BINOMIAL THEOREM. 1. Introduction. 2. The Binomial Coefficients. ( x + 1), we get. and. When we expand

Size: px
Start display at page:

Download "BINOMIAL THEOREM. 1. Introduction. 2. The Binomial Coefficients. ( x + 1), we get. and. When we expand"

Transcription

1 BINOMIAL THEOREM Itoductio Whe we epad ( + ) ad ( + ), we get ad ( + ) = ( + )( + ) = = + + ( + ) = ( + )( + ) = ( + )( + + ) = = espectively Howeve, whe we ty to epad ( + ) ad ( + ), we fid that this method becomes vey tedious Futhemoe, how about ( + ), whe is a abitay positive itege? The biomial theoem helps us to epad these ad othe epessios moe easily ad coveietly Hee we shall go ove the basics of the biomial theoem, as well as a umbe of techiques i which the biomial theoem helps us to solve a wide age of poblems The Biomial oefficiets Defiitio (Biomial coefficiet) The biomial coefficiets ae the coefficiets i the epasio of ( + ) The coefficiet of i ( + ) is deoted as, o (Hee we shall be usig the fist otatio thoughout) The Pascal tiagle lists out all the biomial coefficiets, as show i Figue Page of

2 th ow st ow d ow d ow 4th ow th ow 5 5 6th ow th ow Figue : The Pascal tiagle The th ow is the coefficiet i the epasio of ( + ), o simply Fom the fist ow owads, the th ow cotais the + coefficiets i the epasio of ( + ) As you ca pobably obseve, thee ae some itiguig popeties i the Pascal tiagle: The tiagle is symmetic about the middle of each ow, ie = Ecept fo the leftmost ad ightmost umbes i each ow, evey umbe is the sum of the two umbes diectly above it, ie = + I evey ow, the umbes fist icease fom to a maimum value, the decease back to The secod umbe (as well as the secod last umbe) i the th ow is, ie = = Eample Usig the Pascal tiagle, epad 5 ( + ) ad 7 ( + ) Solutio Fom the Pascal tiagle, the tems i the 5th ow ae, 5,,,, 5 ad Thus we have ( ) = Similaly, by efeig to the 7th ow of the Pascal tiagle, we have ( ) = Page of

3 The Biomial Theoem We ae goig to fid a eplicit fomula fo computig the umbes i the Pascal tiagle, so that we ca cay out epasios coveietly without always efeig to the tiagle as well as eplai the iteestig popeties we obseved Accodig to defiitio, ( + ) = () Puttig =, we get =, as we ca see fom the Pascal tiagle The othe tems ca also be computed by successive diffeetiatio of the above fomula, as we illustate below Diffeetiatig () oce, we have ( + ) = + ( ) + ( ) Puttig = agai, we have = Similaly, by diffeetiatig () times, we have ( )( ) ( + )( + ) ( )( ) ( ) ( ) Puttig =, we get = ( )( ) ( + ) = + To make the fomula simple, we itoduce the factoial symbol Defiitio (Factoial) Fo positive itege, we defie the factoial of, deoted as!, by We also defie! =! = ( ) ( ) With this otatio i had, we ca give the fomula fo the biomial coefficiets i a ice fom: Page of

4 Theoem The biomial coefficiet is give by! =!( )! I combiatoics, deotes the umbe of ways of choosig objects fom objects The coefficiet of i ( + ) is ad this has its combiatoial meaig The tem comes by choosig s fom tems of ( + ) Thus thee ae tems ad hece its coefficiet is Although we have till ow oly discussed the epasio of ( + ), but fo the geeal epessio ( a+ b) it just takes a few moe steps Theoem (Biomial Theoem) ( a+ b) = a + a b+ a b + + ab + b ( a b) = a a b+ a b + ( ) ab + ( ) b Poof: We have ad so ( a+ b) = b + b a a a a a a a + = b b b b b b osequetly, ( a+ b) a a a a a = b b b b b b = b a b + a b + a b + + a b + ab + = a + a b+ a b + + ab as desied Fo the epasio of ( a b ) + ab + b, we simply apply the above esult with b eplaced by b QED Page 4 of

5 Eample Epad ( ) i ascedig powes of, up to the tem cotaiig Solutio ( ) = ( + ) = ( ) + ( ) + ( ) + ( ) ( 5) 58 ( 8) = = + + Eample Fid the coefficiet of i ( )( ) Solutio Sice 5 ( ) = 5( ) + (4 ) (8 ) + = the tem i (+ + )( ) is give by the sum of ( 8 ), So the coefficiet of is = 6 (4 ) ad ( ) Eample Fid the costat tem i the epasio of ( ) 6 Solutio I the epasio of ( ), i descedig powes of, the ( + ) st tem is ( ) = ( ) = ( ) 6 Fo the costat tem, the powe of is Thus we have = ad thus = 4 The the costat tem is ( ) = 5 6 = Page 5 of

6 Eample 4 Pove that + a+ a a a + Solutio The iequality is equivalet to ( + )!! a ( a+ )!( a)! a!( a)! a+ Afte simplificatio, this becomes + ( a)( a + ) Usig the AM-GM iequality, we have + ( a) + ( a+ ) = ( a)( a+ ) ad the oigial iequality is poved Eample 5 Fid the maimum coefficiet i the epasio of ( + 5) without actual epasio Solutio Note that the -th tem i the epasio is ( ) (5) We coside the atio of the ( + ) st tem to the -th tem, ie 5 = To see which coefficiet is maimum, we oly eed to kow whe the atio is geate tha ad whe it is smalle tha So we set > > = 8 8 Theefoe, the coefficiets icease at fist ad each a maimum whe = 4 So, the maimum coefficiet is = Page 6 of

7 4 Applicatios of the Biomial Theoem The obvious applicatio of the biomial theoem is to help us to epad algebaic epessios easily ad coveietly Othe tha that, the biomial theoem also helps us with simple umeical estimatios We illustate this with a couple of eamples Eample 4 A ma put $ ito a bak at a iteest ate of % pe aum, compouded mothly How much iteest ca he get i 5 moths, coect to the eaest dolla? Solutio Of couse with a calculato i had this will be of o difficulty But without it we ca still estimate the aswe usig the biomial theoem Afte 6 moths, the amout will be 5 () Usig the biomial theoem, 5 5 () = ( + ) = + 5() + () + () + 5() + () 4 5 Sice we oly equie the aswe to be accuate to the eaest dolla, we take oly the fist thee tems ad igoe the est We have 5 () = 5 Thus the amout is appoimately $5 ad the iteest is appoimately $5 Eample 4 Estimate the value of 6 (9) coect to decimal places Solutio Agai with a calculato this will just take a few secods But without it let us ty to epad We have ( + + ) 6 = [ + ( + ) ] 6 Puttig =, we get ( ) = + 6 ( + ) + 5 ( + ) + ( + ) + = (9) Page 7 of

8 5 Techiques fo Dealig with Biomial oefficiets Although we defied the biomial coefficiets as coefficiets i the biomial epasio of ( + ), we have emaked that these coefficiets have a vey ice combiatoial itepetatio ad the coefficiets themselves have may ice popeties I this sectio we shall demostate vaious techiques i wokig with biomial coefficiets I Sectio, we woked out a eplicit fomula fo the biomial coefficiets by diffeetiatio ad substitutio of the vaiable by cetai umbes It tus out that these ae impotat techiques that ca help us to deive othe popeties coceig the biomial coefficiets as well Recall that, accodig to ou defiitio, By puttig =, we get Similaly, by puttig =, we get ( + ) = = () ( ) = + + Addig ad subtactig these two equalities espectively ad dividig by, we get = = Now itegatig () (we use defiite itegal hee so that we ca get id of the costat of itegatio), we have Puttig =, we have ( + ) = ( ) d d + + ( + ) = = Itegatig oce moe, we have + ( + ) = ( + )( + ) + 4 ( + )( + ) 4 + Page 8 of

9 Puttig = agai, we see that = ( ) ( )( ) m m Now coside the idetity ( + ) ( + ) ( + ) + We shall compae the coefficiet of (assumig m ) o both sides O the left had side, we have ( )( ) m m m m ( + ) ( + ) = so that the coefficiet of is m m m m O the ight had side, the coefficiet of is simply m+ So we have the equality = + () m m m m m m m m Note that the idetity + + = (which we stated i Sectio without poof) ca be obtaied usig the above method by settig = It ca also be poved by applyig the fomula fo biomial coefficiets diectly, ad we leave it as a eecise Now settig = m= i (), we have = Sice =, this ca also be epessed as ( ) ( ) ( ) ( ) = So fa we have see some idetities ivolvig the biomial coefficiets We iclude below a few moe eamples which establish futhe popeties usig these idetities Eample 5 Let ad be iteges with Fid = Hece fid = Solutio We have Page 9 of

10 ! =!( )! = = = (! ) ( ) ( ) = =!! (! ) ( ) ( ( )) = =!! = = O the othe had, ( ) = = = = = = + ( ) = = = + = = (( ) ) = + ( ) = + Eample 5 Let a, b, be iteges such that a b Usig the idetity a + b a b a b a b = + + +, pove that a b ( a+ b ) a b Solutio By the auchy-schwaz iequality, we have a+ b a b a b a b ( ) = ( ) a a a b b b ( ) + ( ) + + ( ) ( ) + ( ) + + ( ) a a a b b b ( ) ( ) ( a ) ( ) ( ) ( b ) = a b a b Page of

11 Eample 5 Let ad be iteges with Pove that = Solutio Usig the idetity = + epeatedly, we have + + = = = = + = = The Biomial Theoem fo Negative ad No-Itegal Idices So fa we have bee cosideig the biomial theoem i cases whee the powe of the epasio is a o-egative itege I this sectio we biefly teat the cases whee the powe is a egative itege o a abitay eal umbe To begi ou discussio we fist eted the defiitio of the biomial coefficiets to cases whee the uppe ide is ot ecessaily a o-egative itege Defiitio 6 (Biomial coefficiet) Fo abitay eal umbe ad positive itege, we defie = ad ( ) ( ) ( + ) =! Note that this is the same fomula as we deived i Sectio We simply eted it to cases whee is ot ecessaily a o-egative itege To eted the biomial theoem to egative ad o-itegal idices, ecall that Page of

12 ( + ) = = Sice = whe > (eecise), this ca be witte as ( + ) = Whe is ot a o-egative itege, the above fomula gives a ifiite seies fo the epasio of ( + ) It ca be poved that the seies coveges fo < ad it ideed coveges to the epessio o the left had side = Fo istace, whe =, we have ( ) + = + + We kow that the (geometic) seies o the ight coveges wheeve <, ad the fomula o the left epesets the sum to ifiity 7 Eecises Epad the followig usig the biomial theoem (a) 4 ( ) (b) 6 Fid the coefficiet of i the epasio of (a) ( ) ( ) 4 + (b) 4 Pove that the costat tem i the epasio of multiple of 5, ad the costat tem is eve egative 4 is o-zeo if ad oly if is a a b 4 Fid all positive iteges a, b so that i the epessio ( + ) + ( + ), the coefficiets of ad ae equal Page of

13 5 Let ad be iteges, < Show that = 6 Pove that fo all positive iteges, ( ) = + 7 Eplai equatio () i Sectio 5 usig the combiatoial itepetatio of the biomial coefficiets 8 Pove the idetity + = + by usig the fomula fo the biomial coefficiets diectly m m m 9 Re-do Eample 5 by diffeetiatig equatio () i Sectio Fid the sum (Hit: oside a pimitive cube oot of uity, ie a comple umbe ω fo which ω ω + + = ad ω ) Let,, k be iteges such that k (a) Pove that k k k = (b) Give a combiatoial itepetatio of the equality i (a) The sequece of atala umbes,,, 5, 4, 4, is give by the fomula = =,,, + ( ) Pove that = fo all positive iteges + Let be a fied positive itege Fid, i tems of, the umbe of -digit positive iteges with the followig two popeties: (a) Each digit is eithe, o (b) The umbe of s is eve Page of

Understanding Financial Management: A Practical Guide Guideline Answers to the Concept Check Questions

Understanding Financial Management: A Practical Guide Guideline Answers to the Concept Check Questions Udestadig Fiacial Maagemet: A Pactical Guide Guidelie Aswes to the Cocept Check Questios Chapte 4 The Time Value of Moey Cocept Check 4.. What is the meaig of the tems isk-etu tadeoff ad time value of

More information

The dinner table problem: the rectangular case

The dinner table problem: the rectangular case The ie table poblem: the ectagula case axiv:math/009v [mathco] Jul 00 Itouctio Robeto Tauaso Dipatimeto i Matematica Uivesità i Roma To Vegata 00 Roma, Italy tauaso@matuiomait Decembe, 0 Assume that people

More information

Periodic Review Probabilistic Multi-Item Inventory System with Zero Lead Time under Constraints and Varying Order Cost

Periodic Review Probabilistic Multi-Item Inventory System with Zero Lead Time under Constraints and Varying Order Cost Ameica Joual of Applied Scieces (8: 3-7, 005 ISS 546-939 005 Sciece Publicatios Peiodic Review Pobabilistic Multi-Item Ivetoy System with Zeo Lead Time ude Costaits ad Vayig Ode Cost Hala A. Fegay Lectue

More information

Money Math for Teens. Introduction to Earning Interest: 11th and 12th Grades Version

Money Math for Teens. Introduction to Earning Interest: 11th and 12th Grades Version Moey Math fo Tees Itoductio to Eaig Iteest: 11th ad 12th Gades Vesio This Moey Math fo Tees lesso is pat of a seies ceated by Geeatio Moey, a multimedia fiacial liteacy iitiative of the FINRA Ivesto Educatio

More information

Annuities and loan. repayments. Syllabus reference Financial mathematics 5 Annuities and loan. repayments

Annuities and loan. repayments. Syllabus reference Financial mathematics 5 Annuities and loan. repayments 8 8A Futue value of a auity 8B Peset value of a auity 8C Futue ad peset value tables 8D Loa epaymets Auities ad loa epaymets Syllabus efeece Fiacial mathematics 5 Auities ad loa epaymets Supeauatio (othewise

More information

Two degree of freedom systems. Equations of motion for forced vibration Free vibration analysis of an undamped system

Two degree of freedom systems. Equations of motion for forced vibration Free vibration analysis of an undamped system wo degee of feedom systems Equatios of motio fo foced vibatio Fee vibatio aalysis of a udamped system Itoductio Systems that equie two idepedet d coodiates to descibe thei motio ae called two degee of

More information

Learning Objectives. Chapter 2 Pricing of Bonds. Future Value (FV)

Learning Objectives. Chapter 2 Pricing of Bonds. Future Value (FV) Leaig Objectives Chapte 2 Picig of Bods time value of moey Calculate the pice of a bod estimate the expected cash flows detemie the yield to discout Bod pice chages evesely with the yield 2-1 2-2 Leaig

More information

Skills Needed for Success in Calculus 1

Skills Needed for Success in Calculus 1 Skills Needed fo Success in Calculus Thee is much appehension fom students taking Calculus. It seems that fo man people, "Calculus" is snonmous with "difficult." Howeve, an teache of Calculus will tell

More information

Infinite Sequences and Series

Infinite Sequences and Series CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

More information

Derivation of Annuity and Perpetuity Formulae. A. Present Value of an Annuity (Deferred Payment or Ordinary Annuity)

Derivation of Annuity and Perpetuity Formulae. A. Present Value of an Annuity (Deferred Payment or Ordinary Annuity) Aity Deivatios 4/4/ Deivatio of Aity ad Pepetity Fomlae A. Peset Vale of a Aity (Defeed Paymet o Odiay Aity 3 4 We have i the show i the lecte otes ad i ompodi ad Discoti that the peset vale of a set of

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

Finance Practice Problems

Finance Practice Problems Iteest Fiace Pactice Poblems Iteest is the cost of boowig moey. A iteest ate is the cost stated as a pecet of the amout boowed pe peiod of time, usually oe yea. The pevailig maket ate is composed of: 1.

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

5.3. Generalized Permutations and Combinations

5.3. Generalized Permutations and Combinations 53 GENERALIZED PERMUTATIONS AND COMBINATIONS 73 53 Geeralized Permutatios ad Combiatios 53 Permutatios with Repeated Elemets Assume that we have a alphabet with letters ad we wat to write all possible

More information

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem Lecture 4: Cauchy sequeces, Bolzao-Weierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits

More information

BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients

BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients 652 (12-26) Chapter 12 Sequeces ad Series 12.5 BINOMIAL EXPANSIONS I this sectio Some Examples Otaiig the Coefficiets The Biomial Theorem I Chapter 5 you leared how to square a iomial. I this sectio you

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

Section 8.3 : De Moivre s Theorem and Applications

Section 8.3 : De Moivre s Theorem and Applications The Sectio 8 : De Moivre s Theorem ad Applicatios Let z 1 ad z be complex umbers, where z 1 = r 1, z = r, arg(z 1 ) = θ 1, arg(z ) = θ z 1 = r 1 (cos θ 1 + i si θ 1 ) z = r (cos θ + i si θ ) ad z 1 z =

More information

Incremental calculation of weighted mean and variance

Incremental calculation of weighted mean and variance Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

1. MATHEMATICAL INDUCTION

1. MATHEMATICAL INDUCTION 1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1

More information

Paper SD-07. Key words: upper tolerance limit, macros, order statistics, sample size, confidence, coverage, binomial

Paper SD-07. Key words: upper tolerance limit, macros, order statistics, sample size, confidence, coverage, binomial SESUG 212 Pae SD-7 Samle Size Detemiatio fo a Noaametic Ue Toleace Limit fo ay Ode Statistic D. Deis Beal, Sciece Alicatios Iteatioal Cooatio, Oak Ridge, Teessee ABSTRACT A oaametic ue toleace limit (UTL)

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

More information

The Binomial Distribution

The Binomial Distribution The Binomial Distibution A. It would be vey tedious if, evey time we had a slightly diffeent poblem, we had to detemine the pobability distibutions fom scatch. Luckily, thee ae enough similaities between

More information

ANNUITIES SOFTWARE ASSIGNMENT TABLE OF CONTENTS... 1 ANNUITIES SOFTWARE ASSIGNMENT... 2 WHAT IS AN ANNUITY?... 2 EXAMPLE 1... 2 QUESTIONS...

ANNUITIES SOFTWARE ASSIGNMENT TABLE OF CONTENTS... 1 ANNUITIES SOFTWARE ASSIGNMENT... 2 WHAT IS AN ANNUITY?... 2 EXAMPLE 1... 2 QUESTIONS... ANNUITIES SOFTWARE ASSIGNMENT TABLE OF CONTENTS ANNUITIES SOFTWARE ASSIGNMENT TABLE OF CONTENTS... 1 ANNUITIES SOFTWARE ASSIGNMENT... WHAT IS AN ANNUITY?... EXAMPLE 1... QUESTIONS... EXAMPLE BRANDON S

More information

CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homework 4 Solutions CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

More information

Solving Logarithms and Exponential Equations

Solving Logarithms and Exponential Equations Solvig Logarithms ad Epoetial Equatios Logarithmic Equatios There are two major ideas required whe solvig Logarithmic Equatios. The first is the Defiitio of a Logarithm. You may recall from a earlier topic:

More information

SEQUENCES AND SERIES

SEQUENCES AND SERIES Chapter 9 SEQUENCES AND SERIES Natural umbers are the product of huma spirit. DEDEKIND 9.1 Itroductio I mathematics, the word, sequece is used i much the same way as it is i ordiary Eglish. Whe we say

More information

Factors of sums of powers of binomial coefficients

Factors of sums of powers of binomial coefficients ACTA ARITHMETICA LXXXVI.1 (1998) Factors of sums of powers of biomial coefficiets by Neil J. Cali (Clemso, S.C.) Dedicated to the memory of Paul Erdős 1. Itroductio. It is well ow that if ( ) a f,a = the

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

THE PRINCIPLE OF THE ACTIVE JMC SCATTERER. Seppo Uosukainen

THE PRINCIPLE OF THE ACTIVE JMC SCATTERER. Seppo Uosukainen THE PRINCIPLE OF THE ACTIVE JC SCATTERER Seppo Uoukaie VTT Buildig ad Tapot Ai Hadlig Techology ad Acoutic P. O. Bo 1803, FIN 02044 VTT, Filad Seppo.Uoukaie@vtt.fi ABSTRACT The piciple of fomulatig the

More information

Sequences and Series

Sequences and Series CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

More information

How To Solve The Homewor Problem Beautifully

How To Solve The Homewor Problem Beautifully Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log

More information

UNIT CIRCLE TRIGONOMETRY

UNIT CIRCLE TRIGONOMETRY UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + = - - -

More information

Symmetric polynomials and partitions Eugene Mukhin

Symmetric polynomials and partitions Eugene Mukhin Symmetic polynomials and patitions Eugene Mukhin. Symmetic polynomials.. Definition. We will conside polynomials in n vaiables x,..., x n and use the shotcut p(x) instead of p(x,..., x n ). A pemutation

More information

Asymptotic Growth of Functions

Asymptotic Growth of Functions CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

More information

Math 114- Intermediate Algebra Integral Exponents & Fractional Exponents (10 )

Math 114- Intermediate Algebra Integral Exponents & Fractional Exponents (10 ) Math 4 Math 4- Itermediate Algebra Itegral Epoets & Fractioal Epoets (0 ) Epoetial Fuctios Epoetial Fuctios ad Graphs I. Epoetial Fuctios The fuctio f ( ) a, where is a real umber, a 0, ad a, is called

More information

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

More information

A probabilistic proof of a binomial identity

A probabilistic proof of a binomial identity A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two

More information

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if

More information

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction THE ARITHMETIC OF INTEGERS - multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,

More information

An Introduction to Omega

An Introduction to Omega An Intoduction to Omega Con Keating and William F. Shadwick These distibutions have the same mean and vaiance. Ae you indiffeent to thei isk-ewad chaacteistics? The Finance Development Cente 2002 1 Fom

More information

GCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4

GCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4 GCE Further Mathematics (660) Further Pure Uit (MFP) Tetbook Versio: 4 MFP Tetbook A-level Further Mathematics 660 Further Pure : Cotets Chapter : Comple umbers 4 Itroductio 5 The geeral comple umber 5

More information

EGYPTIAN FRACTION EXPANSIONS FOR RATIONAL NUMBERS BETWEEN 0 AND 1 OBTAINED WITH ENGEL SERIES

EGYPTIAN FRACTION EXPANSIONS FOR RATIONAL NUMBERS BETWEEN 0 AND 1 OBTAINED WITH ENGEL SERIES EGYPTIAN FRACTION EXPANSIONS FOR RATIONAL NUMBERS BETWEEN 0 AND OBTAINED WITH ENGEL SERIES ELVIA NIDIA GONZÁLEZ AND JULIA BERGNER, PHD DEPARTMENT OF MATHEMATICS Abstract. The aciet Egyptias epressed ratioal

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

Section 11.3: The Integral Test

Section 11.3: The Integral Test Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

More information

1 Computing the Standard Deviation of Sample Means

1 Computing the Standard Deviation of Sample Means Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.

More information

2. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES

2. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES . TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES In ode to etend the definitions of the si tigonometic functions to geneal angles, we shall make use of the following ideas: In a Catesian coodinate sstem, an

More information

Basic Elements of Arithmetic Sequences and Series

Basic Elements of Arithmetic Sequences and Series MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

More information

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is 0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

Class Meeting # 16: The Fourier Transform on R n

Class Meeting # 16: The Fourier Transform on R n MATH 18.152 COUSE NOTES - CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,

More information

Department of Computer Science, University of Otago

Department of Computer Science, University of Otago Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

More information

Network Theorems - J. R. Lucas. Z(jω) = jω L

Network Theorems - J. R. Lucas. Z(jω) = jω L Netwo Theoems - J.. Lucas The fudametal laws that gove electic cicuits ae the Ohm s Law ad the Kichoff s Laws. Ohm s Law Ohm s Law states that the voltage vt acoss a esisto is diectly ootioal to the cuet

More information

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series 8 Fourier Series Our aim is to show that uder reasoable assumptios a give -periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series

More information

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern. 5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers

More information

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009) 18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the Bru-Mikowski iequality for boxes. Today we ll go over the

More information

Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value

Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value Cocept 9: Preset Value Is the value of a dollar received today the same as received a year from today? A dollar today is worth more tha a dollar tomorrow because of iflatio, opportuity cost, ad risk Brigig

More information

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses, 3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects

More information

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Cosider a legth- sequece x[ with a -poit DFT X[ where Represet the idices ad as +, +, Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Usig these

More information

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad

More information

SEQUENCES AND SERIES CHAPTER

SEQUENCES AND SERIES CHAPTER CHAPTER SEQUENCES AND SERIES Whe the Grat family purchased a computer for $,200 o a istallmet pla, they agreed to pay $00 each moth util the cost of the computer plus iterest had bee paid The iterest each

More information

Negotiation Programs

Negotiation Programs Negotiatio Pogams Javie Espaza 1 ad Jög Desel 2 1 Fakultät fü Ifomatik, Techische Uivesität Müche, Gemay espaza@tum.de 2 Fakultät fü Mathematik ud Ifomatik, FeUivesität i Hage, Gemay joeg.desel@feui-hage.de

More information

Notes on Power System Load Flow Analysis using an Excel Workbook

Notes on Power System Load Flow Analysis using an Excel Workbook Notes o owe System Load Flow Aalysis usig a Excel Woboo Abstact These otes descibe the featues of a MS-Excel Woboo which illustates fou methods of powe system load flow aalysis. Iteative techiques ae epeseted

More information

THE LEAST COMMON MULTIPLE OF A QUADRATIC SEQUENCE

THE LEAST COMMON MULTIPLE OF A QUADRATIC SEQUENCE THE LEAST COMMON MULTIPLE OF A QUADRATIC SEQUENCE JAVIER CILLERUELO Abstract. We obtai, for ay irreducible quadratic olyomial f(x = ax 2 + bx + c, the asymtotic estimate log l.c.m. {f(1,..., f(} log. Whe

More information

A Recursive Formula for Moments of a Binomial Distribution

A Recursive Formula for Moments of a Binomial Distribution A Recursive Formula for Momets of a Biomial Distributio Árpád Béyi beyi@mathumassedu, Uiversity of Massachusetts, Amherst, MA 01003 ad Saverio M Maago smmaago@psavymil Naval Postgraduate School, Moterey,

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

OPTIMALLY EFFICIENT MULTI AUTHORITY SECRET BALLOT E-ELECTION SCHEME

OPTIMALLY EFFICIENT MULTI AUTHORITY SECRET BALLOT E-ELECTION SCHEME OPTIMALLY EFFICIENT MULTI AUTHORITY SECRET BALLOT E-ELECTION SCHEME G. Aja Babu, 2 D. M. Padmavathamma Lectue i Compute Sciece, S.V. Ats College fo Me, Tiupati, Idia 2 Head, Depatmet of Compute Applicatio.

More information

Valuation of Floating Rate Bonds 1

Valuation of Floating Rate Bonds 1 Valuation of Floating Rate onds 1 Joge uz Lopez us 316: Deivative Secuities his note explains how to value plain vanilla floating ate bonds. he pupose of this note is to link the concepts that you leaned

More information

Solutions to Exercises Chapter 4: Recurrence relations and generating functions

Solutions to Exercises Chapter 4: Recurrence relations and generating functions Solutios to Exercises Chapter 4: Recurrece relatios ad geeratig fuctios 1 (a) There are seatig positios arraged i a lie. Prove that the umber of ways of choosig a subset of these positios, with o two chose

More information

Coordinate Systems L. M. Kalnins, March 2009

Coordinate Systems L. M. Kalnins, March 2009 Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean

More information

CHAPTER 10 Aggregate Demand I

CHAPTER 10 Aggregate Demand I CHAPTR 10 Aggegate Demand I Questions fo Review 1. The Keynesian coss tells us that fiscal policy has a multiplied effect on income. The eason is that accoding to the consumption function, highe income

More information

THE DINNER TABLE PROBLEM: THE RECTANGULAR CASE. Roberto Tauraso Dipartimento di Matematica, Università di Roma Tor Vergata, 00133 Roma, Italy

THE DINNER TABLE PROBLEM: THE RECTANGULAR CASE. Roberto Tauraso Dipartimento di Matematica, Università di Roma Tor Vergata, 00133 Roma, Italy INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 006, #A THE DINNER TABLE PROBLEM: THE RECTANGULAR CASE Robeto Tauaso Dipatimeto di Matematia, Uivesità di Roma To Vegata, 00 Roma, Italy tauaso@matuiomait

More information

Episode 401: Newton s law of universal gravitation

Episode 401: Newton s law of universal gravitation Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce

More information

Listing terms of a finite sequence List all of the terms of each finite sequence. a) a n n 2 for 1 n 5 1 b) a n for 1 n 4 n 2

Listing terms of a finite sequence List all of the terms of each finite sequence. a) a n n 2 for 1 n 5 1 b) a n for 1 n 4 n 2 74 (4 ) Chapter 4 Sequeces ad Series 4. SEQUENCES I this sectio Defiitio Fidig a Formula for the th Term The word sequece is a familiar word. We may speak of a sequece of evets or say that somethig is

More information

Chapter 5: Inner Product Spaces

Chapter 5: Inner Product Spaces Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples

More information

Solutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork

Solutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork Solutios to Selected Problems I: Patter Classificatio by Duda, Hart, Stork Joh L. Weatherwax February 4, 008 Problem Solutios Chapter Bayesia Decisio Theory Problem radomized rules Part a: Let Rx be the

More information

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS

More information

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample

More information

The Stable Marriage Problem

The Stable Marriage Problem The Stable Marriage Problem William Hut Lae Departmet of Computer Sciece ad Electrical Egieerig, West Virgiia Uiversity, Morgatow, WV William.Hut@mail.wvu.edu 1 Itroductio Imagie you are a matchmaker,

More information

STUDENT RESPONSE TO ANNUITY FORMULA DERIVATION

STUDENT RESPONSE TO ANNUITY FORMULA DERIVATION Page 1 STUDENT RESPONSE TO ANNUITY FORMULA DERIVATION C. Alan Blaylock, Hendeson State Univesity ABSTRACT This pape pesents an intuitive appoach to deiving annuity fomulas fo classoom use and attempts

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may

More information

Long-Term Trend Analysis of Online Trading --A Stochastic Order Switching Model

Long-Term Trend Analysis of Online Trading --A Stochastic Order Switching Model Asia Pacific Maagemet Review (24) 9(5), 893-924 Log-Tem Ted Aalysis of Olie Tadig --A Stochastic Ode Switchig Model Shalig Li * ad Zili Ouyag ** Abstact Olie bokeages ae eplacig bokes ad telephoes with

More information

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This

More information

Breakeven Holding Periods for Tax Advantaged Savings Accounts with Early Withdrawal Penalties

Breakeven Holding Periods for Tax Advantaged Savings Accounts with Early Withdrawal Penalties Beakeve Holdig Peiods fo Tax Advataged Savigs Accouts with Ealy Withdawal Pealties Stephe M. Hoa Depatmet of Fiace St. Boavetue Uivesity St. Boavetue, New Yok 4778 Phoe: 76-375-209 Fax: 76-375-29 e-mail:

More information

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360!

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360! 1. What ae angles? Last time, we looked at how the Geeks intepeted measument of lengths. Howeve, as fascinated as they wee with geomety, thee was a shape that was much moe enticing than any othe : the

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level A1 of challege: C A1 Mathematical goals Startig poits Materials required Time eeded Iterpretig algebraic expressios To help learers to: traslate betwee words, symbols, tables, ad area represetatios

More information

Lecture 4: Cheeger s Inequality

Lecture 4: Cheeger s Inequality Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a d-regular

More information

The LCOE is defined as the energy price ($ per unit of energy output) for which the Net Present Value of the investment is zero.

The LCOE is defined as the energy price ($ per unit of energy output) for which the Net Present Value of the investment is zero. Poject Decision Metics: Levelized Cost of Enegy (LCOE) Let s etun to ou wind powe and natual gas powe plant example fom ealie in this lesson. Suppose that both powe plants wee selling electicity into the

More information

Normal Distribution.

Normal Distribution. Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued

More information

Chapter 7 Methods of Finding Estimators

Chapter 7 Methods of Finding Estimators Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

More information

Notes on exponential generating functions and structures.

Notes on exponential generating functions and structures. Notes o expoetial geeratig fuctios ad structures. 1. The cocept of a structure. Cosider the followig coutig problems: (1) to fid for each the umber of partitios of a -elemet set, (2) to fid for each the

More information

On the Optimality and Interconnection of Valiant Load-Balancing Networks

On the Optimality and Interconnection of Valiant Load-Balancing Networks O the Optimality ad Itecoectio of Valiat Load-Balacig Netwoks Moshe Babaioff ad Joh Chuag School of Ifomatio Uivesity of Califoia at Bekeley Bekeley, Califoia 94720 4600 {moshe,chuag}@sims.bekeley.edu

More information

3. Greatest Common Divisor - Least Common Multiple

3. Greatest Common Divisor - Least Common Multiple 3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd

More information

Theorems About Power Series

Theorems About Power Series Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius

More information

INFINITE SERIES KEITH CONRAD

INFINITE SERIES KEITH CONRAD INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal

More information

Time Value of Money. First some technical stuff. HP10B II users

Time Value of Money. First some technical stuff. HP10B II users Time Value of Moey Basis for the course Power of compoud iterest $3,600 each year ito a 401(k) pla yields $2,390,000 i 40 years First some techical stuff You will use your fiacial calculator i every sigle

More information

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee

More information

Math 113 HW #11 Solutions

Math 113 HW #11 Solutions Math 3 HW # Solutios 5. 4. (a) Estimate the area uder the graph of f(x) = x from x = to x = 4 usig four approximatig rectagles ad right edpoits. Sketch the graph ad the rectagles. Is your estimate a uderestimate

More information