Physics 181 Summer Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle


 Egbert Briggs
 2 years ago
 Views:
Transcription
1 Physics 181 Summer Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle 1 Purpose 1. To determine the density of a fluid, such as water, by measurement of its mass when confined in a known volume; e.g., a 25ml pycnometer (glass bottle). 2. To determine the density of a cubicshaped solid, such as aluminum, by measuring its mass and volume. 3. To become familiar with some basic properties of fluids, such as density, pressure, and buoyant forces, and to verify Archimedes' principle. The physics of such phenomena is referred to as hydrostatics. 4. To utilize Archimedes' principle to determine the density of water. 2 Introduction 2.1 Definition of mass density Many physical properties of solid objects or fluids depend not on their total mass, but on their mass density. The mass density of a material, designated by the Greek letter ρ (rho), is defined as the amount of mass per unit volume. Its unit is g/cm 3 in cgs, or kg/m 3 in SI. For a solid object of mass m, and volume V, we have: m ρ = (1) V The density of a homogeneous fluid is similarly defined as the mass (m) of a sample of the fluid divided by the volume (V) it occupies. Normally, a fluid is confined in a container and therefore its volume is related to the volume of the container. Caution: Do not confuse the mass of an object with its weight. The SI units of mass (m) and weight, W, are the kilogram (kg) and the Newton (N), respectively. The pound (lb) is a unit of weight and not of mass. The weight and the mass of an object are related by W = mg where g is the acceleration of gravity ( cm/s 2 ). 2.2 Fluid pressure At any depth h in a fluid, there is a pressure due to the weight of the fluid above this depth. The deeper we descend, the greater is the pressure due to the overlying liquid. In fact, the pressure increases linearly with the depth of a fluid if its density remains constant. This can be deduced easily by considering a column of fluid shown as shaded in Fig. 1, which depicts a container filled with a fluid (f) of density, ρ f. The pressure, P, across any surface of area A in the fluid is defined in terms of the normal force, F, exerted by the fluid one the side of the surface: P =F/A (force per unit area), i.e, F=PA. The volume (V), in Fig 1, of the shaded cylindrical column of height h, and the base area A, is given by V=Ah, so that the mass of fluid contained in this volume is m = ρv = ρ f Ah. Therefore, the weight of the column is given by W = mg = ρ f Ahg.
2 2 Figure 1: Forces on a column of liquid Figure 2: Pressure P vs. depth h As the column is stationary, it is in static equilibrium, i.e., the sum of vertical forces is zero. Therefore, its weight, W, which acts in the downward direction on the base area A, is balanced by the difference between an upward force F  pushed up from below by the fluid  and the downward force F o  due to the atmospheric pressure. This net upward force acting on the column is called the buoyant force B, and its magnitude is equal to the weight (W) of the column (fluid). At equilibrium, the pressure P that the fluid exerts upwards on the bottom of this column must equal the atmospheric pressure P o, plus the weight (W) of the column divided by its area (A), i.e., the weight of the fluid column is supported by the difference in pressure forces pushing up from the bottom and down from the top of the fluid column. P = F/A, P o = F o /A, W/A = ρ f gh (2) P = P o + ρ f gh (3) Please note that from equations (2) and (3) we deduce the following: The fluid pressure increases linearly with depth in a liquid and also linearly with fluid density. The pressure increases with depth, P  P o, is directly proportional to the depth below the surface of the fluid as indicated by the linear relationship in Fig. 2. The pressure is propagated uniformly in all directions and across all cross sections in the fluid. This result is general and applies at any depth since the fluid below that depth does not contribute to the weight supported by the area A. Pressure P changes if the atmospheric pressure changes, in fact, it changes by the same amount as the change in the atmospheric pressure. 2.3 Archimedes' principle and its application Fig. 3 shows the outline of an irregular object immersed in a fluid and acted on by two forces, one due to its weight and the other due to the pressure exerted on its surface by the fluid. As shown in section 2.2 above, the pressure in a fluid increases with depth, causing the force from the fluid pushing up on the bottom of the object to be greater than that pushing down from the top of the object. The net effect is for the fluid to exert an upward resultant force on the object.
3 Physics 181 Summer Experiment # Archimedes' principle Figure 3. Forces on an irregular object immersed in a fluid. To calculate the net buoyant force on an irregularly shaped object, such as shown in Fig. 3, is difficult. However, the ancient Greek scientist and mathematician Archimedes (287C212 B.C.) managed to deduce the correct size of this buoyant force, independent of the shape of the object. The basic ideas in his reasoning are as follows. Archimedes considered the force exerted on a small portion of the fluid in a container. This small portion is itself in static equilibrium, otherwise it would rise or sink through the surrounding fluid. Because the small portion is in static equilibrium, the net force on it must be zero. Hence, the upward buoyant force, B, must equal the downward gravitational force, W = mg, i.e., the buoyant force on a volume of fluid is equal to the weight of the fluid. Archimedes further reasoned that if the liquid in this volume were removed and replaced by an object of exactly the same size and shape as this liquid portion, none of the liquid pressure forces acting on its surface would change. Because the object is exactly the same shape and volume as the fluid removed, it would fit exactly into the previous volume without compressing the surrounding fluid. Therefore, he arrived at the conclusion known as Archimedes' principle, that the net buoyant force B upward on any object immersed in a fluid is equal to the weight of the fluid displaced. Using the subscript f for fluid, we have: B = W f = m f g = (ρ f V obj )g (4) where the weight of the fluid has been expressed in terms of its density, ρ f, and its volume, which is equal to the volume of the object, V obj. This principle applies to any object immersed in any gas or fluid, such as a hotair or helium balloon or a submarine in water. The balloon (plus any weight it carries) is totally supported by the buoyant force of the air it displaces Application of Archimedes' principle Using Archimedes' principle we can easily determine whether an object (obj) will sink or float in a given fluid. This clearly depends on whether the buoyant force acting upward on the object, totally immersed in the fluid, is greater or less than the weight of the object. Using Archimedes' principle, as expressed by equation (4) to give the buoyant force in terms of the fluid density ρ f, we can calculate the net downward force as:
4 4 F net = W B F net = mg  W f F net = g(ρ obj V obj ) g(ρ f V obj ) F net = g(ρ obj  ρ f )V obj (5) Therefore, if the density of the object, ρ obj, is greater than the density of the fluid ρ f, the net force on the object is downward and the object sinks, but if the density of the object is less than that of the liquid, the net force is upward and the object floats. For example, because ice floats in water we conclude that the density of ice is less than the density of water. 3 Experimental Apparatus and Procedure 3.1 Theory of the balance The balance shown in Fig. 4 is used in this experiment to measure unknown masses and forces. An unknown mass, m, placed on the lefthand pan can be determined by finding a combination of standard masses, m s, which when placed on the righthand pan, have a weight W s = m s g that is equal to the weight of the unknown mass W = mg. In this case, the forces and torques exerted on both sides of the balance are equal and there is no net deflection or rotation of the indicator relative to the scale. The balance is sensitive to the gravitational forces (weight) on the unknown and standard objects and not on their masses. One is able to calibrate the balance in units of mass (grams) only because the acceleration of gravity is constant. (mg = m s g, where g is constant) Note that m = m s when W = W s. The balance used for this experiment has mass riders on two horizontal scales on the front of the balance (as shown in Fig. 4) which are used as the standard mass. Figure 4: The trip balance Use of the balance to measure the buoyant force A method for using the balance to measure buoyant forces on objects denser than the fluid is shown in the three diagrams in Fig. 5. The object is first balanced by placing an equal standard mass on the righthand pan, as shown in the center diagram. The object, suspended on a string attached to the pan, is immersed in the liquid, as shown in the last diagram. The buoyant force is calculated from the amount of mass Δm that must be removed from the righthand pan to obtain balance in the presence of the buoyant force acting on the object. Figure 5: Method to determine the buoyant force using Archimedes' principle.
5 The buoyant force is given by: Physics 181 Summer Experiment #8 5 B = (Δm)g (6) The density of the liquid may then be found by equating this buoyant force to the expression previously derived in terms of the fluid density and volume of the object: We solve this for the density of the fluid: B = ρ f V obj g (7) ρ f Δm = (8) Vobj We will use this method in the last part of the experiment to determine the density of water, by using an object of known volume and Archimedes' principle. This expression for the unknown fluid density has the dimensions of mass per unit volume. g/cm 3 = g/ml [1 milliliter of volume equals 1 cubic centimeter (cc) or 1 ml = 1 cm 3 ]. 3.2 Measurements Determination of the density of water This method to determine the density of water consists of measuring the mass of a known volume of water using the balance and a 25ml pycnometer, shown in Fig. 6. The pycnometer is also known as a volumetric flask, or specific gravity bottle. Its glass stopper has a capillary opening. It should be filled until the fluid level reaches the top of the capillary; only then will the volume of the fluid in the pycnometer equal the number stamped on it. Fill the pycnometer bottle to the top and then, insert the stopper. Wipe off the excess fluid that overflows from the stopper. Method: 1. Record the volume of the pycnometer (not exactly ml, be careful!) 2. First, balance the empty pycnometer and its stopper and record its mass. Figure 6: The pycnometer. 3. Fill the pycnometer with water until it is full, and insert stopper. Water will overflow the capillary opening. Wipe off any excess water on the outside of the pycnometer. 4. Measure and record the mass of the filled flask and stopper. 5. Empty the pycnometer when finished.
6 3.2.2 Measurement of the density of aluminum 6 Method: 1. Use a caliper to measure the three sides, (L a )(L b )(L c ), of the aluminum block. Record your results to the nearest tenth of a millimeter. 2. Measure and record the aluminum block's mass. A paper clip should be on the right pan so that the mass of the paper clip can be ignored. The mass of the thread is negligible Verification of Archimedes' principle Carry out the verification of Archimedes' principle using a device consisting of a pair of finely machined concentric cylinders, the cross section of which is shown in Fig. 7. The outer hollow cylinder is closed at one end. The matching solid cylinder fits inside the outer cylinder. Therefore, the volume of the solid cylinder 'precisely' equals the inner volume of the hollow cylinder. Determine whether Archimedes' principle holds by observing the volume of water needed to re balance the scale when the cylinder is immersed in water. Keep in mind that the volume in the hollow cylinder equals the volume of the solid cylinder. Figure 7. Concentric cylinders. Method: 1. Do not place the solid cylinder into the hollow one as the string may break when pulled. 2. Hang the solid cylinder (by use of the paper clip) over the side of the left pan and into an empty glass beaker. 3. Place the hollow cylinder on top of the left pan and balance with the sliding standard masses. Record the value of this combined mass as m Pour water into the glass beaker, making sure that the solid cylinder is totally immersed. 5. Record your observations as to what happened to the balance as you poured in the water. Which side of the pan balance is lifted as you poured in the water? Was the solid cylinder forced up by the buoyant force of water? 6. Remove any air bubbles which may have formed under the solid cylinder. 7. Rebalance the scale, and record this value as m Return the sliding masses so that the scale reads m 1 from step 3. The solid cylinder should be left immersed in the water, so the scale at this point will not be balanced! 9. Add water to the hollow cylinder until the scale is balanced. Be careful not to spill water onto the pan. (Use the eye dropper when the cylinder is about full.) 10. What happened to the left pan as you added water to the hollow cylinder in step 9? What can you
7 Physics 181 Summer Experiment #8 7 say about the volume of water you added to the hollow cylinder and the volume of the water (in the beaker) displaced by the solid cylinder? According to Archimedes's principle, should these volumes be the same? 11. Leave the cylinders separated when finished. Dry the hollow cylinder Measurement of the volume of the aluminum cube by Archimedes' principle Method: 1. Hang the aluminum cube (using string and a hook made from a paper clip) into an empty glass beaker. 2. Balance and record its mass, m Fill the beaker with water to totally immerse the cube. Record your observation. Which pan goes up? What causes the unbalance? 4. Remove any air bubbles which may have formed under the cube. 5. Rebalance the scale and record the new mass as indicated by the balance, m 2. 4 Calculations and Analysis of the Data 4.1 Calculation of the density of water 1. Compute the mass of water in the pycnometer by calculating the difference in standard mass used to balance the pycnometer when empty and when full of water. 2. Compute the density of water (g/ml) by dividing this mass in grams by its volume indicated on the side of the pycnometer. 3. Compare your result with the accepted value of the density of water at 20EC (page 9). 4.2 Calculation of the volume of the aluminum cube and its density 1. Calculate the volume of the cube, where V cube,1 = (L a )(L b )(L c ). 2. From its mass and volume, calculate the density of aluminum. Compare it with the accepted handbook value given in the Appendix I on page 9. Calculate the percent difference between the accepted and experimental values for the density of the aluminum block. 4.3 Calculations of buoyant force 1. Using Δm B, calculate the value of the buoyant force on the solid cylinder when water is added to the glass beaker in step 4 of Note comments in step 5 of 3.2.3, and answer them in this part of your lab report. 3. Give your response to the questions in step 10 of
8 4.4 Calculation of the volume of the aluminum cube. 8 As explained in section 2, the density of a liquid is given by: ( Δm) ρ f = V obj where V obj is the volume of the aluminum cube, V cube,  in this case  and where Δm is the amount of mass that must be removed from the righthand side of the balance to rebalance the aluminum cube when it is immersed in water. 1. Use m 1 and m 2 to calculate Δm for water. In addition, answer part 3 of Use the handbook value of the density of water at 20EC, given in the Appendix I on page 9, and the corresponding Δm in water, to obtain the volume of the aluminum cube. Compare this value to the volume calculated in step 1 of 4.2 above. Use 4.2 as the accepted value. 5 Questions 1. In a short table, compare your experimental results with the accepted densities. This is a simple repeat of and Calculate and list the percent difference between corresponding accepted and experimental values of the densities. 2. Discuss qualitatively the errors (random and/or systematic) in your various measurements of densities. 3. Calculate the buoyant force on the aluminum cube exerted by water using your data from Use cgs units ml of glycerin is poured into a liter container. The aluminum cube used in this experiment is dropped into the same container. Would the cube sink? Show your calculations. See Appendix I on page Determine the volume of a hydrogen balloon just large enough to lift a 75 kg person in a 50 kg basket (includes mass of balloon) off the ground. Here, assume that F net = 0.00 N when the balloon starts to lift, and that the weight of the person, basket and inflated balloon, is equal to the weight of the air displaced. A balloon (plus any weight it carries) is totally supported by the buoyant force of the air it displaces. See Appendix I on page 9. 6 Conclusion State your conclusion. What did you learn? How could the experiment be improved?
9 Physics 181 Summer Experiment #8 9 The Measurement of Density and Archimedes' Principle Appendix I Densities of some common materials. (The densities of the gases listed are given for 20EC and 1 atmospheric pressure.) Substance Density (g/cm 3 ) Air x10!3 Aluminum Glycerin 2.70 at T = 20EC 1.26 at T = 20EC Hydrogen x10!3 Water at T = 20EC (g/ml = grams/cm 3 = g/cc) Data Sheet Determination of the density of Water Measurements: 1. Volume of the pycnometer ml 2. Mass of the empty pycnometer and its stopper g 3. Mass of the full pycnometer and its stopper g 4. Temperature of the water o C 5. Error in reading thermometer 6. Error in reading scale balance ± δt = o C ± δm = g Computations: 1. Compute the mass of the water in the pycnometer g 2. Compute the density of the water g/ml 3. Handbook value of the density of the water (page 9) g/ml 4. Percent difference % Measurement of the density of aluminum Measurements: 1. Length of each side of the aluminum cube: L a = cm, L b = cm, L c = cm 2. Mass of the aluminum cube: g 3. Error in reading caliper ± δl = cm Computations: 1. Volume of the aluminum cube, V cube,1 cc (Note: 1cc = 1cm 3 = 1ml) 2. Density of the aluminum cube g/cc 3. Handbook value of the density of aluminum g/cc 4. Percent difference % Verification of the Archimedes' principle Measurements: Step 3: Combined mass of solid and hollow cylinders, m 1 g
10 10 Step 7: Recorded mass when scale is rebalanced after solid cylinder is immersed in water, m 2 g Change in mass due to immersion in water, Δm B = m 1  m 2 g Calculations: 1. Compute the value of the buoyant force on the solid cylinder when immersed in water in step 4 of B = (Δm B )g g = cm/s 2 B = dyne (1 dyne = 1 gcm/s 2 ) Second determination of the volume of the cube: Measurements: 1. Mass of the aluminum cube in air g 2. Mass of the aluminum cube immersed in water g Computations: 1. Calculate Δm for water Δm water g 2. Use the handbook value of the density of water at 20EC and the corresponding Δm in water to obtain the volume of the aluminum cube. Compare this value to the volume calculated in V cube,2 = Δm water / ρ f = cc Percent difference in volumes %
Three Methods for Calculating the Buoyant Force Gleue: Physics
Three Methods for Calculating the Buoyant Force Gleue: Physics Name Hr. The Buoyant Force (F b ) is the apparent loss of weight for an object submerged in a fluid. For example if you have an object immersed
More informationArchimedes Principle. Biological Systems
Archimedes Principle Introduction Many of the substances we encounter in our every day lives do not have rigid structure or form. Such substances are called fluids and can be divided into two categories:
More informationBuoyant Force. Goals and Introduction
Buoyant Force Goals and Introduction When an object is placed in a fluid, it either floats or sinks. While the downward gravitational force, F g, still acts on the object, an object in a fluid is also
More informationPHYS 1405 Conceptual Physics I Laboratory # 8 Density and Buoyancy. Investigation: How can we identify a substance by figuring out its density?
PHYS 1405 Conceptual Physics I Laboratory # 8 Density and Buoyancy Investigation: How can we identify a substance by figuring out its density? What to measure: Volume, mass. Measuring devices: Calipers,
More informationSection 2 Buoyancy and Density
Section 2 Buoyancy and Density Key Concept Buoyant force and density affect whether an object will float or sink in a fluid. What You Will Learn All fluids exert an upward buoyant force on objects in the
More informationSimulating Microgravity with Buoyancy A Space School Lesson Plan
ASTRONAUT TRAINING...UNDERWATER Simulating Microgravity with Buoyancy A Space School Lesson Plan by Bill Andrake, Swampscott Middle School Swampscott, Massachusetts Science Lesson: Buoyancy  Based on
More informationThe Density of Liquids and Solids
The Density of Liquids and Solids Objectives The objectives of this laboratory are: a) To determine the density of pure water; b) To determine the density of aluminum (applying the technique of water displacement)
More informationBuoyant Force and Archimedes Principle
Buoyant Force and Archimedes Principle Predict the behavior of fluids as a result of properties including viscosity and density Demonstrate why objects sink or float Apply Archimedes Principle by measuring
More informationLAB #3: MEASURING SPECIFIC GRAVITY AND DENSITY. Setup and Materials for Experiment
Setup and Materials for Experiment 1 OVERVIEW The mass density of a substance is a measure of the mass that that substance contains in a given volume. Mathematically is written: ρ = m V ( Density = Volume
More informationAP2 Fluids. Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same
A cart full of water travels horizontally on a frictionless track with initial velocity v. As shown in the diagram, in the back wall of the cart there is a small opening near the bottom of the wall that
More informationEighth Grade, Density To Float or Not to Float? 2004 Colorado Unit Writing Project 1
Density To Float or Not to Float? That is the Question! Grade Level or Special Area: Eighth Grade Science Written by: Aida Peterson, Clear Lake Middle School, Denver, Colorado Length of Unit: Twelve lessons
More informationMEASUREMENT OF MASS, WEIGHT AND DENSITY
1 MEASUREMENT OF MASS, WEIGHT AND DENSITY I. Tick ( ) the most appropriate answer. 1. The SI unit of weight is (a) kg (b) newton (c) newtonmetre (d) km 2. We use a beam balance to measure (a) weight (b)
More informationChemistry 212. Density
Chemistry 212 Density LEARNING OBJECTIVES To study density as a method of identification. To determine the densities of regularly and irregularly shaped solids as well as of pure liquids and solutions.
More informationEXPERIMENT 1 Measurements
EXPERIMENT 1 Measurements INTRODUCTION In all sciences, measurements are essential. The most fundamental properties that can be measured are length, mass, and time. In chemistry, temperature is also treated
More informationDensity Determinations and Various Methods to Measure
Density Determinations and Various Methods to Measure Volume GOAL AND OVERVIEW This lab provides an introduction to the concept and applications of density measurements. The densities of brass and aluminum
More informationFluids Quiz Science 8
Fluids Quiz Science 8 Introduction to Fluids 1. What are fluids essential for? Industrial Processes 2. What devices use knowledge of fluids? Hydraulic and pneumatic devices and machines A CloseUp Look
More informationMass and Volume Relationships
Mass and Volume Relationships Objective: The purpose of this laboratory exercise is to become familiar with some of the basic relationships and units used by scientists. In this experiment you will perform
More informationPhysics Principles of Physics
Physics 1408002 Principles of Physics Lecture 21 Chapter 13 April 2, 2009 SungWon Lee Sungwon.Lee@ttu.edu Announcement I Lecture note is on the web Handout (6 slides/page) http://highenergy.phys.ttu.edu/~slee/1408/
More informationCHM 130LL: Introduction to the Metric System
CHM 130LL: Introduction to the Metric System In this experiment you will: Determine the volume of a drop of water using a graduated cylinder Determine the volume of an object by measuring its dimensions
More informationPressure In A Fluid. GE Define fluid in your own words. 2. Is a liquid a fluid? Is a gas a fluid? Explain your reasoning.
HPP Activity 38v1 Pressure In A Fluid Note that this unit contains the word "fluid" in the title. Let us carry on by examining the relationship between pressure and fluids. Exploration GE 1. 1. Define
More informationChapter 9: The Behavior of Fluids
Chapter 9: The Behavior of Fluids 1. Archimedes Principle states that A. the pressure in a fluid is directly related to the depth below the surface of the fluid. B. an object immersed in a fluid is buoyed
More informationDensity and Archimedes Principle
Density and Archimedes Principle Objectives: To understand the concept of density and its relationship to various materials. To understand and use Archimedes Principle. Equipment: Dial calipers, Graduated
More informationPressure in Fluids. Introduction
Pressure in Fluids Introduction In this laboratory we begin to study another important physical quantity associated with fluids: pressure. For the time being we will concentrate on static pressure: pressure
More informationCHAPTER 3: FORCES AND PRESSURE
CHAPTER 3: FORCES AND PRESSURE 3.1 UNDERSTANDING PRESSURE 1. The pressure acting on a surface is defined as.. force per unit. area on the surface. 2. Pressure, P = F A 3. Unit for pressure is. Nm 2 or
More informationEXPERIMENT 1. Precision of Measurements Density of a Metal Cylinder
EXPERIMENT 1 Precision of Measurements Density of a Metal Cylinder Physics is a quantitative science, relying on accurate measurements of fundamental properties such as time, length, mass and temperature.
More informationChapter 13  Solutions
= Chapter 13  Solutions Description: Find the weight of a cylindrical iron rod given its area and length and the density of iron. Part A On a parttime job you are asked to bring a cylindrical iron rod
More informationBuoyant Force and Archimedes' Principle
Buoyant Force and Archimedes' Principle Introduction: Buoyant forces keep Supertankers from sinking and party balloons floating. An object that is more dense than a liquid will sink in that liquid. If
More informationBuoyancy and Archimedes Principle. Buoyancy and Archimedes Principle Assume block is in equilibrium.
Assume block is in equilibrium. Then upward forces must equal downward forces. Upward force: pressure from fluid Downward force: atmospheric pressure plus weight Therefore In this case, the object is less
More informationPascal s Principle. Any change in the pressure of a fluid is transmitted uniformly in all directions throughout the fluid.
Pascal s Principle What happens inside a fluid when pressure is exerted on it? Does pressure have a direction? Does it transmit a force to the walls or bottom of a container? Any change in the pressure
More informationExperiment 3 Introduction to Density INTRODUCTION
Experiment 3 Introduction to Density INTRODUCTION The purpose of this experiment is to understand the meaning and significance of the density of a substance. Density is a basic physical property of a homogeneous
More informationStudent Exploration: Archimedes Principle
Name: Date: Student Exploration: Archimedes Principle Vocabulary: Archimedes principle, buoyant force, density, displace, mass, volume, weight Prior Knowledge Questions (Do these BEFORE using the Gizmo.)
More informationLab 11 Density and Buoyancy
b Lab 11 Density and uoyancy What You Need To Know: Density A concept that you will be using frequently in today s lab is called density. Density is a measurement of an object s mass per unit volume of
More informationFluids flow conform to shape of container. Mass: mass density, Forces: Pressure Statics: Human body 5075% water, live in a fluid (air)
Chapter 11  Fluids Fluids flow conform to shape of container liquids OR gas Mass: mass density, Forces: Pressure Statics: pressure, buoyant force Dynamics: motion speed, energy friction: viscosity Human
More informationDENSITY. reflect. look out! 6.6B
6.6B reflect Imagine that it is a very hot day. You decide to cool a glass of water by placing several ice cubes in the drink. What happens when you drop the ice into the water? Likely, when you place
More information5. Suppose you had to test how well two types of soap work. Describe your experiment using the terms control and variable.
Page # 31: 1. What is the scientific method? A logical approach to solving problems by observing and collecting data, formulating hypotheses, testing hypotheses, and formulating theories supported by data.
More informationChapter 8 Fluid Flow
Chapter 8 Fluid Flow GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms, and use it in an operational
More informationChapter 27 Static Fluids
Chapter 27 Static Fluids 27.1 Introduction... 1 27.2 Density... 1 27.3 Pressure in a Fluid... 2 27.4 Pascal s Law: Pressure as a Function of Depth in a Fluid of Uniform Density in a Uniform Gravitational
More information2 Floating and Sinking
Section 2 Floating and Sinking 2 Floating and Sinking Objectives After this lesson, students will be able to M.3.2.1 Describe the effect of the buoyant force. M.3.2.2 Explain how the density of an object
More informationArchimedes. F b (Buoyant Force) DEMO. Identical Size Boxes Which has larger F B. Which is heavier. styrofoam (1 cm 3 ) steel ( 1 cm 3 )
Fluids Density 1 F b (Buoyant Force) DEMO Archimedes Identical Size Boxes Which has larger F B Which is heavier styrofoam (1 cm 3 ) steel ( 1 cm 3 ) steel ( 1 cm 3 ) styrofoam (1 cm 3 ) 2 Finding the Weight
More informationDensity and Archimedes Principle
Density and Archimedes Principle Objectives: To understand the concept of density and its relationship to various materials. To understand and use Archimedes Principle. Equipment: Dial calipers, Graduated
More informationDensity. Part I: How Dense Is It?
Density Density Part I: How Dense Is It? Everything on Earth is made of matter. Matter is anything that has mass and takes up space. Matter is as simple as a single element or as complex as the entire
More informationChapter 13 Fluids. Copyright 2009 Pearson Education, Inc.
Chapter 13 Fluids 131 Phases of Matter The three common phases of matter are solid, liquid, and gas. A solid has a definite shape and size. A liquid has a fixed volume but can be any shape. A gas can
More informationSignificant figures. Significant figures. Rounding off numbers. How many significant figures in these measurements? inches. 4.
Significant figures All nonzero numbers are always significant 2.38 has three significant figures 25 has two significant figures Are zeros significant? It depends on their position in the number. A zero
More informationChapter 3 Student Reading
Chapter 3 Student Reading If you hold a solid piece of lead or iron in your hand, it feels heavy for its size. If you hold the same size piece of balsa wood or plastic, it feels light for its size. The
More informationName Partner Date Class
Name Partner Date Class FLUIDS Part 1: Archimedes' Principle Equipment: DialOGram balance, small beaker (150250ml), metal specimen, string, calipers. Object: To find the density of an object using Archimedes'
More informationDETERMINING THE DENSITY OF LIQUIDS & SOLIDS
DETERMINING THE DENSITY OF LIQUIDS & SOLIDS 17 Density, like color, odor, melting point, and boiling point, is a physical property of matter. Therefore, density may be used in identifying matter. Density
More informationSCIENTIFIC MEASUREMENT
3 SCIENTIFIC MEASUREMENT Conceptual Curriculum Concrete concepts More abstract concepts or math/problemsolving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options
More informationSURFACE TENSION. Definition
SURFACE TENSION Definition In the fall a fisherman s boat is often surrounded by fallen leaves that are lying on the water. The boat floats, because it is partially immersed in the water and the resulting
More informationActivity P13: Buoyant Force (Force Sensor)
Activity P13: Buoyant Force (Force Sensor) Equipment Needed Qty Equipment Needed Qty Economy Force Sensor (CI6746) 1 Mass and Hanger Set (ME9348) 1 Base and Support Rod (ME9355) 1 Ruler, metric 1 Beaker,
More informationPhysics 1114: Unit 6 Homework: Answers
Physics 1114: Unit 6 Homework: Answers Problem set 1 1. A rod 4.2 m long and 0.50 cm 2 in crosssectional area is stretched 0.20 cm under a tension of 12,000 N. a) The stress is the Force (1.2 10 4 N)
More informationName: Date: The masses of the various objects can be determined using the balance. Measure the masses and record the numbers in Table 8.6.
Name: Date: 8 Density 8.1 Introduction In this lab we will consider how to determine the average density of irregular shapes and what that density can tell us about the internal composition and structure
More informationA Novel Way to Measure the Density of a Solid. By David Chandler, Porterville College. David@DavidChandler.com
A Novel Way to Measure the Density of a Solid By David Chandler, Porterville College David@DavidChandler.com I was recently explaining to a middle school teacher how to measure the density of a solid object
More informationDETERMINATION OF DENSITY
Experiment 1 DETERMINATION OF DENSITY Prepared by Ross S. Nord and Robert C. Rittenhouse, Eastern Michigan University PURPOSE Make experimental measurements applicable to density determinations. Learn
More informationMercury is poured into a Utube as in Figure (14.18a). The left arm of the tube has crosssectional
Chapter 14 Fluid Mechanics. Solutions of Selected Problems 14.1 Problem 14.18 (In the text book) Mercury is poured into a Utube as in Figure (14.18a). The left arm of the tube has crosssectional area
More informationMatter and the Universe. Ancient Views. Modern Views. Periodic Table of Elements. Ernest Rutherford
Matter and the Universe Ancient Views Early atomists believed that matter had a smallest indivisible bit, an atom. Aristotle, the most famous of the early Greek philosophers, didn't agree with the idea
More informationArchimedes' Principle
Archimedes' Principle Introduction Archimedes' Principle states that the upward buoyant force exerted on a body immersed in a fluid, whether fully or partially submerged, is equal to the weight of the
More informationPhysics 1020 Laboratory #6 Equilibrium of a Rigid Body. Equilibrium of a Rigid Body
Equilibrium of a Rigid Body Contents I. Introduction II. III. IV. Finding the center of gravity of the meter stick Calibrating the force probe Investigation of the angled meter stick V. Investigation of
More informationNewton s Laws of Motion
Newton s Laws of Motion Newton s Laws and the Mousetrap Racecar Simple version of Newton s three laws of motion 1 st Law: objects at rest stay at rest, objects in motion stay in motion 2 nd Law: force
More information13.3 Buoyancy. Buoyant Force
The forces from pressure acting on the bottom of this golf ball are greater than those on the top. This produces a net force called the buoyant force that acts upward on the ball. Buoyant Force What is
More informationSection 3  Measurements, Scales, and Conversions 1 of 8
Section 3  Measurements, Scales, and Conversions 1 of 8 Read the following notes on recording measurements, choosing the correct scale, and converting measurements. It may help to underline, highlight,
More informationGeneral Physics (PHY 2130)
General Physics (PHY 30) Lecture 3 Solids and fluids buoyant force Archimedes principle Fluids in motion http://www.physics.wayne.edu/~apetrov/phy30/ Lightning Review Last lecture:. Solids and fluids different
More informationoil liquid water water liquid Answer, Key Homework 2 David McIntyre 1
Answer, Key Homework 2 David McIntyre 1 This printout should have 14 questions, check that it is complete. Multiplechoice questions may continue on the next column or page: find all choices before making
More informationPhysics 103 CQZ1 Solutions and Explanations. 1. All fluids are: A. gases. B. liquids. C. gases or liquids. D. nonmetallic. E.
Physics 03 CQZ Solutions and Explanations. All fluids are: A. gases B. liquids C. gases or liquids D. nonmetallic E. transparent Matter is classified as solid, liquid, gas, and plasma. Gases adjust volume
More informationUnit 1 Lab Safety, Measurement, Density, Buoyancy and Controlled Experiment
Unit 1 Lab Safety, Measurement, Density, Buoyancy and Controlled Experiment NYS Standards: MST Standard #1 MST Standard #4 3.1h Density can be described as the amount of matter that is in a given amount
More informationDensity of Materials. Density p.1. v061813_810pm
Density of Materials v061813_810pm Objective: The student will be able to determine the density of a regular solid, an irregular solid, a liquid, and test their understanding of density by determination
More informationEXPERIMENT 16: Charles Law of Gases V vs T
EXPERIMENT 16: Charles Law of Gases V vs T Materials: Thermometer Bunsen burner Ring stand Clamps 600ml beakers (2) Closedtip syringe Ice Water Objectives 1. To put to work the model to verify Charles
More informationWhat is the Percent Sugar in Soda? An Investigation Using Density
Lab 4 Name What is the Percent Sugar in Soda? An Investigation Using Density PreLab Assignment This written prelab is worth 15% (3 points) of your lab report grade and must be turned in to your lab instructor
More informationDENSITY OF LIQUIDS & SOLIDS Experiment 2
Physical Science 14 DENSITY OF LIQUIDS & SOLIDS Experiment 2 INTRODUCTION: Density is a measure of the quantity of mass of a substance that occupies one unit of volume. In other words, the density of a
More informationGas Laws. E k = ½ (mass)(speed) 2. v101613_10am
Gas Laws v101613_10am Objective: In this lab you will become familiar with the Ideal Gas Law and Dalton s Law of Partial Pressures. You will be able to use the information collected along with stoichiometry
More information10) REVIEW Volume of unknown metal = 9 cubic centimeters, mass = grams. To determine density, divide the Mass by the Volume = 19.
10) REVIEW Volume of unknown metal = 9 cubic centimeters, mass = 173.7 grams. To determine density, divide the Mass by the Volume = 19.3 g/cm 3 = GOLD 173.7 9 9) MENISCUS: The curved upper surface of a
More informationExperiment #4 Sugar in Soft Drinks and Fruit Juices. Laboratory Overview CHEM 1361. August 2010
Experiment #4 Sugar in Soft Drinks and Fruit Juices Laboratory Overview CHEM 1361 August 2010 Gary S. Buckley, Ph.D. Department of Physical Sciences Cameron University Learning Objectives Relate density
More informationMeasurement Lab. Background Information. I. Transferring Chemicals in the Laboratory
Purpose of the Experiment Practicing techniques for weighing objects and measuring the volumes will allow you to be more adept in the lab environment. Determining the number of significant figures that
More informationDensity. Density is how concentrated or compact matter is.
Density Density is how concentrated or compact matter is. Packing snow into snowballs increases its density. You are squeezing large amounts of matter into small volumes of space. Equation for Density
More informationLesson 2 The Buoyant Force
Lesson 2 Student Labs and Activities Page Launch Lab 26 Content Vocabulary 27 Lesson Outline 28 MiniLab 30 Content Practice A 31 Content Practice B 32 School to Home 33 Key Concept Builders 34 Enrichment
More informationForces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy
Forces Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Definition of Force Force = a push or pull that causes a change
More informationDensity, Mass, and Volume Grade 36
Density, Mass, and Volume Grade 36 BACKGROUND Matter is everything that takes up space. Matter can be found in three forms, solid, liquid, and gas. The mass of an object is the amount of matter that is
More informationEXPERIMENT 1 The Metric System, Density and Temperature
EXPERIMENT 1 The Metric System, Density and Temperature Textbook reference: pp250268 Physics is a quantitative science, relying on accurate measurements of fundamental properties such as time, length,
More informationChapter 3. Flotation. ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Buoyancy
ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 3 Flotation Buoyancy Buoyancy arises from the fact that fluid pressure increases with depth and from the fact that the
More informationBiological Principles Lab: Scientific Measurements
Biological Principles Lab: Scientific Measurements Name: PURPOSE To become familiar with the reference units and prefixes in the metric system. To become familiar with some common laboratory equipment.
More informationFOUNTAINHEAD PRESS COPYRIGHT. Significant Figures and Measurement of Density INTRODUCTION
Significant Figures and Measurement of Density Objectives: To investigate the concepts of accuracy and precision, and to review the use of significant figures in measurements and calculations. These concepts
More informationBuoyancy. Please Circle Your Lab day: M T W T F
Please Circle Your Lab day: M T W T F Name: Project #1: Show that the buoyant force (F B ) equals fluid gv object by first calculating fluid gv object, and then by measuring F B (indirectly) using the
More informationWrite True or False in the space provided.
CP Physics  Exam #7 Practice Name: _ Class: Date: Write True or False in the space provided. 1) Pressure at the bottom of a lake depends on the weight density of the lake water and on the volume of the
More informationChemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid
Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid Introduction Many metals react with acids to form hydrogen gas. In this experiment, you will use the reactions
More informationSection 1 What Is Matter?
Section 1 What Is Matter? Key Concept Matter is anything that has mass and takes up space. Matter can be described in terms of its volume, mass, and weight. What You Will Learn All matter has volume and
More informationGas Properties and Balloons & Buoyancy SI M Homework Answer K ey
Gas Properties and Balloons & Buoyancy SI M Homework Answer K ey 1) In class, we have been discussing how gases behave and how we observe this behavior in our daily lives. In this homework assignment,
More informationPreLab Exercises Lab 1: Scientific Measurement
PreLab Exercises Lab 1: Scientific Measurement Name Date Section 1. What is a hypothesis? 2. One meter equals millimeters. 3. Which has a larger volume, a liter or a quart? 4. If a cube had a volume of
More informationActivity P13: Buoyant Force (Force Sensor)
July 21 Buoyant Force 1 Activity P13: Buoyant Force (Force Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Archimedes Principle P13 Buoyant Force.DS P18 Buoyant Force P18_BUOY.SWS
More information10 g 5 g? 10 g 5 g. 10 g 5 g. scale
The International System of Units, or the SI Units Vs. Honors Chem 1 LENGTH In the SI, the base unit of length is the Meter. Prefixes identify additional units of length, based on the meter. Smaller than
More informationName Date Class. The Nature of Force and Motion (pages ) 2. When one object pushes or pulls another object, the first object is
CHAPTER 4 MOTION AND FORCES SECTION 4 1 The Nature of Force and Motion (pages 116121) This section explains how balanced and unbalanced forces are related to the motion of an object. It also explains
More information01 The Nature of Fluids
01 The Nature of Fluids WRI 1/17 01 The Nature of Fluids (Water Resources I) Dave Morgan Prepared using Lyx, and the Beamer class in L A TEX 2ε, on September 12, 2007 Recommended Text 01 The Nature of
More informationClicker Questions Chapter 10
Clicker Questions Chapter 10 2010 Pearson Education, Inc. Essential College Physics Rex/Wolfson Question 10.1 Density If one material has a higher density than another, does this mean that the molecules
More informationFluid Mechanics. Fluid Statics [31] Dr. Mohammad N. Almasri. [3] Fall 2010 Fluid Mechanics Dr. Mohammad N. Almasri [31] Fluid Statics
1 Fluid Mechanics Fluid Statics [31] Dr. Mohammad N. Almasri Fluid Pressure Fluid pressure is the normal force exerted by the fluid per unit area at some location within the fluid Fluid pressure has the
More informationDensity. Part 1: What is Density?
Density Part 1: What is Density? Starter Activity Which is heavier, steel or wood? Density We can use a number to describe how heavy something is for its size. Density is the mass per unit of volume. To
More informationMeasurement & Density Chemistry 121 CHEM 121
CHEM 121 Measurement & Density Chemistry 121 Introduction The ability to make accurate and detailed observations are crucial in science. This lab will focus on quantitative observations, more specifically,
More informationMEASUREMENT OF MASS, WEIGHT AND DENSITY
MEASUREMENT OF MASS, WEIGHT AND DENSITY I. Tick (t') the most appropriate answer. 1. The SI unit of weight is (a) kg (b) newton (c) newtonmetre (d) km 2. We use a beam balance to measure (a) weight (b)
More informationReturn to Lab Menu. Mass, Volume and Density
Return to Lab Menu Mass, Volume and Density Objectives: to measure different volumes of liquid to understand that masses are additive but volumes are not necessarily additive to understand the concept
More informationPhysics, Chapter 8: Hydrostatics (Fluids at Rest)
University of Nebraska  Lincoln DigitalCommons@University of Nebraska  Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 111958 Physics, Chapter 8: Hydrostatics (Fluids at Rest)
More informationActivity #: 3. Suggested Discussion Topics Matter
Grade: Fourth Activity #: 3 Activity Title: Mass & Volume & Density, Oh My! Recommended Group Size: Class/Small Groups Special Notes: This is a wet experiment and should ideally be done in the Science
More informationChapter 12 Elasticity
If I have seen further than other men, it is because I stood on the shoulders of giants. Isaac Newton 12.1 The Atomic Nature of Elasticity Elasticity is that property of a body by which it experiences
More information