (a) 20 ft x 19 ft (b) 21 ft x 18 ft (c) 22 ft x 17 ft 2. Which conditional

More information

3. Lengths and areas associated with the circle including such questions as: (i) What happens to the circumference if the radius length is doubled?

3. Lengths and areas associated with the circle including such questions as: (i) What happens to the circumference if the radius length is doubled? 1.06 Circle Connections Plan The first two pages of this document show a suggested sequence of teaching to emphasise the connections between synthetic geometry, co-ordinate geometry (which connects algebra

More information

Su.a Supported: Identify Determine if polygons. polygons with all sides have all sides and. and angles equal angles equal (regular)

Su.a Supported: Identify Determine if polygons. polygons with all sides have all sides and. and angles equal angles equal (regular) MA.912.G.2 Geometry: Standard 2: Polygons - Students identify and describe polygons (triangles, quadrilaterals, pentagons, hexagons, etc.), using terms such as regular, convex, and concave. They find measures

More information

SHAPE, SPACE AND MEASURES

SHAPE, SPACE AND MEASURES SHPE, SPCE ND MESURES Pupils should be taught to: Understand and use the language and notation associated with reflections, translations and rotations s outcomes, Year 7 pupils should, for example: Use,

More information

Trade of Metal Fabrication. Module 5: Pipe Fabrication Unit 9: Segmental Bends Phase 2

Trade of Metal Fabrication. Module 5: Pipe Fabrication Unit 9: Segmental Bends Phase 2 Trade of Metal Fabrication Module 5: Pipe Fabrication Unit 9: Segmental Bends Phase 2 Table of Contents List of Figures... 5 List of Tables... 5 Document Release History... 6 Module 5 Pipe Fabrication...

More information

CHAPTER 10 GEOMETRY: ANGLES, TRIANGLES, AND DISTANCE (3 WEEKS)...

CHAPTER 10 GEOMETRY: ANGLES, TRIANGLES, AND DISTANCE (3 WEEKS)... Table of Contents CHAPTER 10 GEOMETRY: ANGLES, TRIANGLES, AND DISTANCE (3 WEEKS)... 10.0 ANCHOR PROBLEM: REASONING WITH ANGLES OF A TRIANGLE AND RECTANGLES... 6 10.1 ANGLES AND TRIANGLES... 7 10.1a Class

More information

Activity Set 4. Trainer Guide

Activity Set 4. Trainer Guide Geometry and Measurement of Plane Figures Activity Set 4 Trainer Guide Int_PGe_04_TG GEOMETRY AND MEASUREMENT OF PLANE FIGURES Activity Set #4 NGSSS 3.G.3.1 NGSSS 3.G.3.3 NGSSS 4.G.5.1 NGSSS 5.G.3.1 Amazing

More information

Identifying Triangles 5.5

Identifying Triangles 5.5 Identifying Triangles 5.5 Name Date Directions: Identify the name of each triangle below. If the triangle has more than one name, use all names. 1. 5. 2. 6. 3. 7. 4. 8. 47 Answer Key Pages 19 and 20 Name

More information

Grade 4 - Module 4: Angle Measure and Plane Figures

Grade 4 - Module 4: Angle Measure and Plane Figures Grade 4 - Module 4: Angle Measure and Plane Figures Acute angle (angle with a measure of less than 90 degrees) Angle (union of two different rays sharing a common vertex) Complementary angles (two angles

More information

Unit 3: Triangle Bisectors and Quadrilaterals

Unit 3: Triangle Bisectors and Quadrilaterals Unit 3: Triangle Bisectors and Quadrilaterals Unit Objectives Identify triangle bisectors Compare measurements of a triangle Utilize the triangle inequality theorem Classify Polygons Apply the properties

More information

Geometry Chapter 1 Vocabulary. coordinate - The real number that corresponds to a point on a line.

Geometry Chapter 1 Vocabulary. coordinate - The real number that corresponds to a point on a line. Chapter 1 Vocabulary coordinate - The real number that corresponds to a point on a line. point - Has no dimension. It is usually represented by a small dot. bisect - To divide into two congruent parts.

More information

Geometry. Geometry is the study of shapes and sizes. The next few pages will review some basic geometry facts. Enjoy the short lesson on geometry.

Geometry. Geometry is the study of shapes and sizes. The next few pages will review some basic geometry facts. Enjoy the short lesson on geometry. Geometry Introduction: We live in a world of shapes and figures. Objects around us have length, width and height. They also occupy space. On the job, many times people make decision about what they know

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

More information

39 Symmetry of Plane Figures

39 Symmetry of Plane Figures 39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that

More information

DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.

DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle. DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent

More information

Geometry Unit 7 (Textbook Chapter 9) Solving a right triangle: Find all missing sides and all missing angles

Geometry Unit 7 (Textbook Chapter 9) Solving a right triangle: Find all missing sides and all missing angles Geometry Unit 7 (Textbook Chapter 9) Name Objective 1: Right Triangles and Pythagorean Theorem In many geometry problems, it is necessary to find a missing side or a missing angle of a right triangle.

More information

1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?

1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above? 1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width

More information

Unit 1: Similarity, Congruence, and Proofs

Unit 1: Similarity, Congruence, and Proofs Unit 1: Similarity, Congruence, and Proofs This unit introduces the concepts of similarity and congruence. The definition of similarity is explored through dilation transformations. The concept of scale

More information

G7-3 Measuring and Drawing Angles and Triangles Pages

G7-3 Measuring and Drawing Angles and Triangles Pages G7-3 Measuring and Drawing Angles and Triangles Pages 102 104 Curriculum Expectations Ontario: 5m51, 5m52, 5m54, 6m48, 6m49, 7m3, 7m4, 7m46 WNCP: 6SS1, review, [T, R, V] Vocabulary angle vertex arms acute

More information

ABC is the triangle with vertices at points A, B and C

ABC is the triangle with vertices at points A, B and C Euclidean Geometry Review This is a brief review of Plane Euclidean Geometry - symbols, definitions, and theorems. Part I: The following are symbols commonly used in geometry: AB is the segment from the

More information

INDEX. Arc Addition Postulate,

INDEX. Arc Addition Postulate, # 30-60 right triangle, 441-442, 684 A Absolute value, 59 Acute angle, 77, 669 Acute triangle, 178 Addition Property of Equality, 86 Addition Property of Inequality, 258 Adjacent angle, 109, 669 Adjacent

More information

Centroid: The point of intersection of the three medians of a triangle. Centroid

Centroid: The point of intersection of the three medians of a triangle. Centroid Vocabulary Words Acute Triangles: A triangle with all acute angles. Examples 80 50 50 Angle: A figure formed by two noncollinear rays that have a common endpoint and are not opposite rays. Angle Bisector:

More information

Geometry Module 4 Unit 2 Practice Exam

Geometry Module 4 Unit 2 Practice Exam Name: Class: Date: ID: A Geometry Module 4 Unit 2 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which diagram shows the most useful positioning

More information

Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade

Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade Standards/Content Padrões / Conteúdo Learning Objectives Objetivos de Aprendizado Vocabulary Vocabulário Assessments Avaliações Resources

More information

GEOMETRY CONCEPT MAP. Suggested Sequence:

GEOMETRY CONCEPT MAP. Suggested Sequence: CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons

More information

11-4 Areas of Regular Polygons and Composite Figures

11-4 Areas of Regular Polygons and Composite Figures 1. In the figure, square ABDC is inscribed in F. Identify the center, a radius, an apothem, and a central angle of the polygon. Then find the measure of a central angle. Center: point F, radius:, apothem:,

More information

8-2 Classifying Angles Objective: Identify different types of angles Explain how to determine the type of angle.

8-2 Classifying Angles Objective: Identify different types of angles Explain how to determine the type of angle. 8-1 Classifying Lines Objective: Identify type of lines and line relationships Language Objective: Classify and then justify your classification Vocabulary: line- continues in both directions for ever

More information

4 BASIC GEOMETRICAL IDEAS

4 BASIC GEOMETRICAL IDEAS 4 BASIC GEOMETRICAL IDEAS Q.1. Use the figure to name. (a) Five points (b) A line (c) Four rays (d) Five line segments Ans. (a) O, B, C, D and E. (b) DB, OB etc. (c) OB, OC, OD and ED Exercise 4.1 (d)

More information

Unit 6 Grade 7 Geometry

Unit 6 Grade 7 Geometry Unit 6 Grade 7 Geometry Lesson Outline BIG PICTURE Students will: investigate geometric properties of triangles, quadrilaterals, and prisms; develop an understanding of similarity and congruence. Day Lesson

More information

Constructing Symmetrical Shapes

Constructing Symmetrical Shapes 07-NEM5-WBAns-CH07 7/20/04 4:36 PM Page 62 1 Constructing Symmetrical Shapes 1 Construct 2-D shapes with one line of symmetry A line of symmetry may be horizontal or vertical 2 a) Use symmetry to complete

More information

Topics Covered on Geometry Placement Exam

Topics Covered on Geometry Placement Exam Topics Covered on Geometry Placement Exam - Use segments and congruence - Use midpoint and distance formulas - Measure and classify angles - Describe angle pair relationships - Use parallel lines and transversals

More information

0810ge. Geometry Regents Exam 0810

0810ge. Geometry Regents Exam 0810 0810ge 1 In the diagram below, ABC XYZ. 3 In the diagram below, the vertices of DEF are the midpoints of the sides of equilateral triangle ABC, and the perimeter of ABC is 36 cm. Which two statements identify

More information

2 feet Opposite sides of a rectangle are equal. All sides of a square are equal. 2 X 3 = 6 meters = 18 meters

2 feet Opposite sides of a rectangle are equal. All sides of a square are equal. 2 X 3 = 6 meters = 18 meters GEOMETRY Vocabulary 1. Adjacent: Next to each other. Side by side. 2. Angle: A figure formed by two straight line sides that have a common end point. A. Acute angle: Angle that is less than 90 degree.

More information

Unit 8. Quadrilaterals. Academic Geometry Spring Name Teacher Period

Unit 8. Quadrilaterals. Academic Geometry Spring Name Teacher Period Unit 8 Quadrilaterals Academic Geometry Spring 2014 Name Teacher Period 1 2 3 Unit 8 at a glance Quadrilaterals This unit focuses on revisiting prior knowledge of polygons and extends to formulate, test,

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, 2012 8:30 to 11:30 a.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, 2012 8:30 to 11:30 a.m. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 16, 2012 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your

More information

55 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 220 points.

55 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 220 points. Geometry Core Semester 1 Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which topics you need to review most carefully. The unit

More information

Overview Mathematical Practices Congruence

Overview Mathematical Practices Congruence Overview Mathematical Practices Congruence 1. Make sense of problems and persevere in Experiment with transformations in the plane. solving them. Understand congruence in terms of rigid motions. 2. Reason

More information

Date: Period: Symmetry

Date: Period: Symmetry Name: Date: Period: Symmetry 1) Line Symmetry: A line of symmetry not only cuts a figure in, it creates a mirror image. In order to determine if a figure has line symmetry, a figure can be divided into

More information

Geometry and Measurement

Geometry and Measurement Geometry and Measurement 7 th Grade Math Michael Hepola Henning Public School mhepola@henning.k12.mn.us Executive Summary This 12-day unit is constructed with the idea of teaching this geometry section

More information

Quadrilaterals Properties of a parallelogram, a rectangle, a rhombus, a square, and a trapezoid

Quadrilaterals Properties of a parallelogram, a rectangle, a rhombus, a square, and a trapezoid Quadrilaterals Properties of a parallelogram, a rectangle, a rhombus, a square, and a trapezoid Grade level: 10 Prerequisite knowledge: Students have studied triangle congruences, perpendicular lines,

More information

15 Polygons. 15.1 Angle Facts. Example 1. Solution. Example 2. Solution

15 Polygons. 15.1 Angle Facts. Example 1. Solution. Example 2. Solution 15 Polygons MEP Y8 Practice Book B 15.1 Angle Facts In this section we revise some asic work with angles, and egin y using the three rules listed elow: The angles at a point add up to 360, e.g. a c a +

More information

Conjectures for Geometry for Math 70 By I. L. Tse

Conjectures for Geometry for Math 70 By I. L. Tse Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:

More information

TABLE OF CONTENTS. Free resource from Commercial redistribution prohibited. Understanding Geometry Table of Contents

TABLE OF CONTENTS. Free resource from  Commercial redistribution prohibited. Understanding Geometry Table of Contents Understanding Geometry Table of Contents TABLE OF CONTENTS Why Use This Book...ii Teaching Suggestions...vi About the Author...vi Student Introduction...vii Dedication...viii Chapter 1 Fundamentals of

More information

Geometry Enduring Understandings Students will understand 1. that all circles are similar.

Geometry Enduring Understandings Students will understand 1. that all circles are similar. High School - Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,

More information

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

More information

PRACTICAL GEOMETRY SYMMETRY AND VISUALISING SOLID SHAPES NCERT

PRACTICAL GEOMETRY SYMMETRY AND VISUALISING SOLID SHAPES NCERT UNIT 12 PRACTICAL GEOMETRY SYMMETRY AND VISUALISING SOLID SHAPES (A) Main Concepts and Results Let a line l and a point P not lying on it be given. By using properties of a transversal and parallel lines,

More information

Geometry in a Nutshell

Geometry in a Nutshell Geometry in a Nutshell Henry Liu, 26 November 2007 This short handout is a list of some of the very basic ideas and results in pure geometry. Draw your own diagrams with a pencil, ruler and compass where

More information

A polygon with five sides is a pentagon. A polygon with six sides is a hexagon.

A polygon with five sides is a pentagon. A polygon with six sides is a hexagon. Triangles: polygon is a closed figure on a plane bounded by (straight) line segments as its sides. Where the two sides of a polygon intersect is called a vertex of the polygon. polygon with three sides

More information

Time Topic What students should know Mathswatch links for revision

Time Topic What students should know Mathswatch links for revision Time Topic What students should know Mathswatch links for revision 1.1 Pythagoras' theorem 1 Understand Pythagoras theorem. Calculate the length of the hypotenuse in a right-angled triangle. Solve problems

More information

Alabama Course of Study Mathematics Geometry

Alabama Course of Study Mathematics Geometry A Correlation of Prentice Hall to the Alabama Course of Study Mathematics Prentice Hall, Correlated to the Alabama Course of Study Mathematics - GEOMETRY CONGRUENCE Experiment with transformations in the

More information

parallel lines perpendicular lines intersecting lines vertices lines that stay same distance from each other forever and never intersect

parallel lines perpendicular lines intersecting lines vertices lines that stay same distance from each other forever and never intersect parallel lines lines that stay same distance from each other forever and never intersect perpendicular lines lines that cross at a point and form 90 angles intersecting lines vertices lines that cross

More information

10-4 Inscribed Angles. Find each measure. 1.

10-4 Inscribed Angles. Find each measure. 1. Find each measure. 1. 3. 2. intercepted arc. 30 Here, is a semi-circle. So, intercepted arc. So, 66 4. SCIENCE The diagram shows how light bends in a raindrop to make the colors of the rainbow. If, what

More information

Congruence. Set 5: Bisectors, Medians, and Altitudes Instruction. Student Activities Overview and Answer Key

Congruence. Set 5: Bisectors, Medians, and Altitudes Instruction. Student Activities Overview and Answer Key Instruction Goal: To provide opportunities for students to develop concepts and skills related to identifying and constructing angle bisectors, perpendicular bisectors, medians, altitudes, incenters, circumcenters,

More information

1) Perpendicular bisector 2) Angle bisector of a line segment

1) Perpendicular bisector 2) Angle bisector of a line segment 1) Perpendicular bisector 2) ngle bisector of a line segment 3) line parallel to a given line through a point not on the line by copying a corresponding angle. 1 line perpendicular to a given line through

More information

Quadrilaterals Unit Review

Quadrilaterals Unit Review Name: Class: Date: Quadrilaterals Unit Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. ( points) In which polygon does the sum of the measures of

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name: School Name:

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name: School Name: GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, June 16, 2009 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name of

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2009 8:30 to 11:30 a.m., only.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2009 8:30 to 11:30 a.m., only. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2009 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your

More information

Chapters 4 and 5 Notes: Quadrilaterals and Similar Triangles

Chapters 4 and 5 Notes: Quadrilaterals and Similar Triangles Chapters 4 and 5 Notes: Quadrilaterals and Similar Triangles IMPORTANT TERMS AND DEFINITIONS parallelogram rectangle square rhombus A quadrilateral is a polygon that has four sides. A parallelogram is

More information

Triangle. A triangle is a geometrical figure. Tri means three. So Triangle is a geometrical figure having 3 angles.

Triangle. A triangle is a geometrical figure. Tri means three. So Triangle is a geometrical figure having 3 angles. Triangle A triangle is a geometrical figure. Tri means three. So Triangle is a geometrical figure having 3 angles. A triangle is consisting of three line segments linked end to end. As the figure linked

More information

NCERT. In examples 1 and 2, write the correct answer from the given four options.

NCERT. In examples 1 and 2, write the correct answer from the given four options. MTHEMTIS UNIT 2 GEOMETRY () Main oncepts and Results line segment corresponds to the shortest distance between two points. The line segment joining points and is denoted as or as. ray with initial point

More information

Math 311 Test III, Spring 2013 (with solutions)

Math 311 Test III, Spring 2013 (with solutions) Math 311 Test III, Spring 2013 (with solutions) Dr Holmes April 25, 2013 It is extremely likely that there are mistakes in the solutions given! Please call them to my attention if you find them. This exam

More information

Number & Place Value. Addition & Subtraction. Digit Value: determine the value of each digit. determine the value of each digit

Number & Place Value. Addition & Subtraction. Digit Value: determine the value of each digit. determine the value of each digit Number & Place Value Addition & Subtraction UKS2 The principal focus of mathematics teaching in upper key stage 2 is to ensure that pupils extend their understanding of the number system and place value

More information

Objectives. Cabri Jr. Tools

Objectives. Cabri Jr. Tools Activity 24 Angle Bisectors and Medians of Quadrilaterals Objectives To investigate the properties of quadrilaterals formed by angle bisectors of a given quadrilateral To investigate the properties of

More information

4 Mathematics Curriculum

4 Mathematics Curriculum Common Core 4 Mathematics Curriculum G R A D E GRADE 4 MODULE 4 Table of Contents GRADE 4 MODULE 4 Angle Measure and Plane Figures Module Overview... i Topic A: Lines and Angles... 4.A.1 Topic B: Angle

More information

CONJECTURES - Discovering Geometry. Chapter 2

CONJECTURES - Discovering Geometry. Chapter 2 CONJECTURES - Discovering Geometry Chapter C-1 Linear Pair Conjecture - If two angles form a linear pair, then the measures of the angles add up to 180. C- Vertical Angles Conjecture - If two angles are

More information