Osmosis. Evaluation copy
|
|
- Leslie Henderson
- 4 years ago
- Views:
Transcription
1 Osmosis Computer 5 In order to survive, all organisms need to move molecules in and out of their cells. Molecules such as gases (e.g., O 2, CO 2 ), water, food, and wastes pass across the cell membrane. There are two ways that the molecules move through the membrane: passive transport and active transport. While active transport requires that the cell uses chemical energy to move substances through the cell membrane, passive transport does not require such energy expenditures. Passive transport occurs spontaneously, using heat energy from the cell's environment. Diffusion is the movement of molecules by passive transport from a region in which they are highly concentrated to a region in which they are less concentrated. Diffusion continues until the molecules are randomly distributed throughout the system. Osmosis, the movement of water across a membrane, is a special case of diffusion. Water molecules are small and can easily pass through the membrane. Other molecules, such as proteins, DNA, RNA, and sugars are too large to diffuse through the cell membrane. The membrane is said to be semipermeable, since it allows some molecules to diffuse though but not others. If the concentration of water on one side of the membrane is different than on the other side, water will move through the membrane seeking to equalize the concentration of water on both sides. When water concentration outside a cell is greater than inside, the water moves into the cell faster than it leaves, and the cell swells. The cell membrane acts somewhat like a balloon. If too much water enters the cell, the cell can burst, killing the cell. Cells usually have some mechanism for preventing too much water from entering, such as pumping excess water out of the cell or making a tough outer coat that will not rupture. When the concentration of water inside of a cell is greater than outside, water moves out of the cell faster than it enters, and the cell shrinks. If a cell becomes too dehydrated, it may not be able to survive. Under ideal conditions, the water concentration outside is nearly identical to that inside. In this experiment, you will use a Gas Pressure Sensor to measure the rate of pressure change as water moves in to or out of the cell (dialysis tubes filled with various concentrations of syrup solution). The pressure generated is called osmotic pressure and is in response to the overall movement of molecules, both water and syrup, inside the dialysis cell. OBJECTIVES In this experiment, you will Use a Gas Pressure Sensor to investigate the relationship between water movement and solute concentration. Determine the water potential of potato cells. Evaluation copy Figure 1 Agricultural Science with Vernier 5-1
2 Experiment 5 MATERIALS computer dialysis tubing, 2.5 cm x 15 cm Vernier computer interface dialysis tubing clamp or floss Logger Pro utility clamp Vernier Gas Pressure Sensor ring stand four 16 x 100 mm test tubes plastic tubing clamp 20 cm piece of plastic tubing plastic tubing with Luer connector test tube rack 20 oz. Styrofoam cup or 600 ml beaker 25 ml graduated cylinder warm water bath various concentrations of syrup plastic syringe solutions PROCEDURE 1. Place four test tubes in a rack and label them 90%, 80%, 70%, and 60%. 2. Fill each test tube with 15 ml of the corresponding syrup solution. 3. Connect the plastic tubing with the Luer connector to the valve on the Gas Pressure Sensor. 4. Connect the Gas Pressure Sensor to the computer interface. Prepare the computer for data collection by opening the file 05 Osmosis from the Agricultural Science with Vernier folder of Logger Pro. Figure 2 5. Using a ring stand and clamp, mount the pressure sensor above the insulated water container, as in Figure 1. Note: Be careful not to get any solution on the sensor. 6. Obtain a piece of wet dialysis tubing and dialysis tubing clamp and clamp off one end as shown in Figure Prepare the dialysis tubing. a. Connect the 20 cm segment of plastic tubing to the syringe and draw up the contents of the 90% syrup solution. b. Rub the open end of the dialysis tubing between your thumb and forefinger to create an opening. c. Insert the end of the plastic tube into the dialysis tubing and carefully inject the syrup solution as shown in Figure 3. d. Rinse the syringe and tubing with water and set it aside. 8. Complete the experimental setup. a. Slide a plastic tubing clamp on to the plastic tubing connected to the Gas Pressure Sensor. b. Insert the end of the tubing into the top of the dialysis tubing filled with the syrup solution so that it is about 1 cm above the liquid. c. Wrap the dialysis tubing tightly around the plastic tube. d. Slide the clamp over the end of the wrapped dialysis tubing and squeeze the tubing clamp shut as shown in Figure 4, leaving minimal airspace above the liquid. Figure 4 Figure Agricultural Science with Vernier
3 Osmosis 9. Fill the insulated water container with 600 ml of 37 C water and place the clamped dialysis tube in the container. Check that the dialysis tubing holding the solution is completely submerged and without kinks. Wait five minutes. 10. After 5 minutes click to begin data collection. 11. When data collection is finished, carefully release the tubing clamp by pushing up on one side of the clamp while pushing down on the other. Important: Do not disconnect the tubing from the sensor prior to releasing the tubing clamp. There will be enough pressure within the dialysis tubing to create a mess. 12. Rinse out the dialysis tubing and beaker. 13. Determine the rate of change in osmotic pressure. a. Move the mouse pointer to the point where the data values begin to increase. Hold down the left mouse button. Drag the mouse pointer to the end of the data and release the mouse button. b. Click the Linear Fit button,, to perform a linear regression. A floating box will appear with the formula for a best fit line. c. Record the slope of the line, m, as the rate of change in osmotic pressure for a 90% syrup solution. d. Close the linear regression floating box. 14. Store the data by choosing Store Latest Run from the Experiment menu. 15. Repeat Steps 6 14 for the remaining syrup solutions. DATA Table 1 Syrup concentration Rate of pressure change (kpa/min) 90% 80% 70% 60% Agricultural Science with Vernier 5-3
4 Experiment 5 Table 2 Syrup solution concentration Class average rate of pressure change (kpa/min) 90% 80% 70% 60% PROCESSING THE DATA 1. On Page 2 of the experiment file, create a graph with the rate of pressure change (slope) on the y-axis and syrup concentration on the x-axis. QUESTIONS 1. Which solutions, if any, produced a positive slope? Was water moving in or out of the cell (dialysis tubing) under these circumstances? Explain. 2. Which solutions, if any, produced a negative slope? Was water moving in or out of the cell under these circumstances? Explain. 3. Does syrup move in or out of the cell? Explain. 4. Examine the graph of the rate of pressure change vs. the syrup concentration. Describe any pattern in the data. 5. Use the graph to estimate the concentration of syrup that would yield no change in pressure. Why is this biologically significant? 6. When wilted plants are watered, they tend to become rigid. Explain how this might happen. 7. Explain the strengths and weakness of this dialysis model with respect to an animal and plant cell. 8. Discuss and explain potential reasons to account for variation in class average pressure change at specific syrup concentrations. 9. This exercise was carried out at initial temperatures of 37 C. Predict the effect of increased and decreased initial temperature on rates of pressure change for each of these different solution concentrations. 10. Predict the rates of pressure change if the dialysis tubing is placed in an insulated cup holding 1000 ml of 37 C water. Explain your reasoning. 11. Predict the rate of pressure change if the dialyisis tubing were filled with 10 ml of 80% syrup solution and 5 ml of 1.0 M sodium chloride solution. Explain your reasoning. 5-4 Agricultural Science with Vernier
5 EXTENSION WATER POTENTIAL Osmosis Water potential is a term used when predicting the movement of water into or out of plant cells. Water always moves from an area of higher water potential to an area of lower water potential. The symbol for water potential is the Greek letter Psi,. Water potential consists of a physical pressure component called pressure potential p, and the effects of solutes called solute potential, s. = p + S Water potential = Pressure potential + Solute potential Distilled water in an open beaker has a water potential of zero. The addition of solute decreases water potential while the addition of pressure increases water potential. A water potential value can be positive, negative, or zero. Water potential is usually measured in bars, a metric measure of pressure. (1 kpa =.1 bar) In this experiment, you will measure the percent change in mass of potato cores after they have soaked in various concentrations of sugar solutions for a 24 hour period. You will use this data to calculate the water potential of the potato cells. MATERIALS computer Logger Pro four potato cores 0 M, 0.33 M, 0.67 M, or 1.0 M sugar solution 250 ml beaker plastic wrap balance paper towels PROCEDURE You will be assigned one or more of the sugar solutions in which to soak your potato cores. 1. Pour 100 ml of the assigned sugar solution into a 250 ml beaker. 2. Measure and record the mass of the four potato cores together. 3. Put the four cores into the beaker of sugar solution. 4. Cover the beaker with plastic wrap and allow it to stand for a 24-hour period. 5. Remove the cores from the beaker, blot with a paper towel, and determine the mass of the four cores together after soaking. 6. Calculate the percent change in mass and record your data for the sugar concentration tested in Table 2 as well as on the class data sheet. 7. Repeat Steps 1 6 for any additional assigned sugar solutions. Agricultural Science with Vernier 5-5
6 Experiment 5 DATA Table 2 Sugar solution concentration Initial mass (g) Final mass (g) Percent change in mass 0.00 M 0.33 M 0.67 M 1.0 M Table 3 Class Data of Percent Change in Mass Sugar solution concentration Total Class average 0.00 M 0.33 M 0.67 M 1.00 M Table 4 Sugar molar concentration = Solute potential = Water potential = PROCESSING THE DATA 1. On Page 3 of the experiment file, create a graph with the percent change in mass on the y- axis and concentration of sugar on the x-axis. 2. Perform a linear regression to determine the molar concentration of sugar solution at which the mass of the potato cores does not change. a. Move the mouse pointer to the first data point. Press the left mouse button. Drag the pointer to the last data point. b. Click the Linear Fit button,, to perform a linear regression. A floating box will appear with the formula for a best fit line. 5-6 Agricultural Science with Vernier
7 Osmosis c. Choose Interpolate from the Analyze menu. Move the mouse pointer along the regression line to the point where the line crosses the x axis. This point represents the molar concentration of sugar with a water potential equal to the potato core water potential. Record this concentration in Table Use the sugar molar concentration from the previous step to calculate the solute potential of the sugar solution. a. Calculate the solute potential of the sugar solution using the equation where i = ionization constant ( 1.0 for sugar since it doesn t ionize in water) C = sugar molar concentration (determined from the graph) R = pressure constant (R = liter bars/mol-k) T = temperature (K) s icrt b. Record this value with units in Table Calculate the water potential of the solution using the equation = p + s The pressure potential of the solution in this case is zero because the solution is at equilibrium. Record the water potential value with units in Table 4. QUESTIONS 1. What may happen to an animal cell if water moves into it? How does this differ from what would happen in a plant cell? 2. What factors affect water potential? 3. If a plant cell has a higher water potential than its surrounding environment and the pressure is equal to zero, will water move in or out of the cell? Explain why. Agricultural Science with Vernier 5-7
8 Vernier Lab Safety Instructions Disclaimer THIS IS AN EVALUATION COPY OF THE VERNIER STUDENT LAB. This copy does not include: Safety information Essential instructor background information Directions for preparing solutions Important tips for successfully doing these labs The complete Agricultural Science with Vernier lab manual includes 29 labs and essential teacher information. The full lab book is available for purchase at: Vernier Software & Technology S.W. Millikan Way Beaverton, OR Toll Free (888) (503) FAX (503)
Evaluation copy. Enzyme Action: Testing Catalase Activity (Method 1 O 2 Gas Sensor) Computer 2
Enzyme Action: Testing Catalase Activity (Method 1 O 2 Gas Sensor) Computer 2 Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most
Pressure -Temperature Relationship in Gases. Evaluation copy. Figure 1. 125 ml Erlenmeyer flask. Vernier computer interface
Pressure -Temperature Relationship in Gases Computer 7 Gases are made up of molecules that are in constant motion and exert pressure when they collide with the walls of their container. The velocity and
Neutralization Reactions. Evaluation copy
Neutralization Reactions Computer 6 If an acid is added to a base, a chemical reaction called neutralization occurs. An example is the reaction between nitric acid, HNO 3, and the base potassium hydroxide,
Endothermic and Exothermic Reactions. Evaluation copy. Mg(s) + 2 HCl(aq) H 2 (g) + MgCl 2 (aq)
Endothermic and Exothermic Reactions Computer 1 Many chemical reactions give off energy. Chemical reactions that release energy are called exothermic reactions. Some chemical reactions absorb energy and
Lab 4: Osmosis and Diffusion
Lab 4: Osmosis and Diffusion The plasma membrane enclosing every cell is the boundary that separates the cell from its external environment. It is not an impermeable barrier, but like all biological membranes,
Evaluation copy. Titration of a Diprotic Acid: Identifying an Unknown. Computer
Titration of a Diprotic Acid: Identifying an Unknown Computer 25 A diprotic acid is an acid that yields two H + ions per acid molecule. Examples of diprotic acids are sulfuric acid, H 2 SO 4, and carbonic
The Determination of an Equilibrium Constant
The Determination of an Equilibrium Constant Computer 10 Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium
Evaluation copy. Energy Content of Foods. computer OBJECTIVES MATERIALS
Energy Content of Foods Computer 10 Energy content is an important property of food. The energy your body needs for running, talking, and thinking comes from the food you eat. Energy content is the amount
Enzyme Action: Testing Catalase Activity
Enzyme Action: Testing Catalase Activity DataQuest 12 Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the chemical activities
Household Acids and Bases
Household Acids and Bases Computer 28 Many common household solutions contain acids and bases. Acid-base indicators, such as litmus and red cabbage juice, turn different colors in acidic and basic solutions.
Enzyme Action: Testing Catalase Activity
Enzyme Action: Testing Catalase Activity Experiment 6A Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the chemical activities
Enzyme Action: Testing Catalase Activity 50 Points
Names: LabQuest Enzyme Action: Testing Catalase Activity 50 Points 6A Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the
6 H2O + 6 CO 2 (g) + energy
AEROBIC RESPIRATION LAB DO 2.CALC From Biology with Calculators, Vernier Software & Technology, 2000. INTRODUCTION Aerobic cellular respiration is the process of converting the chemical energy of organic
Water Hardness. Evaluation copy
Water Hardness Experiment 11 When water passes through or over mineral deposits such as limestone, the levels of certain ions present in the water increase greatly and cause the water to be classified
Enzyme Action: Testing Catalase Activity
Enzyme Action: Testing Catalase Activity Experiment 6A Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the chemical activities
ENZYME ACTION: TESTING CATALASE ACTIVITY
ENZYME ACTION: TESTING CATALASE ACTIVITY LAB ENZ 1.CALC From Biology with Calculators, Vernier Software & Technology, 2000 INTRODUCTION Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically.
Maximum value. resistance. 1. Connect the Current Probe to Channel 1 and the Differential Voltage Probe to Channel 2 of the interface.
Series and Parallel Circuits Computer 23 Components in an electrical circuit are in series when they are connected one after the other, so that the same current flows through both of them. Components are
Solar Homes and Heat Sinks. Evaluation copy. empty bottle with screw-on cap
Solar Homes and Heat Sinks Computer 15 Alternative energy sources are energy sources other than the nonrenewable fossil fuels coal, petroleum, and natural gas. Solar energy, or energy from the sun, is
BACKGROUND (continued)
BACKGROUND (continued) A cell must exchange materials with its surroundings, a process controlled by the plasma membrane. Plasma membranes are selectively permeable, regulating the cell s molecular traffic:
Determining the Quantity of Iron in a Vitamin Tablet. Evaluation copy
Determining the Quantity of Iron in a Vitamin Tablet Computer 34 As biochemical research becomes more sophisticated, we are learning more about the role of metallic elements in the human body. For example,
Osmosis Demonstration Lab
Osmosis Demonstration Lab Objectives The student will: 1) Observe the effects of different concentrations of salt solutions on potato cores. 2) Infer the relationship between weight loss and rate of osmosis.
Cells, Diffusion, Osmosis, and Biological Membranes
Cells, Diffusion, Osmosis, and Biological Membranes A. Objectives Upon completion of this lab activity, you should be able to: 1. Define and correctly use the following terms: solute, solvent, selectively
Biology: Osmosis and Diffusion Lab using Potato Cores Class: 3B Mr. Boyer Name: Simon Han
Abstract: Biology: Osmosis and Diffusion Lab using Potato Cores Class: 3B Mr. Boyer Name: Simon Han In this experiment, we learnt about Osmosis and Diffusion through potato cores in different concentration
Photosynthesis and Respiration
Photosynthesis and Respiration Experiment 31C Plants make sugar, storing the energy of the sun into chemical energy, by the process of photosynthesis. When they require energy, they can tap the stored
Determining the Free Chlorine Content of Swimming Pool Water. HOCl H + + OCl. Evaluation copy
Determining the Free Chlorine Content of Swimming Pool Water Computer 33 Physicians in the nineteenth century used chlorine water as a disinfectant. Upon the discovery that certain diseases were transmitted
Evaluation copy. Case File 9. A Killer Cup of Coffee? GlobalTech manager dies
Case File 9 Killer Cup of Coffee: Using colorimetry to determine concentration of a poison Determine the concentration of cyanide in the solution. A Killer Cup of Coffee? SOUTH PAINTER, Tuesday: It was
EFFECT OF SALT ON CELL MEMBRANES
EFFECT OF SALT ON CELL MEMBRANES LAB CELL 2 INTRODUCTION A eukaryotic cell, a cell with a nucleus, not only has a plasma membrane as its external boundary, but it also has a variety of membranes that divide
Diffusion, Osmosis, and Membrane Transport
Diffusion, Osmosis, and Membrane Transport Introduction... 2 Diffusion and osmosis as related to cellular processes... 2 The hotter the medium, the faster the molecules diffuse... 2 TASK 1: TEMPERATURE
SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB
SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB Purpose: Most ionic compounds are considered by chemists to be salts and many of these are water soluble. In this lab, you will determine the solubility,
Solubility Curve of Sugar in Water
Solubility Curve of Sugar in Water INTRODUCTION Solutions are homogeneous mixtures of solvents (the larger volume of the mixture) and solutes (the smaller volume of the mixture). For example, a hot chocolate
PHOTOSYNTHESIS AND RESPIRATION
PHOTOSYNTHESIS AND RESPIRATION STANDARDS: 3.2.10.B.3, 3.2.10.C.4 3.3.10.B.4 Westminster College INTRODUCTION Plants make sugar, storing the energy of the sun as chemical energy, by the process of photosynthesis.
BIOL 305L Laboratory Two
Please print Full name clearly: Introduction BIOL 305L Laboratory Two Osmosis, because it is different in plants! Osmosis is the movement of solvent molecules through a selectively permeable membrane into
Activity Sheets Enzymes and Their Functions
Name: Date: Activity Sheets Enzymes and Their Functions amylase What are Enzymes? starch glucose Enzymes are compounds that assist chemical reactions by increasing the rate at which they occur. For example,
Photosynthesis and Respiration
Photosynthesis and Respiration Experiment 31C Plants make sugar, storing the energy of the sun into chemical energy, by the process of photosynthesis. When they require energy, they can tap the stored
Lift the Load! Make a lever. Measure the amount of force needed to lift up a book when applying a force at different positions on the lever.
Lift the Load! Computer 28 The Greek philosopher Archimedes said, "Give me a lever long enough, and a place to stand and I can move the world." What did he mean by this? In this activity, you will get
Table of Content. Enzymes and Their Functions Teacher Version 1
Enzymes and Their Functions Jeisa Pelet, Cornell University Carolyn Wilczynski, Binghamton High School Cornell Learning Initiative in Medicine and Bioengineering (CLIMB) Table of Content Title Page Abstract..
Leaving Cert Biology. Conduct any Activity to Demonstrate Osmosis. Experiments
Leaving Cert Biology Conduct any Activity to Demonstrate Osmosis Experiments CONDUCT ANY ACTIVITY TO DEMONSTRATE OSMOSIS Materials/Equipment Distilled water Electronic balance Sucrose solution (80%) Scissors
Mixing Warm and Cold Water
Mixing Warm and Cold Water A Continuing Investigation of Thermal Pollution By Kevin White 1 Context: This lesson is intended for students conducting an ongoing study of thermal pollution. Perhaps, students
Lab: Observing Osmosis in Gummi Bears
Name Period Date Points Lab: Observing Osmosis in Gummi Bears Haribo macht Kinder froh und Erwachsene ebenso! 1 Laboratory: Observing Osmosis in Gummy Bears (28 points) Purpose: To investigate the movement
OSMOSIS AND DIALYSIS 2003 BY Wendy Weeks-Galindo with modifications by David A. Katz
OSMOSIS AND DIALYSIS 2003 BY Wendy Weeks-Galindo with modifications by David A. Katz OSMOSIS Osmosis is the reason that a fresh water fish placed in the ocean desiccates and dies. Osmosis is the reason
Biology. STANDARD II: Objective 3. Osmosis Inquiry Labs
Biology STANDARD II: Objective 3 Osmosis Inquiry Labs Background Knowledge: Students should have used a microscope before and be familiar with the parts. They should also know how to make a wet mount slide.
ph units constitute a scale which allows scientists to determine the acid or base content of a substance or solution. The ph 0
ACID-BASE TITRATION LAB PH 2.PALM INTRODUCTION Acids and bases represent a major class of chemical substances. We encounter them every day as we eat, clean our homes and ourselves, and perform many other
Appendix C. Vernier Tutorial
C-1. Vernier Tutorial Introduction: In this lab course, you will collect, analyze and interpret data. The purpose of this tutorial is to teach you how to use the Vernier System to collect and transfer
Catalase. ***You will be working with hot water, acids and bases in this laboratory*** ****Use Extreme Caution!!!****
AP BIOLOGY BIOCHEMISTRY ACTIVITY #9 NAME DATE HOUR CATALASE LAB INTRODUCTION Hydrogen peroxide (H 2 O 2 ) is a poisonous byproduct of metabolism that can damage cells if it is not removed. Catalase is
Chemistry 212 VAPOR PRESSURE OF WATER LEARNING OBJECTIVES
Chemistry 212 VAPOR PRESSURE OF WATER LEARNING OBJECTIVES The learning objectives of this experiment are to explore the relationship between the temperature and vapor pressure of water. determine the molar
Find the Relationship: An Exercise in Graphing Analysis
Find the Relationship: An Eercise in Graphing Analsis Computer 5 In several laborator investigations ou do this ear, a primar purpose will be to find the mathematical relationship between two variables.
Evaluation copy. Figure 1
O 2 Extraction by the Lungs Computer 23 Oxygen is required for cell metabolism. During inhalation air is brought into the lungs, where oxygen is extracted. Oxygen passes into the bloodstream at the membrane
Process of Science: Using Diffusion and Osmosis
Process of Science: Using Diffusion and Osmosis OBJECTIVES: 1. To understand one way to approach the process of science through an investigation of diffusion and osmosis. 2. To explore how different molecules
EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor
EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,
7. A selectively permeable membrane only allows certain molecules to pass through.
CHAPTER 2 GETTING IN & OUT OF CELLS PASSIVE TRANSPORT Cell membranes help organisms maintain homeostasis by controlling what substances may enter or leave cells. Some substances can cross the cell membrane
Experiment 13: Determination of Molecular Weight by Freezing Point Depression
1 Experiment 13: Determination of Molecular Weight by Freezing Point Depression Objective: In this experiment, you will determine the molecular weight of a compound by measuring the freezing point of a
Experiment: Static and Kinetic Friction
PHY 201: General Physics I Lab page 1 of 6 OBJECTIVES Experiment: Static and Kinetic Friction Use a Force Sensor to measure the force of static friction. Determine the relationship between force of static
The Molar Mass of a Gas
The Molar Mass of a Gas Goals The purpose of this experiment is to determine the number of grams per mole of a gas by measuring the pressure, volume, temperature, and mass of a sample. Terms to Know Molar
MEMBRANE FUNCTION CELLS AND OSMOSIS
CELLS AND OSMOSIS MEMBRANE FUNCTION Consider placing a cell in a beaker of pure water (Fig. 1). The cell contains a water solution with many different kinds of dissolved molecules and ions so that it is
Vapor Pressure of Liquids
Vapor Pressure of Liquids Experiment 10 In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask
Pre-lab Questions: 1. Write a balanced chemical equation with state symbols for the reaction catalyzed by peroxidase.
MISEP Cohort 2 Chemistry 512 Enzyme Catalysis Lab Report Candace S. Randolph Pre-lab Questions: 1. Write a balanced chemical equation with state symbols for the reaction catalyzed by peroxidase. 2H 2 O
Catalytic Activity of Enzymes
Catalytic Activity of Enzymes Introduction Enzymes are biological molecules that catalyze (speed up) chemical reactions. You could call enzymes the Builders and Do-ers in the cell; without them, life could
LIGHTSTICK KINETICS. INTRODUCTION: General background on rate, activation energy, absolute temperature, and graphing.
LIGHTSTICK KINETICS From Advancing Science, Gettysburg College INTRODUCTION: General background on rate, activation energy, absolute temperature, and graphing. THE RATE LAW: The rate of a chemical reaction
DIFFUSION (HYPERTONIC, HYPOTONIC, & ISOTONIC SOLUTIONS) THE GUMMY BEAR LAB PASS
DIFFUSION (HYPERTONIC, HYPOTONIC, & ISOTONIC SOLUTIONS) THE GUMMY BEAR LAB PASS Have you ever wondered why your fingers have wrinkles after soaking in a bath tub? Your students have probably wondered the
IDEAL AND NON-IDEAL GASES
2/2016 ideal gas 1/8 IDEAL AND NON-IDEAL GASES PURPOSE: To measure how the pressure of a low-density gas varies with temperature, to determine the absolute zero of temperature by making a linear fit to
Partner: Jack 17 November 2011. Determination of the Molar Mass of Volatile Liquids
Partner: Jack 17 November 2011 Determination of the Molar Mass of Volatile Liquids Purpose: The purpose of this experiment is to determine the molar mass of three volatile liquids. The liquid is vaporized
Monitoring EKG. Evaluation copy
Monitoring EKG Computer 28 An electrocardiogram, or EKG, is a graphical recording of the electrical events occurring within the heart. A typical EKG tracing consists of five identifiable deflections. Each
Lab 4: Diffusion and Osmosis
Lab 4: Diffusion and Osmosis Introduction The cell membrane encloses the contents of all cells, organelles and many cytoplasmic inclusions, and regulates what gets in and out. This is called selective
Practical 1: Measure the molar volume of a gas
Practical Student sheet Practical : Wear eye protection. Ensure the delivery tube does not become blocked. Ethanoic acid will sting if it gets into cuts in the skin. Equipment boiling tube stand and clamp
Exemplar for Internal Achievement Standard. Biology Level 2
Exemplar for internal assessment resource Biology for Achievement Standard 9115 Exemplar for Internal Achievement Standard Biology Level 2 This exemplar supports assessment against: Achievement Standard
Phosphates (ortho- and total)
INTRODUCTION Phosphates (ortho- and total) Phosphorus is an essential nutrient for all aquatic plants and algae. Only a very small amount is needed, however, so an excess of phosphorus can easily occur.
Transpiration of Plants
Investigation 13 OVERVIEW In the Preliminary Activity, your students will use a Gas Pressure Sensor to determine transpiration rate. A student handout for the Open Inquiry version of the Preliminary Activity
Activity P13: Buoyant Force (Force Sensor)
Activity P13: Buoyant Force (Force Sensor) Equipment Needed Qty Equipment Needed Qty Economy Force Sensor (CI-6746) 1 Mass and Hanger Set (ME-9348) 1 Base and Support Rod (ME-9355) 1 Ruler, metric 1 Beaker,
Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid
Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid Introduction Many metals react with acids to form hydrogen gas. In this experiment, you will use the reactions
EFFECT OF ALCOHOL ON CELL MEMBRANES
EFFECT OF ALCOHOL ON CELL MEMBRANES LAB CELL 1 INTRODUCTION A eukaryotic cell, a cell with a nucleus, not only has a plasma membrane as its external boundary, but it also has a variety of membranes that
Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Chemicals Needed:
Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Your Name: Date: Partner(s) Names: Objectives: React magnesium metal with hydrochloric acid, collecting the hydrogen over water. Calculate the grams
Enzyme Activity Measuring the Effect of Enzyme Concentration
6 Measuring the Effect of Enzyme Concentration Enzymes are proteins that serve as biological catalysts in a wide variety of life sustaining chemical reactions that take place in cells. As catalysts, enzymes
Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version
Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version Freezing point depression describes the process where the temperature at which a liquid freezes is lowered by adding another
Heart Rate and Exercise
Name Date Heart Rate and Exercise Computer 26 Heart rates increase during exercise. The heart rates of physically fit people increase less during exercise than those of less fit people. The heart rates
Physical Properties of a Pure Substance, Water
Physical Properties of a Pure Substance, Water The chemical and physical properties of a substance characterize it as a unique substance, and the determination of these properties can often allow one to
Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1
Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1 FV 6/26/13 MATERIALS: PURPOSE: 1000 ml tall-form beaker, 10 ml graduated cylinder, -10 to 110 o C thermometer, thermometer clamp, plastic pipet, long
Experiment 3 Limiting Reactants
3-1 Experiment 3 Limiting Reactants Introduction: Most chemical reactions require two or more reactants. Typically, one of the reactants is used up before the other, at which time the reaction stops. The
LAB 24 Transpiration
Name: AP Biology Lab 24 LAB 24 Transpiration Objectives: To understand how water moves from roots to leaves in terms of the physical/chemical properties of water and the forces provided by differences
EXPERIMENT 2 EGG OBSERVATIONS. Contents: Pages 1-4: Teachers Guide Page 5: Student Worksheet. An Osmosis Eggsperiment ACKNOWLEDGEMENTS
EXPERIMENT 2 EGG OBSERVATIONS An Osmosis Eggsperiment Contents: Pages 1-4: Teachers Guide Page 5: Student Worksheet ACKNOWLEDGEMENTS The creation of this experiment and its support materials would not
Molar Mass of Butane
Cautions Butane is toxic and flammable. No OPEN Flames should be used in this experiment. Purpose The purpose of this experiment is to determine the molar mass of butane using Dalton s Law of Partial Pressures
Using Freezing-Point Depression to Find Molecular Weight
Usin Freezin-Point Depression to Find Molecular Weiht Experiment 15 When a solute is dissolved in a solvent, the freezin temperature is lowered in proportion to the number of moles of solute added. This
CELLS An Introduction to Cell Structure & Function
CELLS An Introduction to Cell Structure & Function Introduction: In this lab exercise we will be studying three general aspects of cellular structure and function. First, we will observe the anatomical
Cell Transport and Plasma Membrane Structure
Cell Transport and Plasma Membrane Structure POGIL Guided Inquiry Learning Targets Explain the importance of the plasma membrane. Compare and contrast different types of passive transport. Explain how
2 strong elastic bands holding beakers together. beaker representing the solution surrounding the cells. elastic band holding net onto one beaker.
Using a pot model to represent osmosis Student sheet To do 1 Set up the potato investigation as instructed. 2 Record the mass of the potato which is then placed in distilled water... g 3 Record the mass
Experiment #4 Sugar in Soft Drinks and Fruit Juices. Laboratory Overview CHEM 1361. August 2010
Experiment #4 Sugar in Soft Drinks and Fruit Juices Laboratory Overview CHEM 1361 August 2010 Gary S. Buckley, Ph.D. Department of Physical Sciences Cameron University Learning Objectives Relate density
Quick Reference Manual
Quick Reference Manual ii TABLE OF CONTENTS This guide first leads you through the basics of Logger Pro, including software installation procedures. You will learn how to collect data, manually enter data,
STATIC AND KINETIC FRICTION
STATIC AND KINETIC FRICTION LAB MECH 3.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult
Experiment 2 Kinetics II Concentration-Time Relationships and Activation Energy
2-1 Experiment 2 Kinetics II Concentration-Time Relationships and Activation Energy Introduction: The kinetics of a decomposition reaction involving hydroxide ion and crystal violet, an organic dye used
Thermochemistry I: Endothermic & Exothermic Reactions
THERMOCHEMISTRY I 77 Thermochemistry I: Endothermic & Exothermic Reactions OBJECTIVES: Learn elementary concepts of calorimetry and thermochemistry Practice techniques of careful temperature, mass, and
CELL MEMBRANE & CELL TRANSPORT (PASSIVE and ACTIVE) Webquest
Name: Period: CELL MEMBRANE & CELL TRANSPORT (PASSIVE and ACTIVE) Webquest PART I: CELL MEMBRANES WEBSITE #1: http://www.wisc-online.com/objects/index_tj.asp?objid=ap1101 1. What is the BASIC UNIT of LIFE?
Chloride and Salinity
INTRODUCTION Chloride Chloride and Chloride, in the form of the Cl ion, is one of the major inorganic anions, or negative ions, in saltwater and freshwater. It originates from the dissociation of salts,
Name. Lab 3: ENZYMES. In this lab, you ll investigate some of the properties of enzymes.
Name Lab 3: ENZYMES In this lab, you ll investigate some of the properties of enzymes. So what are enzymes? Enzymes are large protein molecules (macromolecules) They catalyze or speed up chemical reactions
PREPARATION FOR CHEMISTRY LAB: COMBUSTION
1 Name: Lab Instructor: PREPARATION FOR CHEMISTRY LAB: COMBUSTION 1. What is a hydrocarbon? 2. What products form in the complete combustion of a hydrocarbon? 3. Combustion is an exothermic reaction. What
Neutralizing an Acid and a Base
Balancing Act Teacher Information Objectives In this activity, students neutralize a base with an acid. Students determine the point of neutralization of an acid mixed with a base while they: Recognize
Heat. Investigating the function of the expansion valve of the heat pump. LD Physics Leaflets P2.6.3.2. Thermodynamic cycle Heat pump
Heat Thermodynamic cycle Heat pump LD Physics Leaflets P2.6.3.2 Investigating the function of the expansion valve of the heat pump Objects of the experiment g To study the operational components of the
The Huntington Library, Art Collections, and Botanical Gardens. How Sweet It Is: Enzyme Action in Seed Germination
The Huntington Library, Art Collections, and Botanical Gardens How Sweet It Is: Enzyme Action in Seed Germination Overview This experiment is intended to familiarize students with the macromolecule starch,
DETERMINATION OF PHOSPHORIC ACID CONTENT IN SOFT DRINKS
DETERMINATION OF PHOSPHORIC ACID CONTENT IN SOFT DRINKS LAB PH 8 From Chemistry with Calculators, Vernier Software & Technology, 2000 INTRODUCTION Phosphoric acid is one of several weak acids that present
Fuel Cell Characterization Lab
SJSU E 10 Introduction to Engineering Fuel Cell Characterization Lab What is a Fuel Cell? Before we answer that question, let s first review the process of electrolysis. In the process of electrolysis,
4. Biology of the Cell
4. Biology of the Cell Our primary focus in this chapter will be the plasma membrane and movement of materials across the plasma membrane. You should already be familiar with the basic structures and roles
Hands-On Labs SM-1 Lab Manual
EXPERIMENT 4: Separation of a Mixture of Solids Read the entire experiment and organize time, materials, and work space before beginning. Remember to review the safety sections and wear goggles when appropriate.