# Activity P13: Buoyant Force (Force Sensor)

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Name Class Date Activity P13: Buoyant Force (Force Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Archimedes Principle P13 Buoyant Force.DS P18 Buoyant Force P18_BUOY.SWS Equipment Needed Qty Equipment Needed Qty Economy Force Sensor (CI-6746) 1 Mass and Hanger Set (ME-9348) 1 Base and Support Rod (ME-9355) 1 Ruler, metric 1 Beaker, 1000 ml 1 String (SE-8050) 1 m Calipers (SF-8711) 1 Support rod (ME-8736) 1 Clamp, right-angle (SE-9444) 1 Cylinder, w/ hook (from ME-8569) 1 Other Qty Graduated cylinder 1 Water 800 ml Lab Jack (SE-9373) 1 Vegetable oil (optional) 800 ml What Do You Think? Why is it easy to float in the ocean? In which would you feel a stronger buoyant force: a swimming pool filled with oil or with syrup? Take time to answer the What Do You Think? question(s) in the Lab Report section. Background Archimedes Principle states that the buoyant upward force on an object entirely or partially submerged in a fluid is equal to the weight of the fluid displaced by the object. F b m f g f Vg where f is the density of the fluid, V is the submerged volume of the object, and g is the acceleration due to gravity. The submerged volume is equal to the cross-sectional area, A, multiplied by the submerged height, h. So the buoyant force can be written as: F b f ( Ah)g If the object is lowered into the fluid while the buoyant force is measured, the slope of the graph of F b versus h is proportional to the density of the fluid. SAFETY REMINDER Follow the directions for using the equipment. P PASCO scientific p. 83

2 Physics Labs with Computers, Vol. 1 Student Workbook P13: Buoyant Force A For You To Do Use the Force Sensor to measure the force on an object as it is lowered into water. Use Keyboard Sampling to enter the depth values. Use DataStudio or ScienceWorkshop to plot the force versus submerged depth to obtain the density of the fluid. PART I: Computer Setup 1. Connect the ScienceWorkshop interface to the computer, turn on the interface, and turn on the computer. 2. Connect the DIN plug of the Force Sensor to Analog Channel A. 3. Open the document titled as shown: DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) P13 Buoyant Force.DS P18 Buoyant Force P18_BUOY.SWS The DataStudio document has a Workbook display. Read the instructions in the Workbook. The ScienceWorkshop document has a Graph display with Force versus Depth. Data recording is set for 1 Hz. Keyboard Sampling allows the user to enter the submerged depth in meters. PART II: Sensor Calibration and Equipment Setup To calibrate the Force Sensor, refer to the description in the Force Sensor Manual. 1. Mount the Force Sensor on a horizontal rod with the hook end down. 2. Using the calipers, measure the diameter of the metal cylinder. From the diameter, calculate the radius and the cross-section area. Record the cross-section area in the Data Table in the Lab Report section. Recall: A R 2 3. Hang the metal cylinder from the Force Sensor hook with a string. 4. Put about 800 ml of water into the beaker and place the beaker on the lab jack below the hanging cylinder. The bottom of the cylinder should be touching the water. 5. Position the metric ruler next to the edge of the lab jack. Note the initial height of the top of the lab jack. p PASCO scientific P13

3 Name Class Date PART III: Data Recording Before recording data for later analysis, you may wish to practice using keyboard sampling to collect data. 1. With the cylinder attached to the Force Sensor hook, press the tare button on the Force Sensor to zero the sensor. 2. Record Force vs. Depth data as you submerge the cylinder. In DataStudio, move the Table display so you can see it clearly. Click on the Start button to start recording data. The Start button changes to a Keep and a Stop button ( ). The Force will appear in the first cell in the Table display. Click the Keep button to record the force value. Immerse the cylinder 5 millimeters (5 mm or m) by raising the beaker of water 5 mm with the lab jack. Use the metric ruler to measure the distance that you raise the lab jack. Click the Keep button to record the next Force value at the depth of m. Increase the depth of submersion by increments of 5 mm. After each increase in the submersion, wait for the force reading in the display to stabilize, then click the Keep button to record a Force value at the appropriate depth. Repeat the data recording procedure until the top of the cylinder is submerged. Stop data recording by clicking on the Stop button. Run #1 will appear in the Summary window. In ScienceWorkshop, click the REC button to begin collecting data. The Keyboard Sampling window will open. Move it so you can also see the Digits display. The default value for Entry #1 is Because the cylinder is not submerged, type in 0 as the depth. Click Enter to record the depth and force values. The entered depth value will appear in the Data list. Immerse the cylinder 5 millimeters (5 mm or m) by raising the beaker of water 5 mm with the lab jack. Use the metric ruler to measure the distance that you raise the lab jack. For Entry #2, type in (5 millimeters). Click Enter to record the depth and force values. Increase the depth of submersion by increments of 5 mm. After each increase in the submersion, wait for the force reading in the Digits display to stabilize, then click the Enter button to record a Force value at the appropriate depth. Repeat the data recording procedure until the top of the cylinder is submerged. Stop data recording by clicking the Stop Sampling button in the Keyboard Sampling window. The Keyboard Sampling window will disappear. Run #1 will appear in the Data List in the Experiment Setup window. P PASCO scientific p. 85

4 Physics Labs with Computers, Vol. 1 Student Workbook P13: Buoyant Force A Analyzing the Data 1. Determine the slope of the Force vs. Depth Graph. In DataStudio, click the Scale to Fit button ( ) to rescale the Graph axes to fit the data. Next, click the Fit menu button ( ). Select Linear. In ScienceWorkshop, click the Autoscale button ( ) to rescale the Graph axes to fit the data. Click the Statistics button to open the Statistics area on the right side of the Graph. In the Statistics area, click the Statistics Menu button ( Fit from the Statistics Menu. ). Select Curve Fit, Linear 2. Record the slope of the linear fit in the Data Table in the Lab Report section. 3. Calculate the density of water by setting the slope equal to Ag and solving for. Record the value for the density in the Data Table in the Lab Report section. 4. Compare the calculated value to the accepted value by calculating the percent difference. Record your results in the Lab Report section. p PASCO scientific P13

5 Name Class Date Lab Report - Activity P13: Buoyant Force What Do You Think? Why is it easy to float in the ocean? In which would you feel a stronger buoyant force: a swimming pool filled with oil or with syrup? Data Table Item Area of Cylinder Value Slope (from graph) Density of water (calculated) Density of water (accepted) Questions 1. How does your experimental value compare to the accepted value for the density of water? What is the percent difference? 2. Why was the Force Sensor zeroed after the cylinder was attached to the hook? P PASCO scientific p. 87

6 Physics Labs with Computers, Vol. 1 Student Workbook P13: Buoyant Force A Optional Substitute vegetable oil for the water in the beaker and repeat the experiment. Compare the result for the density of oil to a value calculated by weighing a known volume of oil. Data Table Item Area of Cylinder Value Optional Questions Slope (from graph) Density of oil (from slope) Mass of beaker Mass of beaker and oil Volume of oil Density of oil (mass/volume) 1. How does the experimental value for the density of oil compare to the value determined by the mass/volume method? What is the percent difference? 2. Is vegetable oil less, more, or equally as dense as water? p PASCO scientific P13

### Activity P13: Buoyant Force (Force Sensor)

July 21 Buoyant Force 1 Activity P13: Buoyant Force (Force Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Archimedes Principle P13 Buoyant Force.DS P18 Buoyant Force P18_BUOY.SWS

### Activity P13: Buoyant Force (Force Sensor)

Activity P13: Buoyant Force (Force Sensor) Equipment Needed Qty Equipment Needed Qty Economy Force Sensor (CI-6746) 1 Mass and Hanger Set (ME-9348) 1 Base and Support Rod (ME-9355) 1 Ruler, metric 1 Beaker,

### Activity P31: Magnetic Field of a Permanent Magnet (Magnetic Field Sensor)

Name Class Date Activity P31: Magnetic Field of a Permanent Magnet (Magnetic Field Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Magnetism P31 Permanent Magnet.DS P51 Permanent

### Archimedes Principle

rev 12/2016 Archimedes Principle Equipment Qty Item Parts Number 1 Force Sensor, Economy CI-6746 1 Lab Jack SE-9373 1 Beaker SE-7288 1 250 ml Graduated Cylinder 1 Large Rod ME-8738 1 Small Rod ME-8988

### Archimedes' Principle

Archimedes' Principle Introduction Archimedes' Principle states that the upward buoyant force exerted on a body immersed in a fluid, whether fully or partially submerged, is equal to the weight of the

### Lab 7: Magnetic Field of a Permanent Magnet (Magnetic Field Sensor)

of a Permanent Magnet (Magnetic Field Sensor) Equipment Needed Qty Equipment Needed Qty Magnetic Field Sensor (CI-6520A) 1 Meter stick, non-metal 1 Magnet*, disk, Neodymium, 1/2 or 3/4 (EM-8648) 1 Small

### Name Class Date. Activity P25: Transforming Gravitational Potential Energy to Kinetic Energy (Rotary Motion Sensor)

Activity P25: Transforming Gravitational Potential Energy to Kinetic Energy (Rotary Motion Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Energy P25 GPE to KE.DS (See end of activity)

### Experiment P19: Simple Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor)

PASCO scientific Physics Lab Manual: P19-1 Science Workshop S. H. M. Mass on a Spring Experiment P19: Simple Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor) Concept Time SW Interface Macintosh

### where m is the mass of the water, c is the specific heat of water (1 cal/g C), and T is the change in temperature of the water.

Activity P47: Electrical Equivalent of Heat (Voltage Sensor and Power Amplifier) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Energy P47 EEH.DS P39 EEH P39_EEH.SWS Equipment Needed Qty

### Experiment P007: Acceleration due to Gravity (Free Fall Adapter)

Experiment P007: Acceleration due to Gravity (Free Fall Adapter) EQUIPMENT NEEDED Science Workshop Interface Clamp, right angle Base and support rod Free fall adapter Balls, 13 mm and 19 mm Meter stick

### Physics Labs with Computers, Vol. 2 P38: Conservation of Linear Momentum 012-07001A

Name Class Date Activity P38: Conservation of Linear Momentum (Motion Sensors) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Newton s Laws P38 Linear Momentum.DS P16 Cons. of Momentum

### Activity P35: Light Intensity in Double-Slit and Single-Slit Diffraction Patterns (Light Sensor, Rotary Motion Sensor)

Activity P35: Light Intensity in Double-Slit and Single-Slit Diffraction Patterns (Light Sensor, Rotary Motion Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Interference P35 Diffraction.ds

### ( t) = gt. y( t) = 1 2 gt 2

Name Date Acceleration of a Freely Falling Picket Fence Equipment Needed Qty Equipment Needed Qty Smart Pulley System (ME-6838) 1 Universal Table Clamp (ME-9376) 1 Picket Fence (ME-9377A) 1 What Do You

### Experiment P51: Magnetic Field of a Permanent Magnet (Magnetic Field Sensor)

PASCO scientific Vol. 2 Physics Lab Manual: P51-1 Experiment P51: Magnetic Field of a Permanent Magnet (Magnetic Field Sensor) Concept Time SW Interface Macintosh File Windows File magnetism 30 m 300/500/700

### Acceleration of a Cart on an Inclined Plane. What happens to the acceleration of a cart as it moves up and down an inclined plane?

Name Date Acceleration of a Cart on an Inclined Plane Equipment Needed Qty Equipment Needed Qty Photogate and Bracket 1 Dynamics Cart (inc. w/ Track) 1 Bumper 1 Ruler 1 Base and Support Rod 1 1.2 m Track

### Teacher s Guide Physics Labs with Computers, Vol C P52: LRC Circuit. Teacher s Guide - Activity P52: LRC Circuit (Voltage Sensor)

Teacher s Guide Physics Labs with Computers, Vol. 2 012-06101C P52: LRC Circuit Teacher s Guide - Activity P52: LRC Circuit (Voltage Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win)

### Teacher s Guide - Activity P50: RC Circuit (Power Output, Voltage Sensor)

Teacher s Guide - Activity P50: RC Circuit (Power Output, Voltage Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Circuits P50 RC Circuit.DS (See end of activity) (See end of activity)

### Buoyant Force and Archimedes' Principle

Buoyant Force and Archimedes' Principle Introduction: Buoyant forces keep Supertankers from sinking and party balloons floating. An object that is more dense than a liquid will sink in that liquid. If

### Activity P38: Conservation of Linear Momentum (Motion Sensors)

Name Class Date Activity P38: Conservation of Linear Momentum (Motion Sensors) Equipment Needed Qty Equipment Needed Qty Motion Sensor (CI-6742) 2 Dynamics Cart (w/ Track) 2 Balance (SE-8723) 1 2.2 m Track

### Activity P45: Resonant Modes and the Speed of Sound (Voltage Sensor, Power Output)

Activity P45: Resonant Modes and the Speed of Sound (Voltage Sensor, Power Output) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Waves P45 Speed of Sound 2.DS P36 Speed of Sound P36_MACH.SWS

### Three Methods for Calculating the Buoyant Force Gleue: Physics

Three Methods for Calculating the Buoyant Force Gleue: Physics Name Hr. The Buoyant Force (F b ) is the apparent loss of weight for an object submerged in a fluid. For example if you have an object immersed

### Force. Net Force Mass. Acceleration = Section 1: Weight. Equipment Needed Qty Equipment Needed Qty Force Sensor 1 Mass and Hanger Set 1 Balance 1

Department of Physics and Geology Background orce Physical Science 1421 A force is a vector quantity capable of producing motion or a change in motion. In the SI unit system, the unit of force is the Newton

### Laboratory 11. Fluid Statics, Pressure, and Buoyant Forces

Laboratory 11 Fluid Statics, Pressure, and Buoyant Forces I. Introduction In this exercise we will investigate some properties of non-moving fluids and the forces they exert on objects immersed in them.

### Simple Harmonic Motion

Simple Harmonic Motion 9M Object: Apparatus: To determine the force constant of a spring and then study the harmonic motion of that spring when it is loaded with a mass m. Force sensor, motion sensor,

### Experiment #4 Sugar in Soft Drinks and Fruit Juices. Laboratory Overview CHEM 1361. August 2010

Experiment #4 Sugar in Soft Drinks and Fruit Juices Laboratory Overview CHEM 1361 August 2010 Gary S. Buckley, Ph.D. Department of Physical Sciences Cameron University Learning Objectives Relate density

### Density and Buoyant Force

Density_and_Buoyant_Force_6c.docx Density and Buoyant Force An exploration of the relationships between weight, density, and buoyant force. 1.1 EXPERIMENTAL GOAL 1 OBJECTIVES Students will use Archimedes'

### Buoyancy. Please Circle Your Lab day: M T W T F

Please Circle Your Lab day: M T W T F Name: Project #1: Show that the buoyant force (F B ) equals fluid gv object by first calculating fluid gv object, and then by measuring F B (indirectly) using the

### Specific Heat (Temperature Sensor)

43 Specific Heat (Temperature Sensor) Thermodynamics: Calorimetry; specific heat Equipment List DataStudio file: 43 Specific Heat.ds Qty Items Part Numbers 1 PASCO Interface (for one sensor) 1 Temperature

### Lab 8: Buoyancy and Archimedes Principle

Description Lab 8: Buoyancy and Archimedes Principle In this lab, you will explore the force that displacing a fluid (liquid or gas) will exert on the body displacing the fluid. You will study how the

### Magnetism. ***WARNING: Keep magnets away from computers and any computer disks!***

Magnetism This lab is a series of experiments investigating the properties of the magnetic field. First we will investigate the polarity of magnets and the shape of their field. Then we will explore the

### Archimedes Principle. Biological Systems

Archimedes Principle Introduction Many of the substances we encounter in our every day lives do not have rigid structure or form. Such substances are called fluids and can be divided into two categories:

### Physics 250 Laboratory: Buoyancy

Physics 250 Laboratory: (Fluids) Score: Section #: Name: Name: Name: Lab-Specific Goals: To learn about density and buoyancy through experimenting with these concepts. Equipment List: Graduated cylinder

### Pressure in Fluids. Introduction

Pressure in Fluids Introduction In this laboratory we begin to study another important physical quantity associated with fluids: pressure. For the time being we will concentrate on static pressure: pressure

### Lab 9. Archimedes Principle and Applications. Upon successful completion of this exercise you will have...

Lab 9 Archimedes Principle and Applications Objectives: Upon successful completion of this exercise you will have... 1.... utilized Archimedes principle to determine the density and specific gravity of

### 25ml graduated. dish soap 100ml graduated cylinders. cylinders. Metric ruler with mm divisions. digital scale

You are challenged to get your film canister to float while filled with the most weight you can. The film canisters will not be capped, so if they go under water at all, they will sink. You want to get

### Pressure In A Fluid. GE Define fluid in your own words. 2. Is a liquid a fluid? Is a gas a fluid? Explain your reasoning.

HPP Activity 38v1 Pressure In A Fluid Note that this unit contains the word "fluid" in the title. Let us carry on by examining the relationship between pressure and fluids. Exploration GE 1. 1. Define

### Lab 5: Conservation of Energy

Lab 5: Conservation of Energy Equipment SWS, 1-meter stick, 2-meter stick, heavy duty bench clamp, 90-cm rod, 40-cm rod, 2 double clamps, brass spring, 100-g mass, 500-g mass with 5-cm cardboard square

### LABORATORY 9. Simple Harmonic Motion

LABORATORY 9 Simple Harmonic Motion Purpose In this experiment we will investigate two examples of simple harmonic motion: the mass-spring system and the simple pendulum. For the mass-spring system we

### PHYS-2212 LAB Ohm s Law and Measurement of Resistance

Objectives PHYS-2212 LAB Ohm s Law and Measurement of Resistance Part I: Comparing the relationship between electric current and potential difference (voltage) across an ohmic resistor with the voltage-current

### Work and Energy. W =!KE = KE f

Activity 19 PS-2826 Work and Energy Mechanics: work-energy theorem, conservation of energy GLX setup file: work energy Qty Equipment and Materials Part Number 1 PASPORT Xplorer GLX PS-2002 1 PASPORT Motion

### Lab 7: Rotational Motion

Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME-9472), string with loop at one end and small white bead at the other end (125

### AP Lab 1 - Measurement, Units, and Significant Figures

AP Lab 1 - Measurement, Units, and Significant Figures Purpose: To understand the principles of metric measurement. To become familiar with laboratory equipment used to measure length, mass, and volume.

### Physics 1020 Laboratory #6 Equilibrium of a Rigid Body. Equilibrium of a Rigid Body

Equilibrium of a Rigid Body Contents I. Introduction II. III. IV. Finding the center of gravity of the meter stick Calibrating the force probe Investigation of the angled meter stick V. Investigation of

### Newton s Laws of Motion

Newton s Laws of Motion OBJECTIVES to validate Newton s Laws of Motion EQUIPMENT horizontal dynamic track and safety stopper on one end PASCO carts with a small reflector motion detector connected to the

### Computer Experiment. Simple Harmonic Motion. Kinematics and Dynamics of Simple Harmonic Motion. Evaluation copy

INTRODUCTION Simple Harmonic Motion Kinematics and Dynamics of Simple Harmonic Motion Computer Experiment 16 When you suspend an object from a spring, the spring will stretch. If you pull on the object,

### Newton s Laws and Archimedes s Principle

Purpose: To determine the densities of four metal cubes through an understanding of Archimedes's Principle. Equipment: Hooked Metal Cubes (Aluminum, Steel, Lead and Brass) Hooked Mass Set Beam Balance

### Archimedes Principle

ASU University Physics Labs - Mechanics Lab 8 p. 1 Name: Section #: Date: Part 1: Archimedes Principle Prediction Archimedes Principle In the first experiment to test Archimedes Principle, explain what

### Instruction Manual Manual No. 012-06053B. Rotary Motion Sensor. Model No. CI-6538

Instruction Manual Manual No. 012-06053B Rotary Motion Sensor Table of Contents Equipment List... 3 Optional Accessories... 4-5 Mini-Rotational Accessory...4 Linear Motion Accessory...4 Chaos Accessory...4

### Electrical Equivalent of Heat Apparatus

Name Class Date Electrical Equivalent of Heat Equipment Needed Temperature Sensor Current Sensor Voltage Sensor Electrical Equivalent of Heat Apparatus Balance Digital Multimeter Low Voltage Power Supply

### PHYS 1405 Conceptual Physics I Laboratory # 8 Density and Buoyancy. Investigation: How can we identify a substance by figuring out its density?

PHYS 1405 Conceptual Physics I Laboratory # 8 Density and Buoyancy Investigation: How can we identify a substance by figuring out its density? What to measure: Volume, mass. Measuring devices: Calipers,

### Name Partner Date Class

Name Partner Date Class FLUIDS Part 1: Archimedes' Principle Equipment: Dial-O-Gram balance, small beaker (150-250ml), metal specimen, string, calipers. Object: To find the density of an object using Archimedes'

### ROTARY MOTION SENSOR

Instruction Manual and Experiment Guide for the PASCO scientific Model CI-6538 012-06053A 5/96 ROTARY MOTION SENSOR 1996 PASCO scientific \$10.00 012-06053A Rotary Motion Sensor Table of Contents Section

### Physics 1050 Experiment 2. Acceleration Due to Gravity

Acceleration Due to Gravity Prelab Questions These questions need to be completed before entering the lab. Please show all workings. Prelab 1: For a falling ball, which bounces, draw the expected shape

### PHY 157 Standing Waves on a String (Experiment 5)

PHY 157 Standing Waves on a String (Experiment 5) Name: 1 Introduction In this lab you will observe standing waves on a string. You will also investigate the relationship between wave speed and tension

### FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5

Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities

### Simple Harmonic Motion Experiment. 1 f

Simple Harmonic Motion Experiment In this experiment, a motion sensor is used to measure the position of an oscillating mass as a function of time. The frequency of oscillations will be obtained by measuring

### Hooke s Law and Simple Harmonic Motion

Hooke s Law and Simple Harmonic Motion OBJECTIVE to measure the spring constant of the springs using Hooke s Law to explore the static properties of springy objects and springs, connected in series and

### LAB #2: Forces in Fluids

Princeton University Physics 103/105 Lab Physics Department LAB #2: Forces in Fluids Please do NOT attempt to wash the graduated cylinders once they have oil in them. Don t pour the oil in the graduated

### Part 1: Background - Graphing

Department of Physics and Geology Graphing Astronomy 1401 Equipment Needed Qty Computer with Data Studio Software 1 1.1 Graphing Part 1: Background - Graphing In science it is very important to find and

### ERRORS IN SIMPLE MEASUREMENTS

ERRORS IN SIMPLE MEASUREMENTS EA1-1 Objective: To learn how to estimate the uncertainties in direct and indirect measurements. In this lab you will determine the volume, mass and density of homogenous

### Buoyant Force and Archimedes Principle

Buoyant Force and Archimedes Principle Predict the behavior of fluids as a result of properties including viscosity and density Demonstrate why objects sink or float Apply Archimedes Principle by measuring

### Simple Harmonic Motion

Simple Harmonic Motion Simple harmonic motion is one of the most common motions found in nature and can be observed from the microscopic vibration of atoms in a solid to rocking of a supertanker on the

### THE CONSERVATION OF ENERGY - PENDULUM -

THE CONSERVATION OF ENERGY - PENDULUM - Introduction The purpose of this experiment is to measure the potential energy and the kinetic energy of a mechanical system and to quantitatively compare the two

### Measurement of Length, Mass, Volume and Density

Measurement of Length, Mass, Volume and Density Experimental Objective The objective of this experiment is to acquaint you with basic scientific conventions for measuring physical quantities. You will

### Pre-Lab Exercises Lab 1: Scientific Measurement

Pre-Lab Exercises Lab 1: Scientific Measurement Name Date Section 1. What is a hypothesis? 2. One meter equals millimeters. 3. Which has a larger volume, a liter or a quart? 4. If a cube had a volume of

### Uniform Circular Motion

Uniform Circular Motion Object: To investigate the force required to move a mass along a circular path. Verify the theoretical expression for that force in terms of the frequency of rotation, the radius

### Buoyant Force. Goals and Introduction

Buoyant Force Goals and Introduction When an object is placed in a fluid, it either floats or sinks. While the downward gravitational force, F g, still acts on the object, an object in a fluid is also

### A Penny for Your Thoughts: Scientific Measurements and Introduction to Excel

A Penny for Your Thoughts: Scientific Measurements and Introduction to Excel Pre-lab Assignment: Introduction Reading: 1. Chapter sections 1.4-1.6 in Brown, LeMay, Bursten, and Murphy. 2. This lab handout!

### Rank in order, from largest to smallest, the magnitudes of the 3 forces required to balance the masses in the Figure. The masses are in kilograms.

Rank in order, from largest to smallest, the magnitudes of the 3 forces required to balance the masses in the Figure. The masses are in kilograms. A. F 1 = F 2 = F 3 B. F 3 > F 2 > F 1 C. F 3 > F 1 > F

### Acceleration Due to Gravity

Activity 5 PS-2826 Acceleration Due to Gravity Kinematics: linear motion, acceleration, free fall, graphing GLX setup file: free fall Qty Equipment and Materials Part Number 1 PASPORT Xplorer GLX PS-2002

### Physics 181- Summer 2011 - Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle

Physics 181- Summer 2011 - Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle 1 Purpose 1. To determine the density of a fluid, such as water, by measurement of its mass when

### DENSITY OF AQUEOUS SODIUM CHLORIDE SOLUTIONS

Experiment 3 DENSITY OF AQUEOUS SODIUM CHLORIDE SOLUTIONS Prepared by Ross S. Nord and Stephen E. Schullery, Eastern Michigan University PURPOSE Determine the concentration of an unknown sodium chloride

### Hydrostatic Pressure on a Partially and Fully Submerged Vertical Rectangular Surface R. Helm

Hydrostatic Pressure on a Partially and Fully Submerged Vertical Rectangular Surface R. Helm ABSTRACT. Hydrostatic Pressure Systems allow for the measurement and development of hydrostatic force and center

Chapter 3 Student Reading If you hold a solid piece of lead or iron in your hand, it feels heavy for its size. If you hold the same size piece of balsa wood or plastic, it feels light for its size. The

### RC Circuit (Power amplifier, Voltage Sensor)

Object: RC Circuit (Power amplifier, Voltage Sensor) To investigate how the voltage across a capacitor varies as it charges and to find its capacitive time constant. Apparatus: Science Workshop, Power

### The moment of inertia of a rod rotating about its centre is given by:

Pendulum Physics 161 Introduction This experiment is designed to study the motion of a pendulum consisting of a rod and a mass attached to it. The period of the pendulum will be measured using three different

### LAB #3: MEASURING SPECIFIC GRAVITY AND DENSITY. Set-up and Materials for Experiment

Set-up and Materials for Experiment 1 OVERVIEW The mass density of a substance is a measure of the mass that that substance contains in a given volume. Mathematically is written: ρ = m V ( Density = Volume

### The Density of Liquids and Solids

The Density of Liquids and Solids Objectives The objectives of this laboratory are: a) To determine the density of pure water; b) To determine the density of aluminum (applying the technique of water displacement)

### ANSWER KEY EXPERIMENT 5: ARCHIMEDES PRINCIPLE

ANSWER KEY EXPERIMENT 5: ARCHIMEDES PRINCIPLE OBJECTIVE To determine the buoyant force from Archimedes Principle. INFERENCE Archimedes` Principle states that When an object is immersed in a fluid (liquid

### Measurement & Density Chemistry 121 CHEM 121

CHEM 121 Measurement & Density Chemistry 121 Introduction The ability to make accurate and detailed observations are crucial in science. This lab will focus on quantitative observations, more specifically,

### THE NOT SO SIMPLE PENDULUM

INTRODUCTION: THE NOT SO SIMPLE PENDULUM This laboratory experiment is used to study a wide range of topics in mechanics like velocity, acceleration, forces and their components, the gravitational force,

### MASS, VOLUME, AND DENSITY

Chapter 3 Scientific Measurement EXPERIMENT 4 MASS, VOLUME, AND DENSITY Text Reference Section 3.2, 3.3, and 3.4 Time Required 30 40 minutes Objectives Measure the mass and volume of different metals,

### Newton s Third Law: A Verification with Buoyancy Forces

Newton s Third Law: A Verification with Buoyancy Forces Barry Feierman - April 2013 SEPS/AAPT Drexel University Newton s Third Law is the law of interaction. For every force that acts on one object, there

### GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law OBJECTIVES: To verify Ohm s law, the mathematical relationship among current, voltage or potential difference, and resistance, in a simple circuit.

### Density and Archimedes Principle

Density and Archimedes Principle Objectives: To understand the concept of density and its relationship to various materials. To understand and use Archimedes Principle. Equipment: Dial calipers, Graduated

### Pressure -Temperature Relationship in Gases. Evaluation copy. Figure 1. 125 ml Erlenmeyer flask. Vernier computer interface

Pressure -Temperature Relationship in Gases Computer 7 Gases are made up of molecules that are in constant motion and exert pressure when they collide with the walls of their container. The velocity and

### Physics Principles of Physics

Physics 1408-002 Principles of Physics Lecture 21 Chapter 13 April 2, 2009 Sung-Won Lee Sungwon.Lee@ttu.edu Announcement I Lecture note is on the web Handout (6 slides/page) http://highenergy.phys.ttu.edu/~slee/1408/

### Coefficient of Friction Using a Force Sensor and a Motion Sensor

Physics Laboratory Manual n Loyd LABORATORY 7A Coefficient of Friction Using a Force Sensor and a Motion Sensor OBJECTIVES o Investigate the coefficient of static friction between a felt-covered wood block

### Acceleration of Gravity

Acceleration of Gravity Introduction: In this experiment, several objects' motion are studied by making several measurements of the objects position (or displacement) at different times. Since the objects

### PHYSICS 183 Acceleration of Gravity Lab (Picket Fence)

PHYSICS 183 Acceleration of Gravity Lab (Picket Fence) Object: To measure the acceleration of a freely falling body due to gravitational attraction. Apparatus: IBM compatible computer running Windows 98SE,

### CHM 152 LL, Determining the Identity of an Unknown Diprotic Acid

CHM 152 LL, Determining the Identity of an Unknown Diprotic Acid A diprotic acid is an acid that yields two H + ions per acid molecule. Examples of diprotic acids are sulfuric acid, H 2 SO 4, and carbonic

### Dependence of central force on angular velocity, track radius and mass with PC interface

Related topics Centripetal force, rotary motion, angular velocity, apparent force, use of an interface. Principle and task As an object moves on a circular path with a certain angular velocity, it is constantly

### 18 Conductometric Titration

Lab Activity 18 CONDUCTOMETRIC TITRATION LAB ACTIVITY 18 Conductometric Titration Background Titration is the a method of determining the concentration of an unknown solution (the analyte) by reacting

### Why do objects float or sink?

Why do objects float or sink? Summary Students will use models to gain an understanding of the principles of buoyancy and how they apply to technologies used to explore the ocean Learning Objectives Students

### Ohm s Law. Electrical Quantity Description Unit Water Analogy Voltage or Potential Difference

Ohm s Law Experiment 25 The fundamental relationship among the three important electrical quantities current, voltage, and resistance was discovered by Georg Simon Ohm. The relationship and the unit of

### Evaluation copy. Titration of a Diprotic Acid: Identifying an Unknown. Computer

Titration of a Diprotic Acid: Identifying an Unknown Computer 25 A diprotic acid is an acid that yields two H + ions per acid molecule. Examples of diprotic acids are sulfuric acid, H 2 SO 4, and carbonic

### MEASUREMENT OF DENSITY

MEASUREMENT OF DENSITY Introduction In order to classify and identify materials of a wide variety, scientists use numbers called physical constants (e.g. density, melting point, boiling point, index of

### a) the object's density. c) the submerged volume of the object. b) the mass of the object. d) the shape of the object.

Multiple Choice Questions ( Buoyant force and floatability) 1. The buoyant force on an object is dependent on a) the object's density. c) the submerged volume of the object. b) the mass of the object.