LAB #3: MEASURING SPECIFIC GRAVITY AND DENSITY. Setup and Materials for Experiment


 Kathleen Watkins
 7 years ago
 Views:
Transcription
1 Setup and Materials for Experiment 1
2 OVERVIEW The mass density of a substance is a measure of the mass that that substance contains in a given volume. Mathematically is written: ρ = m V ( Density = Volume ) In the SI system, the units of mass density are g/cm 3 or kg/m 3. In the English system, weight density (ρw) is commonly used. ρ w = w V (Weight Density = Weight Volume ) In the English system, the unit of weight density is lb/ft 3. The density of a solid may be determined by measuring its mass with balance scales, and dividing by its volume. If the solid is regular, the volume may be found by measurements and calculation. The volume of an irregular solid may be determined by observing the volume of water displaced when it is immersed in water. A solid object immersed in water displaces an equal volume of water. The object s weight while in the water because of the displaced water. The apparent weight (wapp) of the object in water is: w app = w actual  w water The buoyant force (FB) on an object immersed in water is equal to the weight of the water it displaces (wwater). In this lab you ll measure the mass and volume of an object and calculate its mass density. You will also weigh another object in air and in water to see the difference between actual and apparent weight. The specific gravity (S.G.) of a substance is a number that states the ratio between the density of a substance and the density of pure water. It is written: S. G. = ρ ρ water Either mass density or weight density may be used to find specific gravity, but the units must be identical for the substance and water. If one is calculating the specific gravity using the weight density, the formula would be: S. G. = ρ w w (water) In either case, Specific gravity has no units; it is a pure number ratio. 2
3 OVERVIEW CONTINUED: A hydrometer is a device that measures the specific gravity of liquids. You will use a hydrometer in this experiment to measure the specific gravity of some liquids. The scaled hydrometer is an airfilled tube that is weighted at the bottom and sealed so that it floats upright in liquid. It is placed in water, and the level at which it floats is marked 1.000; any other liquid in which it floats at the same level must have a density equal to water, so its specific gravity is If the tube floats higher in an unknown liquid, that liquid is denser than water. If the tube sinks to a lower level, then the liquid is less dense than water. The tube is calibrated in very small increments so that it is very precise, and the specific gravity can be read directly. The density of the liquid may be determined by measuring the specific gravity with a hydrometer and computing with the equation: ρ = (S. G. )(ρ water ) 3
4 OBJECTIVES: A) Find the density of a solid by measuring its mass and volume. B) Measure specific gravity of a liquid using a hydrometer C) Compute the density of a liquid, knowing its specific gravity. EQUIPMENT REQUIRED: Balance Scales Water Vernier Calipers Isopropyl Alcohol 0 to 2.5 N Spring Scale 50% RV Antifreeze Hydrometers (two different scales) Hydrometer Cylinder Small Metal Cylinder Aluminum Cube Beaker PROCEDURE I. DENSITY OF A SOLID 1. Sketch the metal cylinder in the space provided in Table 1. Record the type of material in Table Measure the diameter and height of the cylinder, and record the values in the space provided. 3. Using the beam balance, measure and record the mass of the cylinder. 4. Compute the volume of the cylinder in units of cubic centimeters. Record your answer in Table Calculate the mass density, ρ, in units of grams per cm3, using the equation ρ = m V Round off the answer according to the rules of accuracy. Record the value in Table 1. II. MEASURING ACTUAL WEIGHT, APPARENT WEIGHT, AND BUOYANT FORCE. 1. Be sure the spring scale reads 0 with no weight attached. Hang the aluminum cube from the spring scale. Record the reading as the cube s actual weight in table With the aluminum cube still hanging from the spring scale, immerse the cube in a beaker of water and measure its weight. This is the apparent weight; it whould be less that the actual weight. Record the apparent weight in table Subtract the apparent weight from the actual weight to obtain the weight of water displaced by the cube (this is the buoyant force, FB): F B = w actual  w apparent Record the buoyant force in table 2. 4
5 III. SPECIFIC GRAVITY AND DENSITY OF A LIQUID 1. Place a hydrometer (with a scale on it) into an empty graduated cylinder and then carefully pour just enough isopropyl alcohol into the cylinder so that the hydrometer begins to float. Read the line on the hydrometer (see the figure below) where the top of the alcohol meets and record this value in Data Table 3 for isopropyl alcohol. Remove the hydrometer, rinse it, and place it back in its box. 2. Calculate the measured mass density using the equation ρ meas = (S.G.)ρwater) where ρ meas is the measured mass density of the substance, SG is the specific gravity, and ρwater is the mass density of water (1.0 g/ cm 3 ). Record the measured mass density in Data Table Measure the mass of an empty graduated cylinder on a triplebeam balance. Record its mass at the top of Data Table Pour a small sample of isopropyl alcohol into the graduated cylinder. Read and record its volume in Data Table 3. Measure the combined mass of the alcohol and graduated cylinder on a triplebeam balance. Subtract the mass of the beaker from this value to obtain the mass of the isopropyl alcohol sample. Record the mass of the sample. 7. Calculate the calculated mass density of the sample using the equation: ρ calc = m V where ρ calc is the mass density of the substance, m is the mass and V is the volume. 8. Calculate the percent difference (%Δ) between your two mass density values using the equation %Δ = ρ ca1c ρ meas x 100.0% ρ meas The vertical brackets in the numerator indicate that you are to use the absolute value of ρ ca1c ρ meas. 9. Repeat steps C2 through C7 for the 50% antifreeze mixture. Disregard the range of values given in step C2. We will do two samples only. NOTE: For question #1 on the analysis page, compare the two mass density values, rather than the two mass values. 5
6 OBJECTIVES: SKETCH OF LAB SETUP: TABLE 1: DENSITY OF A SOLID OBJECT Sketch: Dimensions Volume V (cm 3 ) m (grams) Density (g/cm 3 ) Material: Text Book Density Value TABLE 2: ACTUAL AND APPARENT WEIGHT OF AN OBJECT Actual Weight of Aluminum Cube (N) Apparent Weight of Cube (N) Buoyant Force (weight of water displaced) (N) TABLE 3: SPECIFIC GRAVITY OF A LIQUID of Beaker: of Beaker and Sample: 1) 2) Specific Gravity (Float Reading) Density (g/cm 3 ) Sample Volume V (cm 3 ) Calculated Sample m (grams) Calculated Sample Density (g/cm 3 ) % Difference calc  meas = BestValue x 100% 1 2 6
Three Methods for Calculating the Buoyant Force Gleue: Physics
Three Methods for Calculating the Buoyant Force Gleue: Physics Name Hr. The Buoyant Force (F b ) is the apparent loss of weight for an object submerged in a fluid. For example if you have an object immersed
More informationChapter 3 Student Reading
Chapter 3 Student Reading If you hold a solid piece of lead or iron in your hand, it feels heavy for its size. If you hold the same size piece of balsa wood or plastic, it feels light for its size. The
More informationArchimedes Principle. Biological Systems
Archimedes Principle Introduction Many of the substances we encounter in our every day lives do not have rigid structure or form. Such substances are called fluids and can be divided into two categories:
More informationBuoyant Force and Archimedes' Principle
Buoyant Force and Archimedes' Principle Introduction: Buoyant forces keep Supertankers from sinking and party balloons floating. An object that is more dense than a liquid will sink in that liquid. If
More informationPhysics 181 Summer 2011  Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle
Physics 181 Summer 2011  Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle 1 Purpose 1. To determine the density of a fluid, such as water, by measurement of its mass when
More informationDensity and Archimedes Principle
Density and Archimedes Principle Objectives: To understand the concept of density and its relationship to various materials. To understand and use Archimedes Principle. Equipment: Dial calipers, Graduated
More informationMeasurement of Length, Mass, Volume and Density
Measurement of Length, Mass, Volume and Density Experimental Objective The objective of this experiment is to acquaint you with basic scientific conventions for measuring physical quantities. You will
More informationBuoyant Force and Archimedes Principle
Buoyant Force and Archimedes Principle Predict the behavior of fluids as a result of properties including viscosity and density Demonstrate why objects sink or float Apply Archimedes Principle by measuring
More informationBuoyant Force. Goals and Introduction
Buoyant Force Goals and Introduction When an object is placed in a fluid, it either floats or sinks. While the downward gravitational force, F g, still acts on the object, an object in a fluid is also
More informationDETERMINING THE DENSITY OF LIQUIDS & SOLIDS
DETERMINING THE DENSITY OF LIQUIDS & SOLIDS 17 Density, like color, odor, melting point, and boiling point, is a physical property of matter. Therefore, density may be used in identifying matter. Density
More informationDensity and Archimedes Principle
Density and Archimedes Principle Objectives: To understand the concept of density and its relationship to various materials. To understand and use Archimedes Principle. Equipment: Dial calipers, Graduated
More informationTest Bank  Chapter 3 Multiple Choice
Test Bank  Chapter 3 The questions in the test bank cover the concepts from the lessons in Chapter 3. Select questions from any of the categories that match the content you covered with students. The
More informationDensity Determinations and Various Methods to Measure
Density Determinations and Various Methods to Measure Volume GOAL AND OVERVIEW This lab provides an introduction to the concept and applications of density measurements. The densities of brass and aluminum
More informationBuoyancy Problem Set
Buoyancy Problem Set 1) A stone weighs 105 lb in air. When submerged in water, it weighs 67.0 lb. Find the volume and specific gravity of the stone. (Specific gravity of an object: ratio object density
More informationTeacher Information Lesson Title: Density labs
Teacher Information Lesson Title: Density labs Lesson Description: These labs are hands on exercises that will allow the students to measure and calculate the densities of different types of objects. The
More informationActivity P13: Buoyant Force (Force Sensor)
Activity P13: Buoyant Force (Force Sensor) Equipment Needed Qty Equipment Needed Qty Economy Force Sensor (CI6746) 1 Mass and Hanger Set (ME9348) 1 Base and Support Rod (ME9355) 1 Ruler, metric 1 Beaker,
More informationExperiment #4 Sugar in Soft Drinks and Fruit Juices. Laboratory Overview CHEM 1361. August 2010
Experiment #4 Sugar in Soft Drinks and Fruit Juices Laboratory Overview CHEM 1361 August 2010 Gary S. Buckley, Ph.D. Department of Physical Sciences Cameron University Learning Objectives Relate density
More informationBuoyancy and Archimedes Principle. Buoyancy and Archimedes Principle Assume block is in equilibrium.
Assume block is in equilibrium. Then upward forces must equal downward forces. Upward force: pressure from fluid Downward force: atmospheric pressure plus weight Therefore In this case, the object is less
More informationEighth Grade, Density To Float or Not to Float? 2004 Colorado Unit Writing Project 1
Density To Float or Not to Float? That is the Question! Grade Level or Special Area: Eighth Grade Science Written by: Aida Peterson, Clear Lake Middle School, Denver, Colorado Length of Unit: Twelve lessons
More informationA Novel Way to Measure the Density of a Solid. By David Chandler, Porterville College. David@DavidChandler.com
A Novel Way to Measure the Density of a Solid By David Chandler, Porterville College David@DavidChandler.com I was recently explaining to a middle school teacher how to measure the density of a solid object
More informationChapter 13  Solutions
= Chapter 13  Solutions Description: Find the weight of a cylindrical iron rod given its area and length and the density of iron. Part A On a parttime job you are asked to bring a cylindrical iron rod
More informationCHAPTER 3: FORCES AND PRESSURE
CHAPTER 3: FORCES AND PRESSURE 3.1 UNDERSTANDING PRESSURE 1. The pressure acting on a surface is defined as.. force per unit. area on the surface. 2. Pressure, P = F A 3. Unit for pressure is. Nm 2 or
More informationMeasurement and Calibration
Adapted from: H. A. Neidig and J. N. Spencer Modular Laboratory Program in Chemistry Thompson Learning;, University of Pittsburgh Chemistry 0110 Laboratory Manual, 1998. Purpose To gain an understanding
More informationActivity P13: Buoyant Force (Force Sensor)
July 21 Buoyant Force 1 Activity P13: Buoyant Force (Force Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Archimedes Principle P13 Buoyant Force.DS P18 Buoyant Force P18_BUOY.SWS
More informationDensity Lab. If you get stuck or are uncertain, please ask questions and/or refer to the hints at the end of the lab. Name: Section: Due Date:
Name: Section: Due Date: Lab 01B1 If you get stuck or are uncertain, please ask questions and/or refer to the hints at the end of the lab. Density Lab Density is an important concept in oceanography,
More informationLiquid level measurement using hydrostatic pressure and buoyancy
iquid level measurement using hydrostatic pressure and buoyancy This worksheet and all related files are licensed under the Creative Commons Attribution icense, version 1.0. To view a copy of this license,
More informationUNIT (1) MEASUREMENTS IN CHEMISTRY
UNIT (1) MEASUREMENTS IN CHEMISTRY Measurements are part of our daily lives. We measure our weights, driving distances, and gallons of gasoline. As a health professional you might measure blood pressure,
More informationChemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid
Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid Introduction Many metals react with acids to form hydrogen gas. In this experiment, you will use the reactions
More informationStudent Exploration: Archimedes Principle
Name: Date: Student Exploration: Archimedes Principle Vocabulary: Archimedes principle, buoyant force, density, displace, mass, volume, weight Prior Knowledge Questions (Do these BEFORE using the Gizmo.)
More informationChapter 3, Lesson 4: Density: Sink and Float for Solids
Chapter 3, Lesson 4: Density: Sink and Float for Solids Key Concepts The density of an object determines whether it will float or sink in another substance. An object will float if it is less dense than
More informationGlassware Calibration Guidelines Laura B. Secor and Dwight R. Stoll, 02/01/2012 Adapted from National Bureau of Standards Document 74461
Glassware Calibration Guidelines Laura B. Secor and Dwight R. Stoll, 02/0/202 Adapted from National Bureau of Standards Document 7446 The purpose of calibrating glassware is to determine the volume of
More information4S Archimedes Test for Density
4S Archimedes Test for Density Density, or specific gravity of minerals is important in separating them. It is important to have a test for the density of mineral samples found at Snailbeach. Galena is
More informationDensity. Density is how concentrated or compact matter is.
Density Density is how concentrated or compact matter is. Packing snow into snowballs increases its density. You are squeezing large amounts of matter into small volumes of space. Equation for Density
More informationS.3.6. BULK DENSITY AND TAPPED DENSITY OF POWDERS. Final text for addition to The International Pharmacopoeia
March 2012 S.3.6. BULK DENSITY AND TAPPED DENSITY OF POWDERS Final text for addition to The International Pharmacopoeia This monograph was adopted at the Fortysixth WHO Expert Committee on Specifications
More informationThe volume of a penny will be calculated from its mass and density.
Measurement and Density In science a key concern is the quantities involved in chemical processes. These amounts can be directly measured or calculated from other measurements. A measurement consists of
More informationChapter 15. FLUIDS. 15.1. What volume does 0.4 kg of alcohol occupy? What is the weight of this volume? m m 0.4 kg. ρ = = ; ρ = 5.
Chapter 15. FLUIDS Density 15.1. What volume does 0.4 kg of alcohol occupy? What is the weight of this volume? m m 0.4 kg ρ = ; = = ; = 5.06 x 104 m ρ 790 kg/m W = D = ρg = 790 kg/m )(9.8 m/s )(5.06 x
More informationDensity Determinations
CHEM 121L General Chemistry Laboratory Revision 3.1 Density Determinations To learn about intensive physical properties. To learn how to measure the density of substances. To learn how to characterize
More informationPOTATO FLOAT. Common Preconceptions:
POTATO FLOAT Unit: Salinity Patterns & the Water Cycle l Grade Level: Middle l Time Required: 30 min. (in class) after solutions are prepared by the teacher l Content Standard: NSES Physical Science, properties
More informationFluids I. Level : Conceptual Physics/Physics I. Q1) Order the following materials from lowest to greatest according to their densities.
Fluids I Level : Conceptual Physics/Physics I Teacher : Kim 1. Density One of the properties of any substances (solids, liquids and gases) is the measure of how tightly the material is packed together.
More informationName Date Hour. Buoyancy
Name Date Hour Buoyancy Consider: If I gave you an object that you had never seen before and it was made of unknown material and then asked you whether or not it would float in water, what would you base
More informationWritten By Kelly Lundstrom & Kennda Lynch January 31, 2012 Milk Dye ACTIVITY PLAN
Milk Dye ACTIVITY PLAN Objective: Students will use the scientific method to test the difference between using whole milk and skim milk in this milk and food dye experiment. Students will explore ideas
More information2.2 Scientific Notation: Writing Large and Small Numbers
2.2 Scientific Notation: Writing Large and Small Numbers A number written in scientific notation has two parts. A decimal part: a number that is between 1 and 10. An exponential part: 10 raised to an exponent,
More informationChapter 2 Measurement and Problem Solving
Introductory Chemistry, 3 rd Edition Nivaldo Tro Measurement and Problem Solving Graph of global Temperature rise in 20 th Century. Cover page Opposite page 11. Roy Kennedy Massachusetts Bay Community
More information109 Adopted: 27.07.95
109 Adopted: 27.07.95 OECD GUIDELINE FOR THE TESTING OF CHEMICALS Adopted by the Council on 27 th July 1995 Density of Liquids and Solids INTRODUCTION 1. This guideline is a revised version of the original
More informationoil liquid water water liquid Answer, Key Homework 2 David McIntyre 1
Answer, Key Homework 2 David McIntyre 1 This printout should have 14 questions, check that it is complete. Multiplechoice questions may continue on the next column or page: find all choices before making
More informationDensity. mass m volume V
Density Readin assinment: Chan, Chemistry 10 th edition, pp. 1819. Goals The purpose of this experiment is to become familiar with the concept of density. We will determine the density of water and of
More informationChapter 2 Measurements in Chemistry. Standard measuring device. Standard scale gram (g)
1 Chapter 2 Measurements in Chemistry Standard measuring device Standard scale gram (g) 2 Reliability of Measurements Accuracy closeness to true value Precision reproducibility Example: 98.6 o F 98.5 o
More informationArchimedes' Principle
OpenStaxCNX module: m42196 1 Archimedes' Principle OpenStax College This work is produced by OpenStaxCNX and licensed under the Creative Commons Attribution License 3.0 Abstract Dene buoyant force. State
More informationBuoyancy. What floats your boat?
Buoyancy What floats your boat? Sink or float? Test The cube sinks to the bottom. WHY? Weight Due to the pulling force of gravity both the cube and the water have the property of weight. Gravity Gravity
More informationMercury is poured into a Utube as in Figure (14.18a). The left arm of the tube has crosssectional
Chapter 14 Fluid Mechanics. Solutions of Selected Problems 14.1 Problem 14.18 (In the text book) Mercury is poured into a Utube as in Figure (14.18a). The left arm of the tube has crosssectional area
More informationPressure in Fluids. Introduction
Pressure in Fluids Introduction In this laboratory we begin to study another important physical quantity associated with fluids: pressure. For the time being we will concentrate on static pressure: pressure
More information10 g 5 g? 10 g 5 g. 10 g 5 g. scale
The International System of Units, or the SI Units Vs. Honors Chem 1 LENGTH In the SI, the base unit of length is the Meter. Prefixes identify additional units of length, based on the meter. Smaller than
More informationDensity: Sea Water Mixing and Sinking
Density: Sea Water Mixing and Sinking Unit: Salinity Patterr~s & the Water Cycle I Grade Level: Middle or High I Time Required: two 45 minute class periods I Content Standard: NSES Physical Science, properties
More informationHomework 9. Problems: 12.31, 12.32, 14.4, 14.21
Homework 9 Problems: 1.31, 1.3, 14.4, 14.1 Problem 1.31 Assume that if the shear stress exceeds about 4 10 N/m steel ruptures. Determine the shearing force necessary (a) to shear a steel bolt 1.00 cm in
More informationExperiment #2: Determining Sugar Content of a Drink. Objective. Introduction
Experiment #2: Determining Sugar Content of a Drink Objective How much sugar is there in your drink? In this experiment, you will measure the amount of sugar dissolved in a soft drink by using two different
More informationLesson 2 The Buoyant Force
Lesson 2 Student Labs and Activities Page Launch Lab 26 Content Vocabulary 27 Lesson Outline 28 MiniLab 30 Content Practice A 31 Content Practice B 32 School to Home 33 Key Concept Builders 34 Enrichment
More informationPhysics 1114: Unit 6 Homework: Answers
Physics 1114: Unit 6 Homework: Answers Problem set 1 1. A rod 4.2 m long and 0.50 cm 2 in crosssectional area is stretched 0.20 cm under a tension of 12,000 N. a) The stress is the Force (1.2 10 4 N)
More informationChapter 3. Flotation. ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Buoyancy
ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 3 Flotation Buoyancy Buoyancy arises from the fact that fluid pressure increases with depth and from the fact that the
More informationRecovery of Elemental Copper from Copper (II) Nitrate
Recovery of Elemental Copper from Copper (II) Nitrate Objectives: Challenge: Students should be able to  recognize evidence(s) of a chemical change  convert word equations into formula equations  perform
More informationEXPERIMENT 10 CONSTANT HEAD METHOD
EXPERIMENT 10 PERMEABILITY (HYDRAULIC CONDUCTIVITY) TEST CONSTANT HEAD METHOD 106 Purpose: The purpose of this test is to determine the permeability (hydraulic conductivity) of a sandy soil by the constant
More informationPART I SIEVE ANALYSIS OF MATERIAL RETAINED ON THE 425 M (NO. 40) SIEVE
Test Procedure for PARTICLE SIZE ANALYSIS OF SOILS TxDOT Designation: Tex110E Effective Date: August 1999 1. SCOPE 1.1 This method covers the quantitative determination of the distribution of particle
More informationPhysics 3 Summer 1989 Lab 7  Elasticity
Physics 3 Summer 1989 Lab 7  Elasticity Theory All materials deform to some extent when subjected to a stress (a force per unit area). Elastic materials have internal forces which restore the size and
More informationChapter 1: Chemistry: Measurements and Methods
Chapter 1: Chemistry: Measurements and Methods 1.1 The Discovery Process o Chemistry  The study of matter o Matter  Anything that has mass and occupies space, the stuff that things are made of. This
More informationSEPARATION OF A MIXTURE OF SUBSTANCES LAB
SEPARATION OF A MIXTURE OF SUBSTANCES LAB Purpose: Every chemical has a set of defined physical properties, and when combined they present a unique fingerprint for that chemical. When chemicals are present
More informationXI / PHYSICS FLUIDS IN MOTION 11/PA
Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A
More informationKeep Your Head Above Water
Grade 8 Activity Keep Your Head Above Water Do things that float behave differently in salt and fresh water? What lets them float, and when do they sink? Concepts Water has physical properties of density
More informationExperiment 6 Coffeecup Calorimetry
61 Experiment 6 Coffeecup Calorimetry Introduction: Chemical reactions involve the release or consumption of energy, usually in the form of heat. Heat is measured in the energy units, Joules (J), defined
More informationApr 17, 2000 LAB MANUAL 1302.0. 1302 PARTICLE SIZE ANALYSIS OF SOILS AASHTO Designation T 88 (Mn/DOT Modified)
Apr 17, 2000 LAB MANUAL 1302.0 1302 PARTICLE SIZE ANALYSIS OF SOILS AASHTO Designation T 88 (Mn/DOT Modified) 1302.1 SCOPE This method describes a procedure for the quantitative determination of the distribution
More informationKey. Name: OBJECTIVES
Name: Key OBJECTIVES Correctly define: observation, inference, classification, percent deviation, density, rate of change, cyclic change, dynamic equilibrium, interface, mass, volume GRAPHICAL RELATIONSHIPS
More informationExperiment 1: Measurement and Density
Experiment 1: Measurement and Density Chemistry 140 Learning Objectives Become familiar with laboratory equipment and glassware Begin to see the link between measurement and chemical knowledge Begin to
More informationCONSTANT HEAD AND FALLING HEAD PERMEABILITY TEST
CONSTANT HEAD AND FALLING HEAD PERMEABILITY TEST 1 Permeability is a measure of the ease in which water can flow through a soil volume. It is one of the most important geotechnical parameters. However,
More informationALPERTON COMMUNITY SCHOOL MATHS FACULTY ACHIEVING GRADE A/A* EXAM PRACTICE BY TOPIC
ALPERTON COMMUNITY SCHOOL MATHS FACULTY ACHIEVING GRADE A/A* EXAM PRACTICE BY TOPIC WEEK Calculator paper Each set of questions is followed by solutions so you can check & mark your own work CONTENTS TOPIC
More informationEXPERIMENT 2 EGG OBSERVATIONS. Contents: Pages 14: Teachers Guide Page 5: Student Worksheet. An Osmosis Eggsperiment ACKNOWLEDGEMENTS
EXPERIMENT 2 EGG OBSERVATIONS An Osmosis Eggsperiment Contents: Pages 14: Teachers Guide Page 5: Student Worksheet ACKNOWLEDGEMENTS The creation of this experiment and its support materials would not
More informationEXAMPLE EXERCISE 3.1 Metric Basic Units and Prefixes
EXAMPLE EXERCISE 3.1 Metric Basic Units and Prefixes Give the symbol for each of the following metric units and state the quantity measured by each unit: (a) gigameter (b) kilogram (c) centiliter (d) microsecond
More informationApr 17, 2000 LAB MANUAL 1811.0
Apr 17, 2000 LAB MANUAL 1811.0 1811 BULK SPECIFIC GRAVITY (GMB) AND DENSITY OF COMPACTED BITUMINOUS SPECIMENS USING PARAFFIN OR PARAFILM ASTM Designation D 1188 (MN/DOT Modified) 1811.1 SCOPE This test
More informationChapter Test B. Chapter: Measurements and Calculations
Assessment Chapter Test B Chapter: Measurements and Calculations PART I In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1.
More informationEXERCISE # 1.Metric Measurement & Scientific Notation
EXERCISE # 1.Metric Measurement & Scientific Notation Student Learning Outcomes At the completion of this exercise, students will be able to learn: 1. How to use scientific notation 2. Discuss the importance
More informationMEASUREMENT OF VISCOSITY OF LIQUIDS BY THE STOKE S METHOD
130 Experiment366 F MEASUREMENT OF VISCOSITY OF LIQUIDS BY THE STOKE S METHOD Jeethendra Kumar P K, Ajeya PadmaJeeth and Santhosh K KamalJeeth Instrumentation & Service Unit, No610, Tata Nagar, Bengaluru560092.
More informationWrite True or False in the space provided.
CP Physics  Exam #7 Practice Name: _ Class: Date: Write True or False in the space provided. 1) Pressure at the bottom of a lake depends on the weight density of the lake water and on the volume of the
More informationCalibration and Use of a StrainGageInstrumented Beam: Density Determination and WeightFlowRate Measurement
Chapter 2 Calibration and Use of a StrainGageInstrumented Beam: Density Determination and WeightFlowRate Measurement 2.1 Introduction and Objectives This laboratory exercise involves the static calibration
More informationEXPERIMENT 9 Evaluation of the Universal Gas Constant, R
Outcomes EXPERIMENT 9 Evaluation of the Universal Gas Constant, R After completing this experiment, the student should be able to: 1. Determine universal gas constant using reaction of an acid with a metal.
More informationScience  7 th grade  Matter  Density  Science Process, Inquiry
Science  7 th grade  Matter  Density  Science Process, Inquiry Overview The main idea associated with these activities is density. Density, as it is developed within these activities threads most closely
More informationLesson 9.1 The Theorem of Pythagoras
Lesson 9.1 The Theorem of Pythagoras Give all answers rounded to the nearest 0.1 unit. 1. a. p. a 75 cm 14 cm p 6 7 cm 8 cm 1 cm 4 6 4. rea 9 in 5. Find the area. 6. Find the coordinates of h and the radius
More information01 The Nature of Fluids
01 The Nature of Fluids WRI 1/17 01 The Nature of Fluids (Water Resources I) Dave Morgan Prepared using Lyx, and the Beamer class in L A TEX 2ε, on September 12, 2007 Recommended Text 01 The Nature of
More informationB = 1 14 12 = 84 in2. Since h = 20 in then the total volume is. V = 84 20 = 1680 in 3
45 Volume Surface area measures the area of the twodimensional boundary of a threedimensional figure; it is the area of the outside surface of a solid. Volume, on the other hand, is a measure of the space
More informationCHAPTER 29 VOLUMES AND SURFACE AREAS OF COMMON SOLIDS
CHAPTER 9 VOLUMES AND SURFACE AREAS OF COMMON EXERCISE 14 Page 9 SOLIDS 1. Change a volume of 1 00 000 cm to cubic metres. 1m = 10 cm or 1cm = 10 6m 6 Hence, 1 00 000 cm = 1 00 000 10 6m = 1. m. Change
More informationExperiment 4 The Relationship of Density and Molarity of an Aqueous Salt Solution
Experiment 4 The Relationship of Density and Molarity of an Aqueous Salt Solution Purpose: The purpose of this experiment is to investigate the relationship between the concentration of an aqueous salt
More informationUnit A: Studying Materials Scientifically
ITEM BANKS Unit A: Studying Materials Scientifically Multiple choice: Circle the best answer. 1. What safety rules should you always follow while doing a science laboratory? a. Wear safety goggles at all
More informationCSUS Department of Chemistry Experiment 8 Chem.1A
EXPERIMENT #8 Name: PRELABORATORY ASSIGNMENT: Lab Section 1. The alkali metals are so reactive that they react directly with water in the absence of acid. For example, potassium reacts with water as follows:
More informationEnergy Content of Fuels
Experiment 9 Energy content is an important property of fuels. This property helps scientists and engineers determine the usefulness of a fuel. Energy content is the amount of heat produced by the burning
More informationThe Composition of Metals and Alloys
1 The Composition of Metals and Alloys Metals are shiny, malleable substances that conduct heat and electricity. They comprise the larest class of elements in the Periodic Table. All metals except mercury
More informationPartner: Jack 17 November 2011. Determination of the Molar Mass of Volatile Liquids
Partner: Jack 17 November 2011 Determination of the Molar Mass of Volatile Liquids Purpose: The purpose of this experiment is to determine the molar mass of three volatile liquids. The liquid is vaporized
More informationWEEK 1. Engineering Calculations Processes Process Variables
WEEK 1 Engineering Calculations Processes Process Variables 2.1 Units and Dimensions Units and dimensions are important in science and engineering A measured quantity has a numerical value and a unit (ex:
More informationCalibration of Volumetric Glassware
CHEM 311L Quantitative Analysis Laboratory Revision 2.3 Calibration of Volumetric Glassware In this laboratory exercise, we will calibrate the three types of glassware typically used by an analytical chemist;
More informationDetermination of Molar Mass by FreezingPoint Depression
DETERMINATION OF MOLAR MASS BY FREEZINGPOINT DEPRESSION 141 Determination of Molar Mass by FreezingPoint Depression OBJECTIVES: Gain familiarity with colligative properties of nonelectrolyte solutions
More informationHonors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C4.4)
Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1 1. 2. 3. 4. 5. 6. Question What is a symbolic representation of a chemical reaction? What 3 things (values) is a mole of a chemical
More informationArea & Volume. 1. Surface Area to Volume Ratio
1 1. Surface Area to Volume Ratio Area & Volume For most cells, passage of all materials gases, food molecules, water, waste products, etc. in and out of the cell must occur through the plasma membrane.
More informationConcept Questions Archimedes Principle. 8.01t Nov 24, 2004
Concept Questions Archimedes Principle 8.01t Nov 24, 2004 Pascal s Law Pressure applied to an enclosed fluid is transmitted undiminished to every portion of the fluid and the walls of the containing vessel
More informationCHAPTER 2: MEASUREMENT AND PROBLEM SOLVING
CHAPTER 2: MEASUREMENT AND PROBLEM SOLVING Problems: 164, 6988, 91120, 123124 2.1 Measuring Global Temperatures measurement: a number with attached units When scientists collect data, it is important
More informationDetermination of a Chemical Formula
1 Determination of a Chemical Formula Introduction Molar Ratios Elements combine in fixed ratios to form compounds. For example, consider the compound TiCl 4 (titanium chloride). Each molecule of TiCl
More information