PROBLEMS ON RESULTANTS

Size: px
Start display at page:

Download "PROBLEMS ON RESULTANTS"

Transcription

1 PRBLES N RESULTNTS

2 PRBLES 1) The tie-rod B eerts the 50 N force on the steering nucle as shown. Replace this force b an equivalent force couple sstem at. (/73)

3 PRBLES Replace b an equivalent force couple sstem at. 50cos10 50 N + 50cos10(0.35) 50sin10(0.05) 60 N m ( cw) 50cos10i 50sin i N 50sin10 50sin10 50 mm 50cos10

4 PRBLES ) Where does the resultant of the two forces act? (/83)

5 PRBLES Where does the resultant act? 1 660(0.3) 198 Nm 0 N 660 N 0 N 0( ) 198 Nm m 0 Resultant (0 N) acts = 10.7 m left of point 1

6 PRBLES 3) utilit pole of mass m is being slowl erected b the winch and cable arrangement shown. When q=60, the cable tension is 35 percent of the weight of the pole. Determine the force couple sstem at, which is equivalent to the tension force applied to the top of the pole. Neglect the diameter of the hoisting drum compared with l.

7 PRBLES for q=60 cable tension is 35 % of the weight of the pole. Determine the force couple sstem at, which is equivalent to the tension force applied to the top of the pole. T T + T 0.35mg T 0.35mg 1.5l 0.34mg 1.544l 0.366l 0.083mg 1.544l T (0.866l) T (0.5l) 0.34mg(0.866l) 0.083mg(0.5l) 0.54mgl ( ccw) l0.5l l T T 0. 35mg l0.5l 1. 5l mg T 0.866l q=60 0.5l

8 PRBLES 380 mm 150 mm 800 N 160 mm 800 N 30 mm B 4) The forces acting on the belts on a pulle sstem are equal with a magnitude of 800 N. The pulle is secured to the steel column b means of two bolts at and B. Replace the two forces with a force-couple sstem, in which the equivalent force will be at the midpoint of the bolts. Then, determine the force each bolt will sustain b distributing this force and couple to forces acting at points and B.

9 PRBLES Replace with a force-couple sstem, in which the equivalent force will be at the midpoint of the bolts. Determine the force each bolt will sustain b distributing this force and couple to forces acting at points and B. 380 mm 150 mm 800 N 160 mm 800 N 30 mm B

10 PRBLES 5) Under nonuniform and slipper road conditions, the four forces shown are eerted on the four drive wheels of the all-wheel-drive vehicle. Determine the resultant of this sstem and the - and - intercepts of its line of action. Note that the front and rear tracs are equal (i. e., ). (/97) B D

11 PRBLES Determine the resultant of the sstem and the - and -intercepts of its line of action. B D

12 PRBLES 6) The pedal-chain wheel unit of a biccle is shown in the figure. The left foot of the rider eerts the 160 N force, while the use of toe-clips allows the right foot to eert the nearl upward 80 N force. Determine the equivalent force couple sstem at point. lso, determine the equation of the line of action of the sstem resultant treated as a single force R. Treat the problem as two dimensional. (/100)

13 PRBLES Determine the equivalent force couple sstem at point and the equation of the line of action of the sstem resultant treated as a single force R.

14 PRBLES 7) Determine the force-couple sstem at which is equivalent to the two forces applied to the shaft B. Is R perpendicular to? (/157)

15 PRBLES Determine the force-couple sstem at which is equivalent to the two forces applied to the shaft B. Is R perpendicular to? R(600sin cos30 ) ( 800sin cos45 ) R ( N) r1 1 r 0.08i i ( N m) if R, then R 0 R the are not perpendicular toeach other

16 PRBLES 8) Represent the resultant of the force sstem acting on the pipe assembl b a single force at and a couple.

17 Represent the resultant of the force sstem acting on the pipe assembl b a single force at and a couple. PRBLES ) ( N i R ) ( m N i i r r 1 = m N d (0.5)? 50 1

18 PRBLES 9) The tension in cable B is 450 N and the tension in cable D is 70 N. Suppose that ou want to replace these two cables b a single cable E so that the force eerted on the wall at E is equivalent to the two forces eerted b cables B and D on the walls at and. What is the tension in cable E and what are the coordinates of points E and? 1.,1.8,0 m

19 PRBLES T B = 450 N, T D = 70 N, replace two cables b a single cable E so that the force eerted on the wall at E is equivalent to the two forces eerted b cables B and D on the walls at and. What is the tension in cable E and what are the T T B D or cables B and D coordinates of points E and? 0.9i ( ).1 i N 0.9i i ( N) i r / TB 1.i i r / TD i ( Nm) T B 1.,1.8,0 m T D

20 PRBLES T B = 450 N, T D = 70 N, replace two cables b a single cable E so that the force eerted on the wall at E is equivalent to the two forces eerted b cables B and D on the walls at and. What is the tension in cable E and what are the or cable E coordinates of points E and? TB TD TE i ( N) TE 70 i re / TE E E E E i i i E 54.58, E , E.7 m E (0,.7, 0.83) m r / TE i i i i , (1.35, 0,1.7) m, E E 0.83 m 1.7 m 1.35 m E N E T B T E 0, E,,0, 1.,1.8,0 m T D E m m

21 PRBLES 10) The weight of the robot arm B is 00 N and its direction * Line N lies in a plane parallel to the horiontal plane * Line D lies in the plane =7 N. m cosines are cos q =0.6, cos q (q <90 ) and cos q =0. or arm B the weight is 160 N with cos q =7/9, cos q =4/9 and cos q =-4/9. The mass 540 mm // =50 N N centers of both arms are at their midpoints. force of magnitude =50 N and a couple of magnitude B 160 N 53 o 37 o =7 Nm along the ais B are applied to the end of arm B. Replace the three forces and one 500 mm // 00 N // couple acting on the robot assembl with an equivalent force-couple at point. D 37 o

22 PRBLES W B = 00 N, cos q =0.6, cos q (q <90 ) and cos q =0 dır. W B = 160 N, cos q =7/9, cos q =4/9 and cos q =-4/9. =50 N and =7 Nm act to the end of arm B. Replace the three forces and one couple acting on the robot assembl with an equivalent =7 N. m force-couple at point. 540 mm // =50 N N B 160 N 53 o 37 o 500 mm 00 N // // * Line N lies in a plane parallel to the horiontal plane * Line D lies in the plane D 37 o

23 PRBLES 11) student using a pencil opener applies on the machine the two forces and the couple shown in the figure. If it is nown that the force and couple components of the equivalent force-couple sstem at are R17i R 5 ( N) and i 1.5 ( Nm) R respectivel, determine the vector epressions of the forces applied to points B and and also values of R and. Bi B.75 N. m 100 mm i 60 mm 50 mm

24 determine the vector epressions of the forces applied to points B and and also values of R and. PRBLES ) ( 5 17 N R i R ) ( 1.5 m N i R 100 mm 50 mm 60 mm B.75 N. m i i B N R B B i B R i Bi B i B R 5, 5 17, ,, i i i r couple B R 0.1 ) 0.05 ( ) 5 ( ) 0.05 (0.1 / m B m,0,0.11) ( (0.1, 0, 0.05) (0,0,0)

25 PRBLES B rb / B( i 0.11 ) Bi 0.11B couple.75i R B i 1.5 ( ) i (0.11B ) , 15 N, R 15 N N B10.83 N 6.17i 15 5 B 10.83i ( N) determine the vector epressions of the forces applied to points B and and also values of R and. Nm B ( N) Bi B.75 N. m 100 mm i 60 mm couple 50 mm

26 PRBLES 1) The force-couple stem acting at is equivalent to the wrench acting at. If R600i ( N) and 100 ( N ), determine. R // m R R// R m 3 m

27 PRBLES The force-couple stem acting at is equivalent to the wrench acting at. If R 600i ( N) and R // 100 ( N m) determine. R R// R m 3 m

28 PRBLES 13) portion of the flue for a furnace is attached to the ceiling at. While supporting the free end of the flue at, a worer applies the forces indicated at E and and the couple (applied to portion B) to align end E with the furnace. Knowing that the 95 N force at lies in a plane parallel to the plane, determine (a) the angle a the force at should form with the horiontal if duct B is not to tend to rotate about the vertical ais, (b) the equivalent force-couple sstem at of the given sstem, (c) further reduce the sstem to a wrench and determine the coordinates of the point the line of action of the wrench passes in the plane. Line EG lies in the plane and forms a 45 angle with the // ais. The line of action of the 75 N force forms an angle of 53 with line EG.

29 PRBLES Determine (a) the angle a the force at should form with the horiontal if duct B is not to tend to rotate about the vertical ais, (b) the equivalent force-couple sstem at of the given sstem, (c) further reduce the sstem to a wrench and determine the coordinates of the point the line of action of the wrench passes in the plane. 95 N force at lies in a plane parallel to the plane, line EG lies in the plane and forms a 45 angle with the // ais. The line of action of the 75 N force forms an angle of 53 with line EG.

30 Z 1 = 30 N = 75 N 3 = 40 N 1 = 60 Nm = 100 Nm (in plane) q 3 = 80 Nm (in plane BD) q < 90 o 45 X 6 m 37 3 G 53 E 30 3 Y (0, 0, 0) m (1, 0, 0) m B (in plane) (1, 8, 0) m E (6, 10, -3) m G (10, 4, 4) m B 4 m D 14) Replace the sstem comprising two forces, two couples and a positive wrench with an equivalent force-couple acting at point. Then, reduce the sstem further into a wrench and determine the coordinates of point P, of which the line of action of the wrench cuts through the plane.

31 i i R R n i R i 40cos30 40cos60sin 53 40cos60cos53i i ) (0 0) (8 i i cos60 cos60 30 cos45i 60 1 cos 60 cos 45 cos R 3 1 o q q orce:

32 i 3 64i 100i i i i i i i 4 8 6i BD B 100i i cos60 cos60 60 cos45i i i i i i 8 1i i i r r r r o oment:

33 Equivalent force-couple sstem at point R1.95i i Reduction to a wrench in plane // // nr n i i i i // R Positive wrench R1.95i i // Positive wrench // i Nm R1.95i

34 The coordinates of point P, of which the line of action of the wrench cuts through the plane: o // i i i r R i i i m m i i R1.95i r // P(0;391.7;474.66) Positive wrench i

2010 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

2010 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. pplication of forces to the handles of these wrenches will produce a tendenc to rotate each wrench about its end. It is important to know how to calculate this effect and, in some cases, to be able to

More information

EQUILIBRIUM STRESS SYSTEMS

EQUILIBRIUM STRESS SYSTEMS EQUILIBRIUM STRESS SYSTEMS Definition of stress The general definition of stress is: Stress = Force Area where the area is the cross-sectional area on which the force is acting. Consider the rectangular

More information

Chapter 11 Equilibrium

Chapter 11 Equilibrium 11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of

More information

COMPLEX STRESS TUTORIAL 3 COMPLEX STRESS AND STRAIN

COMPLEX STRESS TUTORIAL 3 COMPLEX STRESS AND STRAIN COMPLX STRSS TUTORIAL COMPLX STRSS AND STRAIN This tutorial is not part of the decel unit mechanical Principles but covers elements of the following sllabi. o Parts of the ngineering Council eam subject

More information

MONDOATHENS BASKETBALL SET (Reference PK110)

MONDOATHENS BASKETBALL SET (Reference PK110) MONDOATHENS BASKETBALL SET (Reference PK110) DESCRIPTION The MONDOATHENS backstop unit is mainly designed for multi-sports pavilions and installations where the highest-level basketball competitions are

More information

Solution: The free-body diagram is shown to the right. Applying the equilibrium equations

Solution: The free-body diagram is shown to the right. Applying the equilibrium equations Problem 3.1 In ctive Eample 3.1, suppose that the angle between the ramp supporting the car is increased from 20 to 30. raw the free-bod diagram of the car showing the new geometr. Suppose that the cable

More information

TORQUE AND FIRST-CLASS LEVERS

TORQUE AND FIRST-CLASS LEVERS TORQUE AND FIRST-CLASS LEVERS LAB MECH 28.COMP From Physics, Eugene Hecht and Physical Science with Computers, Vernier Software & Technology INTRODUCTION In Figure 1, note force F acting on a wrench along

More information

SECTION 9.1 THREE-DIMENSIONAL COORDINATE SYSTEMS 651. 1 x 2 y 2 z 2 4. 1 sx 2 y 2 z 2 2. xy-plane. It is sketched in Figure 11.

SECTION 9.1 THREE-DIMENSIONAL COORDINATE SYSTEMS 651. 1 x 2 y 2 z 2 4. 1 sx 2 y 2 z 2 2. xy-plane. It is sketched in Figure 11. SECTION 9.1 THREE-DIMENSIONAL COORDINATE SYSTEMS 651 SOLUTION The inequalities 1 2 2 2 4 can be rewritten as 2 FIGURE 11 1 0 1 s 2 2 2 2 so the represent the points,, whose distance from the origin is

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155

Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155 Chapter Test Bank 55 Test Form A Chapter Name Class Date Section. Find a unit vector in the direction of v if v is the vector from P,, 3 to Q,, 0. (a) 3i 3j 3k (b) i j k 3 i 3 j 3 k 3 i 3 j 3 k. Calculate

More information

Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad.

Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad. Centripetal Force 1 Introduction In classical mechanics, the dynamics of a point particle are described by Newton s 2nd law, F = m a, where F is the net force, m is the mass, and a is the acceleration.

More information

Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s

Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s Problem Set 1 1.1 A bicyclist starts from rest and after traveling along a straight path a distance of 20 m reaches a speed of 30 km/h. Determine her constant acceleration. How long does it take her to

More information

PROBLEM 2.9. sin 75 sin 65. R = 665 lb. sin 75 sin 40

PROBLEM 2.9. sin 75 sin 65. R = 665 lb. sin 75 sin 40 POBLEM 2.9 A telephone cable is clamped at A to the pole AB. Knowing that the tension in the right-hand portion of the cable is T 2 1000 lb, determine b trigonometr (a) the required tension T 1 in the

More information

Dr. Fritz Wilhelm, DVC,8/30/2004;4:25 PM E:\Excel files\ch 03 Vector calculations.doc Last printed 8/30/2004 4:25:00 PM

Dr. Fritz Wilhelm, DVC,8/30/2004;4:25 PM E:\Excel files\ch 03 Vector calculations.doc Last printed 8/30/2004 4:25:00 PM E:\Ecel files\ch 03 Vector calculations.doc Last printed 8/30/2004 4:25:00 PM Vector calculations 1 of 6 Vectors are ordered sequences of numbers. In three dimensions we write vectors in an of the following

More information

2003 ACCORD - Automatic Transmission Removal

2003 ACCORD - Automatic Transmission Removal 2003 ACCORD - Automatic Transmission Removal Special Tools Required Engine support hanger, A and Reds AAR-T-12566 Engine hanger balancer bar VSB02C000019 Front subframe adapter VSB02C000016 These special

More information

6. Vectors. 1 2009-2016 Scott Surgent (surgent@asu.edu)

6. Vectors. 1 2009-2016 Scott Surgent (surgent@asu.edu) 6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,

More information

Chapter 5A. Torque. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 5A. Torque. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chapter 5A. Torque A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Torque is a twist or turn that tends to produce rotation. * * * Applications

More information

MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 1 SIMPLE MACHINES

MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 1 SIMPLE MACHINES MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 1 SIMPLE MACHINES Simple machines: lifting devices e.g. lever systems, inclined plane, screw jack, pulley blocks, Weston differential

More information

Chapter 18 Static Equilibrium

Chapter 18 Static Equilibrium Chapter 8 Static Equilibrium 8. Introduction Static Equilibrium... 8. Lever Law... Example 8. Lever Law... 4 8.3 Generalized Lever Law... 5 8.4 Worked Examples... 7 Example 8. Suspended Rod... 7 Example

More information

Moments. Objec-ves. He who asks is a fool for five minutes, but he who does not ask remains a fool forever. - Chinese proverb

Moments. Objec-ves. He who asks is a fool for five minutes, but he who does not ask remains a fool forever. - Chinese proverb oments He who asks is a fool for five minutes, but he who does not ask remains a fool forever. - Chinese proverb Objec-ves Understand what a moment represents in mechanics Understand the scalar formula-on

More information

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its

More information

Figure 1.1 Vector A and Vector F

Figure 1.1 Vector A and Vector F CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

Newton s Law of Motion

Newton s Law of Motion chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating

More information

Vector has a magnitude and a direction. Scalar has a magnitude

Vector has a magnitude and a direction. Scalar has a magnitude Vector has a magnitude and a direction Scalar has a magnitude Vector has a magnitude and a direction Scalar has a magnitude a brick on a table Vector has a magnitude and a direction Scalar has a magnitude

More information

Section 11.4: Equations of Lines and Planes

Section 11.4: Equations of Lines and Planes Section 11.4: Equations of Lines and Planes Definition: The line containing the point ( 0, 0, 0 ) and parallel to the vector v = A, B, C has parametric equations = 0 + At, = 0 + Bt, = 0 + Ct, where t R

More information

Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7

Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7 Lecture 6 Weight Tension Normal Force Static Friction Cutnell+Johnson: 4.8-4.12, second half of section 4.7 In this lecture, I m going to discuss four different kinds of forces: weight, tension, the normal

More information

Angular acceleration α

Angular acceleration α Angular Acceleration Angular acceleration α measures how rapidly the angular velocity is changing: Slide 7-0 Linear and Circular Motion Compared Slide 7- Linear and Circular Kinematics Compared Slide 7-

More information

4.2 Free Body Diagrams

4.2 Free Body Diagrams CE297-FA09-Ch4 Page 1 Friday, September 18, 2009 12:11 AM Chapter 4: Equilibrium of Rigid Bodies A (rigid) body is said to in equilibrium if the vector sum of ALL forces and all their moments taken about

More information

Physics 201 Homework 8

Physics 201 Homework 8 Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the

More information

1. A wire carries 15 A. You form the wire into a single-turn circular loop with magnetic field 80 µ T at the loop center. What is the loop radius?

1. A wire carries 15 A. You form the wire into a single-turn circular loop with magnetic field 80 µ T at the loop center. What is the loop radius? CHAPTER 3 SOURCES O THE MAGNETC ELD 1. A wire carries 15 A. You form the wire into a single-turn circular loop with magnetic field 8 µ T at the loop center. What is the loop radius? Equation 3-3, with

More information

PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013

PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013 PHYSICS 111 HOMEWORK SOLUTION #9 April 5, 2013 0.1 A potter s wheel moves uniformly from rest to an angular speed of 0.16 rev/s in 33 s. Find its angular acceleration in radians per second per second.

More information

Ax 2 Cy 2 Dx Ey F 0. Here we show that the general second-degree equation. Ax 2 Bxy Cy 2 Dx Ey F 0. y X sin Y cos P(X, Y) X

Ax 2 Cy 2 Dx Ey F 0. Here we show that the general second-degree equation. Ax 2 Bxy Cy 2 Dx Ey F 0. y X sin Y cos P(X, Y) X Rotation of Aes ROTATION OF AES Rotation of Aes For a discussion of conic sections, see Calculus, Fourth Edition, Section 11.6 Calculus, Earl Transcendentals, Fourth Edition, Section 1.6 In precalculus

More information

Rotation: Moment of Inertia and Torque

Rotation: Moment of Inertia and Torque Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn

More information

SECTION 2.2. Distance and Midpoint Formulas; Circles

SECTION 2.2. Distance and Midpoint Formulas; Circles SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 1 NON-CONCURRENT COPLANAR FORCE SYSTEMS 1. Be able to determine the effects

More information

F B = ilbsin(f), L x B because we take current i to be a positive quantity. The force FB. L and. B as shown in the Figure below.

F B = ilbsin(f), L x B because we take current i to be a positive quantity. The force FB. L and. B as shown in the Figure below. PHYSICS 176 UNIVERSITY PHYSICS LAB II Experiment 9 Magnetic Force on a Current Carrying Wire Equipment: Supplies: Unit. Electronic balance, Power supply, Ammeter, Lab stand Current Loop PC Boards, Magnet

More information

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

More information

Practice Test SHM with Answers

Practice Test SHM with Answers Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

More information

Mathematics Notes for Class 12 chapter 10. Vector Algebra

Mathematics Notes for Class 12 chapter 10. Vector Algebra 1 P a g e Mathematics Notes for Class 12 chapter 10. Vector Algebra A vector has direction and magnitude both but scalar has only magnitude. Magnitude of a vector a is denoted by a or a. It is non-negative

More information

Chapter 4. Moment - the tendency of a force to rotate an object

Chapter 4. Moment - the tendency of a force to rotate an object Chapter 4 Moment - the tendency of a force to rotate an object Finding the moment - 2D Scalar Formulation Magnitude of force Mo = F d Rotation is clockwise or counter clockwise Moment about 0 Perpendicular

More information

LINEAR FUNCTIONS OF 2 VARIABLES

LINEAR FUNCTIONS OF 2 VARIABLES CHAPTER 4: LINEAR FUNCTIONS OF 2 VARIABLES 4.1 RATES OF CHANGES IN DIFFERENT DIRECTIONS From Precalculus, we know that is a linear function if the rate of change of the function is constant. I.e., for

More information

3 Work, Power and Energy

3 Work, Power and Energy 3 Work, Power and Energy At the end of this section you should be able to: a. describe potential energy as energy due to position and derive potential energy as mgh b. describe kinetic energy as energy

More information

Section 10.4 Vectors

Section 10.4 Vectors Section 10.4 Vectors A vector is represented by using a ray, or arrow, that starts at an initial point and ends at a terminal point. Your textbook will always use a bold letter to indicate a vector (such

More information

Geometric description of the cross product of the vectors u and v. The cross product of two vectors is a vector! u x v is perpendicular to u and v

Geometric description of the cross product of the vectors u and v. The cross product of two vectors is a vector! u x v is perpendicular to u and v 12.4 Cross Product Geometric description of the cross product of the vectors u and v The cross product of two vectors is a vector! u x v is perpendicular to u and v The length of u x v is uv u v sin The

More information

Rotational Motion and Torque

Rotational Motion and Torque Science Objectives Students will describe how different forces can be balanced. Students will relate the balance of a lever to torque on a wrench. Students will develop an understanding of torques as they

More information

Standard Sleep Pod Side Entry Assembly Instructions

Standard Sleep Pod Side Entry Assembly Instructions Standard Sleep Pod Side Entry Assembly Instructions www.podtime.co.uk enquiries@podtime.co.uk Working House Ltd How to assemble your pod Pod assembly onsite is a relatively simple exercise for two people

More information

MAT 1341: REVIEW II SANGHOON BAEK

MAT 1341: REVIEW II SANGHOON BAEK MAT 1341: REVIEW II SANGHOON BAEK 1. Projections and Cross Product 1.1. Projections. Definition 1.1. Given a vector u, the rectangular (or perpendicular or orthogonal) components are two vectors u 1 and

More information

Physics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5

Physics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5 Solutions to Homework Questions 5 Chapt19, Problem-2: (a) Find the direction of the force on a proton (a positively charged particle) moving through the magnetic fields in Figure P19.2, as shown. (b) Repeat

More information

Volkswagen Corrado 1990-1994 Suspension Wheels -Tires Wheel Alignment (Page GR-44)

Volkswagen Corrado 1990-1994 Suspension Wheels -Tires Wheel Alignment (Page GR-44) Wheels -Tires Wheel Alignment (Page GR-44) Front wheel camber adjusting Rear wheel toe determining Snow tires size Vibrations eliminating Wheel alignment data (4 cylinder) data (6 cylinder) Wheels - Tires,

More information

TOP VIEW. FBD s TOP VIEW. Examination No. 2 PROBLEM NO. 1. Given:

TOP VIEW. FBD s TOP VIEW. Examination No. 2 PROBLEM NO. 1. Given: RLEM N. 1 Given: Find: vehicle having a mass of 500 kg is traveling on a banked track on a path with a constant radius of R = 1000 meters. t the instant showing, the vehicle is traveling with a speed of

More information

B.TECH. (AEROSPACE ENGINEERING) PROGRAMME (BTAE) Term-End Examination December, 2011 BAS-010 : MACHINE DESIGN

B.TECH. (AEROSPACE ENGINEERING) PROGRAMME (BTAE) Term-End Examination December, 2011 BAS-010 : MACHINE DESIGN No. of Printed Pages : 7 BAS-01.0 B.TECH. (AEROSPACE ENGINEERING) PROGRAMME (BTAE) CV CA CV C:) O Term-End Examination December, 2011 BAS-010 : MACHINE DESIGN Time : 3 hours Maximum Marks : 70 Note : (1)

More information

Lines and Planes 1. x(t) = at + b y(t) = ct + d

Lines and Planes 1. x(t) = at + b y(t) = ct + d 1 Lines in the Plane Lines and Planes 1 Ever line of points L in R 2 can be epressed as the solution set for an equation of the form A + B = C. The equation is not unique for if we multipl both sides b

More information

There are four types of friction, they are 1).Static friction 2) Dynamic friction 3) Sliding friction 4) Rolling friction

There are four types of friction, they are 1).Static friction 2) Dynamic friction 3) Sliding friction 4) Rolling friction 2.3 RICTION The property by virtue of which a resisting force is created between two rough bodies that resists the sliding of one body over the other is known as friction. The force that always opposes

More information

Vector Algebra II: Scalar and Vector Products

Vector Algebra II: Scalar and Vector Products Chapter 2 Vector Algebra II: Scalar and Vector Products We saw in the previous chapter how vector quantities may be added and subtracted. In this chapter we consider the products of vectors and define

More information

D.3. Angles and Degree Measure. Review of Trigonometric Functions

D.3. Angles and Degree Measure. Review of Trigonometric Functions APPENDIX D Precalculus Review D7 SECTION D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving Trigonometric

More information

Teacher Page. 1. Reflect a figure with vertices across the x-axis. Find the coordinates of the new image.

Teacher Page. 1. Reflect a figure with vertices across the x-axis. Find the coordinates of the new image. Teacher Page Geometr / Da # 10 oordinate Geometr (5 min.) 9-.G.3.1 9-.G.3.2 9-.G.3.3 9-.G.3. Use rigid motions (compositions of reflections, translations and rotations) to determine whether two geometric

More information

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

More information

SECTION 2B WHEEL ALIGNMENT TABLE OF CONTENTS

SECTION 2B WHEEL ALIGNMENT TABLE OF CONTENTS SECTION 2B WHEEL ALIGNMENT TABLE OF CONTENTS Description and Operation... 2B2 Four Wheel Alignment... 2B2 Toein... 2B2 Caster... 2B2 Camber... 2B2 Diagnostic Information and Procedures... 2B3 Tire Diagnosis...

More information

Mechanical Principles

Mechanical Principles Unit 4: Mechanical Principles Unit code: F/60/450 QCF level: 5 Credit value: 5 OUTCOME 3 POWER TRANSMISSION TUTORIAL BELT DRIVES 3 Power Transmission Belt drives: flat and v-section belts; limiting coefficient

More information

REAR AXLE 27-1 CONTENTS 27109000161 ON-VEHICLE SERVICE... 3 GENERAL INFORMATION... 2 SERVICE SPECIFICATIONS... 2 SPECIAL TOOLS... 2 REAR AXLE HUB...

REAR AXLE 27-1 CONTENTS 27109000161 ON-VEHICLE SERVICE... 3 GENERAL INFORMATION... 2 SERVICE SPECIFICATIONS... 2 SPECIAL TOOLS... 2 REAR AXLE HUB... 27-1 REAR AXLE CONTENTS 27109000161 GENERAL INFORMATION... 2 SERVICE SPECIFICATIONS... 2 SPECIAL TOOLS... 2 ON-VEHICLE SERVICE... 3 Wheel Bearing Axial Play Check... 3 Wheel Bearing Rotary-Sliding Resistance

More information

Chapter 8: Rotational Motion of Solid Objects

Chapter 8: Rotational Motion of Solid Objects Chapter 8: Rotational Motion of Solid Objects 1. An isolated object is initially spinning at a constant speed. Then, although no external forces act upon it, its rotational speed increases. This must be

More information

Ford F-250 / 350 2-1/2 Coil Kit. Ford F-250, F350 2011-2015. Part#: 013255

Ford F-250 / 350 2-1/2 Coil Kit. Ford F-250, F350 2011-2015. Part#: 013255 Part#: 013255 Ford F-250 / 350 2-1/2 Coil Kit Ford F-250, F350 2011-2015 Rev.040815 491 W. Garfield Ave., Coldwater, MI 49036. Phone: 517-279-2135 Web/live chat: www.bds-suspension.com. E-mail: tech@bds-suspension.com

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

IRB 2600ID-15/1.85 Simple integration, high performance

IRB 2600ID-15/1.85 Simple integration, high performance Per Lowgren, Product Manager, Medium robots IRB 2600ID-15/1.85 Simple integration, high performance February 9, 2011 Slide 1 Overview of main features General purpose robot for integrated dressing solutions.

More information

Mazda North American Operations Irvine, CA 92618-2922

Mazda North American Operations Irvine, CA 92618-2922 Service Bulletin Mazda North American Operations Irvine, CA 92618-2922 Subject: STEERING WHEEL OFF CENTER Bulletin No: 02-005/10 MULTI-MODEL - STEERING WHEEL OFF CENTER BULLETIN NOTE This bulletin supersedes

More information

INSTALLATION INSTRUCTIONS

INSTALLATION INSTRUCTIONS INSTALLATION INSTRUCTIONS Accessory TRIM Application 2008 ACCORD 4-DOOR Publications No. AII 35362 Issue Date AUG 2007 PARTS LIST Steering Wheel Trim (Without Navigation) P/N 08Z13-TA0-100 Right steering

More information

SECTION 7-4 Algebraic Vectors

SECTION 7-4 Algebraic Vectors 7-4 lgebraic Vectors 531 SECTIN 7-4 lgebraic Vectors From Geometric Vectors to lgebraic Vectors Vector ddition and Scalar Multiplication Unit Vectors lgebraic Properties Static Equilibrium Geometric vectors

More information

How to Set Up Corvette IRS Rear Camber (basic do-at-home version)

How to Set Up Corvette IRS Rear Camber (basic do-at-home version) How to Set Up Corvette IRS Rear Camber (basic do-at-home version) by Lars Grimsrud Colorado Corvette Crazies (CCC) The Ultimate Corvette Tuning & Beer Drinking Fraternity Lafayette, CO Rev. B 3-24-05 This

More information

WHEEL ALIGNMENT SPECIFICATIONS & PROCEDURES

WHEEL ALIGNMENT SPECIFICATIONS & PROCEDURES WHEEL ALIGNMENT SPECIFICATIONS & PROCEDURES For 1234 1992 WHEEL ALIGNMENT Subaru Specifications & Procedures Justy, Legacy, Loyale, SVX * PLEASE READ THIS FIRST * NOTE: Prior to performing wheel alignment,

More information

Double Integrals in Polar Coordinates

Double Integrals in Polar Coordinates Double Integrals in Polar Coordinates. A flat plate is in the shape of the region in the first quadrant ling between the circles + and +. The densit of the plate at point, is + kilograms per square meter

More information

226-332 Basic CAD/CAM. CHAPTER 5: Geometric Transformation

226-332 Basic CAD/CAM. CHAPTER 5: Geometric Transformation 226-332 Basic CAD/CAM CHAPTER 5: Geometric Transformation 1 Geometric transformation is a change in geometric characteristics such as position, orientation, and size of a geometric entity (point, line,

More information

1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,

1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v, 1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It

More information

3D Stress Components. From equilibrium principles: τ xy = τ yx, τ xz = τ zx, τ zy = τ yz. Normal Stresses. Shear Stresses

3D Stress Components. From equilibrium principles: τ xy = τ yx, τ xz = τ zx, τ zy = τ yz. Normal Stresses. Shear Stresses 3D Stress Components From equilibrium principles:, z z, z z The most general state of stress at a point ma be represented b 6 components Normal Stresses Shear Stresses Normal stress () : the subscript

More information

Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance. Your name Lab section

Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance. Your name Lab section Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance Your name Lab section 1. What do you investigate in this lab? 2. Two straight wires are in parallel and carry electric currents in opposite directions

More information

Tool Turrets and Tool Discs

Tool Turrets and Tool Discs Our other products Automatic Tool Changer Chucking Cylinders Tool Discs Indexing Tables Tool Turrets and Tool Discs Pragati Automation Pvt. Ltd. 1, IV Phase, 11th Cross, Peenya Industrial Area Bangalore

More information

Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point.

Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point. 6.1 Vectors in the Plane PreCalculus 6.1 VECTORS IN THE PLANE Learning Targets: 1. Find the component form and the magnitude of a vector.. Perform addition and scalar multiplication of two vectors. 3.

More information

Torque and Rotation. Physics

Torque and Rotation. Physics Torque and Rotation Physics Torque Force is the action that creates changes in linear motion. For rotational motion, the same force can cause very different results. A torque is an action that causes objects

More information

Addition and Subtraction of Vectors

Addition and Subtraction of Vectors ddition and Subtraction of Vectors 1 ppendi ddition and Subtraction of Vectors In this appendi the basic elements of vector algebra are eplored. Vectors are treated as geometric entities represented b

More information

Chapter 5: Applying Newton s Laws

Chapter 5: Applying Newton s Laws Chapter 5: Appling Newton s Laws Newton s 1 st Law he 1 st law defines what the natural states of motion: rest and constant velocit. Natural states of motion are and those states are when a = 0. In essence,

More information

H EAD TUBE BASICS. Figure 1 - Head tube, front fork and hardware

H EAD TUBE BASICS. Figure 1 - Head tube, front fork and hardware H EAD TUBE BASICS Figure 1 - Head tube, front fork and hardware This tutorial will cover some of the basics you need to know when pulling apart the steering system of a bicycle for repair or use on one

More information

A vector is a directed line segment used to represent a vector quantity.

A vector is a directed line segment used to represent a vector quantity. Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector

More information

p atmospheric Statics : Pressure Hydrostatic Pressure: linear change in pressure with depth Measure depth, h, from free surface Pressure Head p gh

p atmospheric Statics : Pressure Hydrostatic Pressure: linear change in pressure with depth Measure depth, h, from free surface Pressure Head p gh IVE1400: n Introduction to Fluid Mechanics Statics : Pressure : Statics r P Sleigh: P..Sleigh@leeds.ac.uk r J Noakes:.J.Noakes@leeds.ac.uk January 008 Module web site: www.efm.leeds.ac.uk/ive/fluidslevel1

More information

Affine Transformations

Affine Transformations A P P E N D I X C Affine Transformations CONTENTS C The need for geometric transformations 335 C2 Affine transformations 336 C3 Matri representation of the linear transformations 338 C4 Homogeneous coordinates

More information

Practice Problems on the Navier-Stokes Equations

Practice Problems on the Navier-Stokes Equations ns_0 A viscous, incompressible, Newtonian liquid flows in stead, laminar, planar flow down a vertical wall. The thickness,, of the liquid film remains constant. Since the liquid free surface is eposed

More information

Energy, Work, and Power

Energy, Work, and Power Energy, Work, and Power This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

PHY121 #8 Midterm I 3.06.2013

PHY121 #8 Midterm I 3.06.2013 PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

More information

Linear Motion vs. Rotational Motion

Linear Motion vs. Rotational Motion Linear Motion vs. Rotational Motion Linear motion involves an object moving from one point to another in a straight line. Rotational motion involves an object rotating about an axis. Examples include a

More information

Lines and Planes in R 3

Lines and Planes in R 3 .3 Lines and Planes in R 3 P. Daniger Lines in R 3 We wish to represent lines in R 3. Note that a line may be described in two different ways: By specifying two points on the line. By specifying one point

More information

Torque Analyses of a Sliding Ladder

Torque Analyses of a Sliding Ladder Torque Analyses of a Sliding Ladder 1 Problem Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (May 6, 2007) The problem of a ladder that slides without friction while

More information

C relative to O being abc,, respectively, then b a c.

C relative to O being abc,, respectively, then b a c. 2 EP-Program - Strisuksa School - Roi-et Math : Vectors Dr.Wattana Toutip - Department of Mathematics Khon Kaen University 200 :Wattana Toutip wattou@kku.ac.th http://home.kku.ac.th/wattou 2. Vectors A

More information

Complex Numbers. w = f(z) z. Examples

Complex Numbers. w = f(z) z. Examples omple Numbers Geometrical Transformations in the omple Plane For functions of a real variable such as f( sin, g( 2 +2 etc ou are used to illustrating these geometricall, usuall on a cartesian graph. If

More information

Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross

Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal

More information

SUSPENSION DIAGNOSIS

SUSPENSION DIAGNOSIS SECTION 2A SUSPENSION DIAGNOSIS TABLE OF CONTENTS Diagnosis... 2A-2 General Diagnosis... 2A-2 Hub and Bearing... 2A-7 2A-2 SUSPENSION DIAGNOSIS DIAGNOSIS GENERAL DIAGNOSIS Problems in the steering, the

More information

Speed-Mat Rectangle Cutter

Speed-Mat Rectangle Cutter Speed-Mat Rectangle Cutter 1 Honeycomb baseboard. 2 Left hold down. 14 3 Bottom hold down. 4 4 Left / right rule. 8 5 8 5 Left / right rule pointer. 1 6 Top / bottom rule. 7 Top / bottom rule pointer.

More information

EVALUAT ING ACADEMIC READINESS FOR APPRENTICESHIP TRAINING Revised for ACCESS TO APPRENTICESHIP

EVALUAT ING ACADEMIC READINESS FOR APPRENTICESHIP TRAINING Revised for ACCESS TO APPRENTICESHIP EVALUAT ING ACADEMIC READINESS FOR APPRENTICESHIP TRAINING for ACCESS TO APPRENTICESHIP SCIENCE SKILLS SIMPLE MACHINES & MECHANICAL ADVANTAGE AN ACADEMIC SKILLS MANUAL for The Construction Trades: Mechanical

More information

VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

More information

This little motorcycle has been designed

This little motorcycle has been designed MITE CYCLE You'll need only an "A" ration to run this midget motorcycle. by R. G. Fisher The Mite Cycle, with its builder, is shown above. A small one-cylinder engine provides the motive power. This little

More information

Math 241 Lines and Planes (Solutions) x = 3 3t. z = 1 t. x = 5 + t. z = 7 + 3t

Math 241 Lines and Planes (Solutions) x = 3 3t. z = 1 t. x = 5 + t. z = 7 + 3t Math 241 Lines and Planes (Solutions) The equations for planes P 1, P 2 and P are P 1 : x 2y + z = 7 P 2 : x 4y + 5z = 6 P : (x 5) 2(y 6) + (z 7) = 0 The equations for lines L 1, L 2, L, L 4 and L 5 are

More information

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N) Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in

More information