Buoyancy Problem Set

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Buoyancy Problem Set"

Transcription

1 Buoyancy Problem Set 1) A stone weighs 105 lb in air. When submerged in water, it weighs 67.0 lb. Find the volume and specific gravity of the stone. (Specific gravity of an object: ratio object density to water density) 2) A standard basketball (mass = 624 grams; 24.3 cm in diameter) is held fully under water. Calculate the buoyant force and weight. a. When released, does the ball sink to the bottom or float to the surface? b. If it floats, what percentage of it is sticking out of the water? c. If it sinks, what is the normal force, F N with which it sits on the bottom of the pool? 3). Water ice has a density of 0.91 g/cm³, so it will float in liquid water. Imagine you have a cube of ice, 10 cm on a side. a. What is the cube's weight? b. What volume of liquid water must be displaced in order to support the floating cube? c. How much of the cube is under the surface of the water? 4) A steel cable holds a 120-kg shark tank 3 meters below the surface of saltwater. If the volume of water displaced by the shark tank is 0.1 m 3, what is the tension in the cable? Assume the density of saltwater is 1025 kg/m 3. 5) You have a block of a mystery material, 12 cm long, 11 cm wide and 3.5 cm thick. Its mass is 1155 grams. a. Will it float in a tank of water, or sink? Explain your reason b. If it floats: What percentage of the object will be sticking above the water? If it sinks, what will be the normal force it causes on the bottom of the tank?

2 Problem Solutions 1. A standard basketball (mass = 624 grams; 24.3 cm in diameter) is held fully under water. Calculate the buoyant force and weight. When released, does the ball sink to the bottom or float to the surface? If it floats, what percentage of it is sticking out of the water? If it sinks, what is the normal force, FN with which it sits on the bottom of the pool? SOLUTION The weight of the ball is To calculate the buoyancy, we need the volume of displaced water, which is the volume of the ball because it is being held completely submerged. The buoyant force is equal to the weight of that volume of water. That's a lot stronger than the 6.1N downward pull of gravity, so the ball will rise to the surface when released. The density of the ball is

3 which is 8.3% the density of water. The ball will therefore be floating with 8.3% of its volume below the level of the surface, and 91.7% sticking out of the water. 2. Six objects (A-F) are in a liquid, as shown. None of them are moving. Arrange them in order of density, from lowest to highest. SOLUTION: The more of an object's volume is above the water surface, the less dense it is. Object B must therefore be the least dense, followed by D, A, and F. Object E is next, because it is neutrally buoyant and equal in density to the liquid. Object C is negatively buoyant because it is more dense than the fluid. Full answer to the question: B, D, A, F, E, C. 3. Water ice has a density of 0.91 g/cm³, so it will float in liquid water. Imagine you have a cube of ice, 10 cm on a side. (a) What is the cube's weight? (b) What volume of liquid water must be displaced in order to support the floating cube? (c) How much of the cube is under the surface of the water? SOLUTION: (a) The cube's weight is

4 (b) The buoyant force must equal the cube's weight. Take the equation for buoyant force, solve it for Vdf, and plug in the numbers. (c) The volume of the cube itself is 0.001m³, so the percentage under the surface is... This detailed calculation confirms our rule-of-thumb that the ratio of an object submerged is the same as the ratio of its density to that of the fluid in which it is immersed. This also confirms the old adage that when you see an iceberg floating in the ocean, it really is "just the tip of the iceberg." 4. You have a block of a mystery material, 12 cm long, 11 cm wide and 3.5 cm thick. Its mass is 1155 grams. (a) What is its density? 2.5 g/cm³ or 2500 kg/m³ (b) Will it float in a tank of water, or sink? It's more dense than the water, so it's gonna sink! (c) If it floats, what percentage of the object will be sticking out above the water? If it sinks, what will be the normal force it presses against the bottom of the tank? When the block sits on the bottom of the tank, there are 3 forces acting on it: gravity (a.k.a. weight, downwards), buoyancy (upwards) and the normal force (upwards). The block is in equilibrium (FNET=0) so the magnitude of upwards forces must equal the downwards force of gravity. In other words, Fg= FB+ FN The weight, Fg= m g = kg * 9.8 N/kg = 11.3 N

5 The buoyant force, FB= density of fluid * volume * g = 4.5 N Therefore, the normal force FN= 6.8 N (d) Repeat parts b and c, only instead of water, the tank is full of mercury. The object is less dense than mercury (13.6 g/cm³), so the object will float in mercury. The ratio of their densities, is 2.5/13.6 = So 18% of the object is below the surface of the mercury, meaning that 82% must be sticking up above the surface.

Buoyancy. What floats your boat?

Buoyancy. What floats your boat? Buoyancy What floats your boat? Sink or float? Test The cube sinks to the bottom. WHY? Weight Due to the pulling force of gravity both the cube and the water have the property of weight. Gravity Gravity

More information

Three Methods for Calculating the Buoyant Force Gleue: Physics

Three Methods for Calculating the Buoyant Force Gleue: Physics Three Methods for Calculating the Buoyant Force Gleue: Physics Name Hr. The Buoyant Force (F b ) is the apparent loss of weight for an object submerged in a fluid. For example if you have an object immersed

More information

Buoyancy and Archimedes Principle. Buoyancy and Archimedes Principle Assume block is in equilibrium.

Buoyancy and Archimedes Principle. Buoyancy and Archimedes Principle Assume block is in equilibrium. Assume block is in equilibrium. Then upward forces must equal downward forces. Upward force: pressure from fluid Downward force: atmospheric pressure plus weight Therefore In this case, the object is less

More information

Density. Part 1: What is Density?

Density. Part 1: What is Density? Density Part 1: What is Density? Starter Activity Which is heavier, steel or wood? Density We can use a number to describe how heavy something is for its size. Density is the mass per unit of volume. To

More information

Fluids I. Level : Conceptual Physics/Physics I. Q1) Order the following materials from lowest to greatest according to their densities.

Fluids I. Level : Conceptual Physics/Physics I. Q1) Order the following materials from lowest to greatest according to their densities. Fluids I Level : Conceptual Physics/Physics I Teacher : Kim 1. Density One of the properties of any substances (solids, liquids and gases) is the measure of how tightly the material is packed together.

More information

13.3 Buoyancy. Buoyant Force

13.3 Buoyancy. Buoyant Force The forces from pressure acting on the bottom of this golf ball are greater than those on the top. This produces a net force called the buoyant force that acts upward on the ball. Buoyant Force What is

More information

Density. Density is how concentrated or compact matter is.

Density. Density is how concentrated or compact matter is. Density Density is how concentrated or compact matter is. Packing snow into snowballs increases its density. You are squeezing large amounts of matter into small volumes of space. Equation for Density

More information

Student Exploration: Archimedes Principle

Student Exploration: Archimedes Principle Name: Date: Student Exploration: Archimedes Principle Vocabulary: Archimedes principle, buoyant force, density, displace, mass, volume, weight Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

More information

Pool Cubes: Buoyancy

Pool Cubes: Buoyancy Name Section Date CONCEPTUAL PHYSICS Liquids: Buoyancy Tech Lab Buoyancy and Flotation Simulation Pool Cubes: Buoyancy Purpose To investigate the nature of the buoyant force and to see the role it plays

More information

Archimedes. F b (Buoyant Force) DEMO. Identical Size Boxes Which has larger F B. Which is heavier. styrofoam (1 cm 3 ) steel ( 1 cm 3 )

Archimedes. F b (Buoyant Force) DEMO. Identical Size Boxes Which has larger F B. Which is heavier. styrofoam (1 cm 3 ) steel ( 1 cm 3 ) Fluids Density 1 F b (Buoyant Force) DEMO Archimedes Identical Size Boxes Which has larger F B Which is heavier styrofoam (1 cm 3 ) steel ( 1 cm 3 ) steel ( 1 cm 3 ) styrofoam (1 cm 3 ) 2 Finding the Weight

More information

Fluids flow conform to shape of container. Mass: mass density, Forces: Pressure Statics: Human body 50-75% water, live in a fluid (air)

Fluids flow conform to shape of container. Mass: mass density, Forces: Pressure Statics: Human body 50-75% water, live in a fluid (air) Chapter 11 - Fluids Fluids flow conform to shape of container liquids OR gas Mass: mass density, Forces: Pressure Statics: pressure, buoyant force Dynamics: motion speed, energy friction: viscosity Human

More information

Clicker Questions Chapter 10

Clicker Questions Chapter 10 Clicker Questions Chapter 10 2010 Pearson Education, Inc. Essential College Physics Rex/Wolfson Question 10.1 Density If one material has a higher density than another, does this mean that the molecules

More information

Section 2 Buoyancy and Density

Section 2 Buoyancy and Density Section 2 Buoyancy and Density Key Concept Buoyant force and density affect whether an object will float or sink in a fluid. What You Will Learn All fluids exert an upward buoyant force on objects in the

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 30) Lecture 3 Solids and fluids buoyant force Archimedes principle Fluids in motion http://www.physics.wayne.edu/~apetrov/phy30/ Lightning Review Last lecture:. Solids and fluids different

More information

Buoyant Force and Archimedes' Principle

Buoyant Force and Archimedes' Principle Buoyant Force and Archimedes' Principle Introduction: Buoyant forces keep Supertankers from sinking and party balloons floating. An object that is more dense than a liquid will sink in that liquid. If

More information

Tutorial 4. Buoyancy and floatation

Tutorial 4. Buoyancy and floatation Tutorial 4 uoyancy and floatation 1. A rectangular pontoon has a width of 6m, length of 10m and a draught of 2m in fresh water. Calculate (a) weight of pontoon, (b) its draught in seawater of density 1025

More information

PHYS 1405 Conceptual Physics I Laboratory # 8 Density and Buoyancy. Investigation: How can we identify a substance by figuring out its density?

PHYS 1405 Conceptual Physics I Laboratory # 8 Density and Buoyancy. Investigation: How can we identify a substance by figuring out its density? PHYS 1405 Conceptual Physics I Laboratory # 8 Density and Buoyancy Investigation: How can we identify a substance by figuring out its density? What to measure: Volume, mass. Measuring devices: Calipers,

More information

Buoyant Force. Goals and Introduction

Buoyant Force. Goals and Introduction Buoyant Force Goals and Introduction When an object is placed in a fluid, it either floats or sinks. While the downward gravitational force, F g, still acts on the object, an object in a fluid is also

More information

LAB #3: MEASURING SPECIFIC GRAVITY AND DENSITY. Set-up and Materials for Experiment

LAB #3: MEASURING SPECIFIC GRAVITY AND DENSITY. Set-up and Materials for Experiment Set-up and Materials for Experiment 1 OVERVIEW The mass density of a substance is a measure of the mass that that substance contains in a given volume. Mathematically is written: ρ = m V ( Density = Volume

More information

Physics Principles of Physics

Physics Principles of Physics Physics 1408-002 Principles of Physics Lecture 21 Chapter 13 April 2, 2009 Sung-Won Lee Sungwon.Lee@ttu.edu Announcement I Lecture note is on the web Handout (6 slides/page) http://highenergy.phys.ttu.edu/~slee/1408/

More information

Chapter 4: Buoyancy & Stability

Chapter 4: Buoyancy & Stability Chapter 4: Buoyancy & Stability Learning outcomes By the end of this lesson students should be able to: Understand the concept of buoyancy hence determine the buoyant force exerted by a fluid to a body

More information

Grade 8 Science Chapter 9 Notes

Grade 8 Science Chapter 9 Notes Grade 8 Science Chapter 9 Notes Force Force - Anything that causes a change in the motion of an object. - usually a push or a pull. - the unit for force is the Newton (N). Balanced Forces - forces that

More information

AP2 Fluids. Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same

AP2 Fluids. Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same A cart full of water travels horizontally on a frictionless track with initial velocity v. As shown in the diagram, in the back wall of the cart there is a small opening near the bottom of the wall that

More information

Buoyant Force and Archimedes Principle

Buoyant Force and Archimedes Principle Buoyant Force and Archimedes Principle Predict the behavior of fluids as a result of properties including viscosity and density Demonstrate why objects sink or float Apply Archimedes Principle by measuring

More information

2 Floating and Sinking

2 Floating and Sinking Section 2 Floating and Sinking 2 Floating and Sinking Objectives After this lesson, students will be able to M.3.2.1 Describe the effect of the buoyant force. M.3.2.2 Explain how the density of an object

More information

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc.

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc. Chapter 13 Fluids 13-1 Phases of Matter The three common phases of matter are solid, liquid, and gas. A solid has a definite shape and size. A liquid has a fixed volume but can be any shape. A gas can

More information

Matter and the Universe. Ancient Views. Modern Views. Periodic Table of Elements. Ernest Rutherford

Matter and the Universe. Ancient Views. Modern Views. Periodic Table of Elements. Ernest Rutherford Matter and the Universe Ancient Views Early atomists believed that matter had a smallest indivisible bit, an atom. Aristotle, the most famous of the early Greek philosophers, didn't agree with the idea

More information

Archimedes Principle. Biological Systems

Archimedes Principle. Biological Systems Archimedes Principle Introduction Many of the substances we encounter in our every day lives do not have rigid structure or form. Such substances are called fluids and can be divided into two categories:

More information

Chapter 13 - Solutions

Chapter 13 - Solutions = Chapter 13 - Solutions Description: Find the weight of a cylindrical iron rod given its area and length and the density of iron. Part A On a part-time job you are asked to bring a cylindrical iron rod

More information

Simulating Microgravity with Buoyancy A Space School Lesson Plan

Simulating Microgravity with Buoyancy A Space School Lesson Plan ASTRONAUT TRAINING...UNDERWATER Simulating Microgravity with Buoyancy A Space School Lesson Plan by Bill Andrake, Swampscott Middle School Swampscott, Massachusetts Science Lesson: Buoyancy - Based on

More information

Chapter 9: The Behavior of Fluids

Chapter 9: The Behavior of Fluids Chapter 9: The Behavior of Fluids 1. Archimedes Principle states that A. the pressure in a fluid is directly related to the depth below the surface of the fluid. B. an object immersed in a fluid is buoyed

More information

Concept Questions Archimedes Principle. 8.01t Nov 24, 2004

Concept Questions Archimedes Principle. 8.01t Nov 24, 2004 Concept Questions Archimedes Principle 8.01t Nov 24, 2004 Pascal s Law Pressure applied to an enclosed fluid is transmitted undiminished to every portion of the fluid and the walls of the containing vessel

More information

Density and Archimedes Principle

Density and Archimedes Principle Density and Archimedes Principle Objectives: To understand the concept of density and its relationship to various materials. To understand and use Archimedes Principle. Equipment: Dial calipers, Graduated

More information

Density (r) Chapter 10 Fluids. Pressure 1/13/2015

Density (r) Chapter 10 Fluids. Pressure 1/13/2015 1/13/015 Density (r) Chapter 10 Fluids r = mass/volume Rho ( r) Greek letter for density Units - kg/m 3 Specific Gravity = Density of substance Density of water (4 o C) Unitless ratio Ex: Lead has a sp.

More information

Physics 103 CQZ1 Solutions and Explanations. 1. All fluids are: A. gases. B. liquids. C. gases or liquids. D. non-metallic. E.

Physics 103 CQZ1 Solutions and Explanations. 1. All fluids are: A. gases. B. liquids. C. gases or liquids. D. non-metallic. E. Physics 03 CQZ Solutions and Explanations. All fluids are: A. gases B. liquids C. gases or liquids D. non-metallic E. transparent Matter is classified as solid, liquid, gas, and plasma. Gases adjust volume

More information

Lab 11 Density and Buoyancy

Lab 11 Density and Buoyancy b Lab 11 Density and uoyancy What You Need To Know: Density A concept that you will be using frequently in today s lab is called density. Density is a measurement of an object s mass per unit volume of

More information

Buoyancy. Please Circle Your Lab day: M T W T F

Buoyancy. Please Circle Your Lab day: M T W T F Please Circle Your Lab day: M T W T F Name: Project #1: Show that the buoyant force (F B ) equals fluid gv object by first calculating fluid gv object, and then by measuring F B (indirectly) using the

More information

Density and Archimedes Principle

Density and Archimedes Principle Drexel-SDP GK-12 ACTIVITY Activity: Density and Archimedes Principle Subject Area(s) Measurement, Physical Science Associated Unit Measurement, module 2 Associated Lesson Activity Title Grade Level 6 (3-8)

More information

Write True or False in the space provided.

Write True or False in the space provided. CP Physics -- Exam #7 Practice Name: _ Class: Date: Write True or False in the space provided. 1) Pressure at the bottom of a lake depends on the weight density of the lake water and on the volume of the

More information

Name Date Hour. Buoyancy

Name Date Hour. Buoyancy Name Date Hour Buoyancy Consider: If I gave you an object that you had never seen before and it was made of unknown material and then asked you whether or not it would float in water, what would you base

More information

Physics 1114: Unit 6 Homework: Answers

Physics 1114: Unit 6 Homework: Answers Physics 1114: Unit 6 Homework: Answers Problem set 1 1. A rod 4.2 m long and 0.50 cm 2 in cross-sectional area is stretched 0.20 cm under a tension of 12,000 N. a) The stress is the Force (1.2 10 4 N)

More information

Making Things Float & Making a Hydrometer

Making Things Float & Making a Hydrometer Making Things Float & Making a Hydrometer Grade 7 Activity Plan 1 Making Things Float Objectives: 1. To demonstrate how density and displacement affect whether things float or sink 2. To illustrate how

More information

MEASUREMENT OF MASS, WEIGHT AND DENSITY

MEASUREMENT OF MASS, WEIGHT AND DENSITY 1 MEASUREMENT OF MASS, WEIGHT AND DENSITY I. Tick ( ) the most appropriate answer. 1. The SI unit of weight is (a) kg (b) newton (c) newton-metre (d) km 2. We use a beam balance to measure (a) weight (b)

More information

Fluids Quiz Science 8

Fluids Quiz Science 8 Fluids Quiz Science 8 Introduction to Fluids 1. What are fluids essential for? Industrial Processes 2. What devices use knowledge of fluids? Hydraulic and pneumatic devices and machines A Close-Up Look

More information

Educational Innovations

Educational Innovations Educational Innovations AIR-444/446 Air Swimmers Next Generation Science Standards: 5-PS1-1 Develop a model to describe that matter is made of particles too small to be seen. 5-PS2-1 Support an argument

More information

Why do objects float or sink?

Why do objects float or sink? Why do objects float or sink? Summary Students will use models to gain an understanding of the principles of buoyancy and how they apply to technologies used to explore the ocean Learning Objectives Students

More information

FLUID FORCES ON CURVED SURFACES; BUOYANCY

FLUID FORCES ON CURVED SURFACES; BUOYANCY FLUID FORCES ON CURVED SURFCES; BUOYNCY The principles applicable to analysis of pressure-induced forces on planar surfaces are directly applicable to curved surfaces. s before, the total force on the

More information

MEASUREMENT OF MASS, WEIGHT AND DENSITY

MEASUREMENT OF MASS, WEIGHT AND DENSITY MEASUREMENT OF MASS, WEIGHT AND DENSITY I. Tick (t') the most appropriate answer. 1. The SI unit of weight is (a) kg (b) newton (c) newton-metre (d) km 2. We use a beam balance to measure (a) weight (b)

More information

Physics 6B. Philip Lubin

Physics 6B. Philip Lubin Physics 6B Philip Lubin prof@deepspace.ucsb.edu http://www.deepspace.ucsb.edu/classes/physics-6b-spring-2015 Course Outline Text College Physics Freedman 2014 Cover Chap 11-13, 16-21 Chap 11- Fluid Chap

More information

Experiment #4 Sugar in Soft Drinks and Fruit Juices. Laboratory Overview CHEM 1361. August 2010

Experiment #4 Sugar in Soft Drinks and Fruit Juices. Laboratory Overview CHEM 1361. August 2010 Experiment #4 Sugar in Soft Drinks and Fruit Juices Laboratory Overview CHEM 1361 August 2010 Gary S. Buckley, Ph.D. Department of Physical Sciences Cameron University Learning Objectives Relate density

More information

Chapter 3. Flotation. ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Buoyancy

Chapter 3. Flotation. ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Buoyancy ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 3 Flotation Buoyancy Buoyancy arises from the fact that fluid pressure increases with depth and from the fact that the

More information

BUOYANCY! 2008, Peter Angstadt

BUOYANCY! 2008, Peter Angstadt BUOYANCY! 2008, Peter Angstadt What is buoyancy and why do I want it? Buoyancy is the principle that explains why objects float and rise to the surface of water. If your game has any liquid surfaces (like

More information

DENSITY. reflect. look out! 6.6B

DENSITY. reflect. look out! 6.6B 6.6B reflect Imagine that it is a very hot day. You decide to cool a glass of water by placing several ice cubes in the drink. What happens when you drop the ice into the water? Likely, when you place

More information

Experiment (2): Metacentric height of floating bodies

Experiment (2): Metacentric height of floating bodies Experiment (2): Metacentric height of floating bodies Introduction: The Stability of any vessel which is to float on water, such as a pontoon or ship, is of paramount importance. The theory behind the

More information

Buoyancy Boats Florida Sunshine State Science Standards: Objectives Engage: Explore:

Buoyancy Boats Florida Sunshine State Science Standards: Objectives Engage: Explore: Buoyancy Boats Florida Sunshine State Science Standards: SC.C.2.3.1 The student knows that many forces act at a distance. SC.C.2.3.2 The student knows common contact forces. SC.C.2.3.3 The student knows

More information

FOIL BOATS. DESIGN CHALLENGE Design and build a boat from aluminum foil that can hold as many pennies as possible before sinking or capsizing.

FOIL BOATS. DESIGN CHALLENGE Design and build a boat from aluminum foil that can hold as many pennies as possible before sinking or capsizing. Grades 3 5 20 minutes FOIL BOATS DESIGN CHALLENGE Design and build a boat from aluminum foil that can hold as many pennies as possible before sinking or capsizing. MATERIALS Supplies and Equipment: Shallow

More information

Archimedes' Principle

Archimedes' Principle Archimedes' Principle Introduction Archimedes' Principle states that the upward buoyant force exerted on a body immersed in a fluid, whether fully or partially submerged, is equal to the weight of the

More information

E 490 Fundamentals of Engineering Review. Fluid Mechanics. M. A. Boles, PhD. Department of Mechanical & Aerospace Engineering

E 490 Fundamentals of Engineering Review. Fluid Mechanics. M. A. Boles, PhD. Department of Mechanical & Aerospace Engineering E 490 Fundamentals of Engineering Review Fluid Mechanics By M. A. Boles, PhD Department of Mechanical & Aerospace Engineering North Carolina State University Archimedes Principle and Buoyancy 1. A block

More information

Activity P13: Buoyant Force (Force Sensor)

Activity P13: Buoyant Force (Force Sensor) July 21 Buoyant Force 1 Activity P13: Buoyant Force (Force Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Archimedes Principle P13 Buoyant Force.DS P18 Buoyant Force P18_BUOY.SWS

More information

The Mystery of the Pirate s Booty- Salinity and Buoyancy

The Mystery of the Pirate s Booty- Salinity and Buoyancy The Mystery of the Pirate s Booty- Salinity and Buoyancy Buoyancy If you ve ever lain on your back in a swimming pool you have demonstrated the ability of an object to float in water. You float because

More information

Chapter 3 Student Reading

Chapter 3 Student Reading Chapter 3 Student Reading If you hold a solid piece of lead or iron in your hand, it feels heavy for its size. If you hold the same size piece of balsa wood or plastic, it feels light for its size. The

More information

Lesson 2 The Buoyant Force

Lesson 2 The Buoyant Force Lesson 2 Student Labs and Activities Page Launch Lab 26 Content Vocabulary 27 Lesson Outline 28 MiniLab 30 Content Practice A 31 Content Practice B 32 School to Home 33 Key Concept Builders 34 Enrichment

More information

Activity P13: Buoyant Force (Force Sensor)

Activity P13: Buoyant Force (Force Sensor) Name Class Date Activity P13: Buoyant Force (Force Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Archimedes Principle P13 Buoyant Force.DS P18 Buoyant Force P18_BUOY.SWS Equipment

More information

Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy

Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Forces Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Definition of Force Force = a push or pull that causes a change

More information

"Physics Floats My Boat

Physics Floats My Boat "Physics Floats My Boat A Modeling Approach to Teaching Archimedes Principle & Buoyant Force Any object, wholly or partially immersed in a fluid, is buoyed up by a force equal to the weight of the fluid

More information

Educational Innovations

Educational Innovations Educational Innovations DEN-350 Steel Sphere Density Kit Target Age Group: 3-5, 6-8 National Standards K-4 Physical Science Properties of objects and materials Density, weight and volume are properties

More information

Chapter 8 Fluid Flow

Chapter 8 Fluid Flow Chapter 8 Fluid Flow GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms, and use it in an operational

More information

F mg (10.1 kg)(9.80 m/s ) m

F mg (10.1 kg)(9.80 m/s ) m Week 9 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

Chapter 27 Static Fluids

Chapter 27 Static Fluids Chapter 27 Static Fluids 27.1 Introduction... 1 27.2 Density... 1 27.3 Pressure in a Fluid... 2 27.4 Pascal s Law: Pressure as a Function of Depth in a Fluid of Uniform Density in a Uniform Gravitational

More information

EXPERIMENT (2) BUOYANCY & FLOTATION (METACENTRIC HEIGHT)

EXPERIMENT (2) BUOYANCY & FLOTATION (METACENTRIC HEIGHT) EXPERIMENT (2) BUOYANCY & FLOTATION (METACENTRIC HEIGHT) 1 By: Eng. Motasem M. Abushaban. Eng. Fedaa M. Fayyad. ARCHIMEDES PRINCIPLE Archimedes Principle states that the buoyant force has a magnitude equal

More information

Chapter 15. FLUIDS. 15.1. What volume does 0.4 kg of alcohol occupy? What is the weight of this volume? m m 0.4 kg. ρ = = ; ρ = 5.

Chapter 15. FLUIDS. 15.1. What volume does 0.4 kg of alcohol occupy? What is the weight of this volume? m m 0.4 kg. ρ = = ; ρ = 5. Chapter 15. FLUIDS Density 15.1. What volume does 0.4 kg of alcohol occupy? What is the weight of this volume? m m 0.4 kg ρ = ; = = ; = 5.06 x 10-4 m ρ 790 kg/m W = D = ρg = 790 kg/m )(9.8 m/s )(5.06 x

More information

Chapter 14 - Fluids. -Archimedes, On Floating Bodies. David J. Starling Penn State Hazleton PHYS 213. Chapter 14 - Fluids. Objectives (Ch 14)

Chapter 14 - Fluids. -Archimedes, On Floating Bodies. David J. Starling Penn State Hazleton PHYS 213. Chapter 14 - Fluids. Objectives (Ch 14) Any solid lighter than a fluid will, if placed in the fluid, be so far immersed that the weight of the solid will be equal to the weight of the fluid displaced. -Archimedes, On Floating Bodies David J.

More information

Lift vs. Gravity Questions:

Lift vs. Gravity Questions: LIFT vs GRAVITY Sir Isaac Newton, an English scientist, observed the force of gravity when he was sitting under a tree and an apple fell on his head! It is a strong force that pulls everything down toward

More information

These slides contain some notes, thoughts about what to study, and some practice problems. The answers to the problems are given in the last slide.

These slides contain some notes, thoughts about what to study, and some practice problems. The answers to the problems are given in the last slide. Fluid Mechanics FE Review Carrie (CJ) McClelland, P.E. cmcclell@mines.edu Fluid Mechanics FE Review These slides contain some notes, thoughts about what to study, and some practice problems. The answers

More information

Activity P13: Buoyant Force (Force Sensor)

Activity P13: Buoyant Force (Force Sensor) Activity P13: Buoyant Force (Force Sensor) Equipment Needed Qty Equipment Needed Qty Economy Force Sensor (CI-6746) 1 Mass and Hanger Set (ME-9348) 1 Base and Support Rod (ME-9355) 1 Ruler, metric 1 Beaker,

More information

NWT Apprenticeship Support Materials

NWT Apprenticeship Support Materials NWT Apprenticeship Support Materials Science Reading Comprehension * Module 1 Foundations * Module 2 Science Development * Module 3 Special Topics Math P A R T N E R S Education, Culture and Employment

More information

POTATO FLOAT. Common Preconceptions:

POTATO FLOAT. Common Preconceptions: POTATO FLOAT Unit: Salinity Patterns & the Water Cycle l Grade Level: Middle l Time Required: 30 min. (in class) after solutions are prepared by the teacher l Content Standard: NSES Physical Science, properties

More information

Physics 181- Summer 2011 - Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle

Physics 181- Summer 2011 - Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle Physics 181- Summer 2011 - Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle 1 Purpose 1. To determine the density of a fluid, such as water, by measurement of its mass when

More information

Quick Peek. H Students will learn about. H Students will design and. Students will learn about density, buoyancy, and how submarines dive.

Quick Peek. H Students will learn about. H Students will design and. Students will learn about density, buoyancy, and how submarines dive. Quick Peek sink, float, Hover design a submarine! Students will learn about density, buoyancy, and how submarines dive. Suggested Grade Levels: 4 8 Illinois State Learning Goals science 11.A, 11.B, 12.D,

More information

Unit 1 Lab Safety, Measurement, Density, Buoyancy and Controlled Experiment

Unit 1 Lab Safety, Measurement, Density, Buoyancy and Controlled Experiment Unit 1 Lab Safety, Measurement, Density, Buoyancy and Controlled Experiment NYS Standards: MST Standard #1 MST Standard #4 3.1h Density can be described as the amount of matter that is in a given amount

More information

Chapter 3. Table of Contents. Chapter 3. Objectives. Chapter 3. Kinetic Theory. Section 1 Matter and Energy. Section 2 Fluids

Chapter 3. Table of Contents. Chapter 3. Objectives. Chapter 3. Kinetic Theory. Section 1 Matter and Energy. Section 2 Fluids States of Matter Table of Contents Objectives Summarize the main points of the kinetic theory of matter. Describe how temperature relates to kinetic energy. Describe four common states of matter. List

More information

Sinking Bubble in Vibrating Tanks Christian Gentry, James Greenberg, Xi Ran Wang, Nick Kearns University of Arizona

Sinking Bubble in Vibrating Tanks Christian Gentry, James Greenberg, Xi Ran Wang, Nick Kearns University of Arizona Sinking Bubble in Vibrating Tanks Christian Gentry, James Greenberg, Xi Ran Wang, Nick Kearns University of Arizona It is experimentally observed that bubbles will sometimes sink to the bottom of their

More information

Mercury is poured into a U-tube as in Figure (14.18a). The left arm of the tube has crosssectional

Mercury is poured into a U-tube as in Figure (14.18a). The left arm of the tube has crosssectional Chapter 14 Fluid Mechanics. Solutions of Selected Problems 14.1 Problem 14.18 (In the text book) Mercury is poured into a U-tube as in Figure (14.18a). The left arm of the tube has crosssectional area

More information

Higher Technological Institute Civil Engineering Department. Lectures of. Fluid Mechanics. Dr. Amir M. Mobasher

Higher Technological Institute Civil Engineering Department. Lectures of. Fluid Mechanics. Dr. Amir M. Mobasher Higher Technological Institute Civil Engineering Department Lectures of Fluid Mechanics Dr. Amir M. Mobasher 1/14/2013 Fluid Mechanics Dr. Amir Mobasher Department of Civil Engineering Faculty of Engineering

More information

MSCOPE Final Project Report Melanie Hopkins, Mary Leighton, Roscoe Nicholson, and Panos Oikonomou. Sink or Swim. Photo: M.

MSCOPE Final Project Report Melanie Hopkins, Mary Leighton, Roscoe Nicholson, and Panos Oikonomou. Sink or Swim. Photo: M. MSCOPE Final Project Report Melanie Hopkins, Mary Leighton, Roscoe Nicholson, and Panos Oikonomou Sink or Swim Type of Project: Facilitated activity with optional demonstration Target Museum: SciTech Hands-On

More information

Practice Test SHM with Answers

Practice Test SHM with Answers Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

More information

25ml graduated. dish soap 100ml graduated cylinders. cylinders. Metric ruler with mm divisions. digital scale

25ml graduated. dish soap 100ml graduated cylinders. cylinders. Metric ruler with mm divisions. digital scale You are challenged to get your film canister to float while filled with the most weight you can. The film canisters will not be capped, so if they go under water at all, they will sink. You want to get

More information

Review Chapter 10, 12, 13, 14, 15, 16. Conceptual Physics, 10e (Hewitt) Chapter 10

Review Chapter 10, 12, 13, 14, 15, 16. Conceptual Physics, 10e (Hewitt) Chapter 10 Review Chapter 10, 12, 13, 14, 15, 16 Conceptual Physics, 10e (Hewitt) Chapter 10 23) What prevents satellites such as a space shuttle from falling? A) gravity B) the absence of air drag C) Nothing; they're

More information

Density and Archimedes Principle

Density and Archimedes Principle Density and Archimedes Principle Objectives: To understand the concept of density and its relationship to various materials. To understand and use Archimedes Principle. Equipment: Dial calipers, Graduated

More information

IMSS After School Science Lesson Plan Penny Boat Challenge

IMSS After School Science Lesson Plan Penny Boat Challenge IMSS After School Science Lesson Plan Penny Boat Challenge Authors: Lawrence Chu, Marilyn Stewart, Patrick Hilton Lesson Grade Level: 6th Suggested Time: 1 1.5 Hours Crosscutting Concepts: Desired Results

More information

CHAPTER 2.0 ANSWER B.20.2

CHAPTER 2.0 ANSWER B.20.2 CHAPTER 2.0 ANSWER 1. A tank is filled with seawater to a depth of 12 ft. If the specific gravity of seawater is 1.03 and the atmospheric pressure at this location is 14.8 psi, the absolute pressure (psi)

More information

Name Partner Date Class

Name Partner Date Class Name Partner Date Class FLUIDS Part 1: Archimedes' Principle Equipment: Dial-O-Gram balance, small beaker (150-250ml), metal specimen, string, calipers. Object: To find the density of an object using Archimedes'

More information

Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2

Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2 Gravitational Forces 13.1 Newton s Law of Universal Gravity Newton discovered that gravity is universal. Everything pulls on everything else in the universe in a way that involves only mass and distance.

More information

An experimental outcome that affects buoyancy

An experimental outcome that affects buoyancy Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi (EFMED) Cilt 5, Sayı 2, Aralık 2011, sayfa 1-5 Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education

More information

A Novel Way to Measure the Density of a Solid. By David Chandler, Porterville College. David@DavidChandler.com

A Novel Way to Measure the Density of a Solid. By David Chandler, Porterville College. David@DavidChandler.com A Novel Way to Measure the Density of a Solid By David Chandler, Porterville College David@DavidChandler.com I was recently explaining to a middle school teacher how to measure the density of a solid object

More information

Practice final for Basic Physics spring 2005 answers on the last page Name: Date:

Practice final for Basic Physics spring 2005 answers on the last page Name: Date: Practice final for Basic Physics spring 2005 answers on the last page Name: Date: 1. A 12 ohm resistor and a 24 ohm resistor are connected in series in a circuit with a 6.0 volt battery. Assuming negligible

More information

Density and Buoyancy. Chapter What is density and how can you measure it? 2. What two things does density depend on?

Density and Buoyancy. Chapter What is density and how can you measure it? 2. What two things does density depend on? Chapter 4 Density and Buoyancy Will it float or will it sink? If you are designing ships this is a very important question. The largest ship in the world is the Jahre Viking, an oil-carrying tanker. This

More information

Exploring Buoyancy. Design Challenge Learning. https://www.thetech.org/educators/design- challenge- learning

Exploring Buoyancy. Design Challenge Learning. https://www.thetech.org/educators/design- challenge- learning How low can you go? Students are challenged to use their understanding of buoyancy, density, and pressure to design and build ocean exploring devices. As students iterate through this design challenge,

More information

Significant figures. Significant figures. Rounding off numbers. How many significant figures in these measurements? inches. 4.

Significant figures. Significant figures. Rounding off numbers. How many significant figures in these measurements? inches. 4. Significant figures All non-zero numbers are always significant 2.38 has three significant figures 25 has two significant figures Are zeros significant? It depends on their position in the number. A zero

More information

Fluid Mechanics Definitions

Fluid Mechanics Definitions Definitions 9-1a1 Fluids Substances in either the liquid or gas phase Cannot support shear Density Mass per unit volume Specific Volume Specific Weight % " = lim g#m ( ' * = +g #V $0& #V ) Specific Gravity

More information