nonlocal conditions.

Size: px
Start display at page:

Download "nonlocal conditions."

Transcription

1 ISSN prin, online Inernaional Journal of Nonlinear Science Vol No.1,pp.3-9 Boundary Value Problem for Some Fracional Inegrodifferenial Equaions wih Nonlocal Condiions Mohammed M Maar Mahemaics Deparmen, Al-Azhar Universiy-Gaza, Gaza Srip, PA. Received 17 November 29, acceped 2 January 211 Absrac: In his paper, he exisence problems of he soluion of some boundary value fracional inegrodifferenial equaions wih nonlocal condiions are invesigaed. he resuls are obained using Banach and Krasnoselkii fixed poin heorems. Keywords: Fracional calculus; exisence and uniqueness; inegrodifferenial equaions; fixed poin heorems; nonlocal condiions. 1 Inroducion Fracional differenial equaions are emerged as a new branch of applied mahemaics by which many physical and engineering approaches can be modeled. he fac ha fracional differenial equaions are considered as alernaive models o nonlinear differenial equaions which induced exensive researches in various fields including he heoreical par see [1]-[11] and references herein. he exisence and uniqueness problems of fracional nonlinear differenial and inegrodifferenial equaions as a basic heoreical par of some applicaions are invesigaed by many auhors see for examples [3], [6], and [7]. In [1], he auhors obained sufficien condiions for he exisence of soluions for a class of boundary value problem of fracional differenial equaions in he case of 1 < 2 involving he Capuo fracional derivaive and nonlocal condiions using he Banach and Schaefer s fixed poins heorems. he Cauchy problems for some fracional absrac differenial equaions in he case of < 1 wih nonlocal condiions are invesigaed by he auhors in [2] and [1] using he Banach and Krasnoselkii fixed poin heorems. he Banach fixed poin heorem is used in [4] and [8] o invesigae he exisence problems of fracional inegrodifferenial equaions in he case of < 1 in Banach spaces. Moivaed by hese works we sudy in his paper he exisence of soluion of boundary value problem for fracional inegrodifferenial equaions in he case of 1 < 2 in Banach spaces by using Banach and Krasnoselkii fixed poin heorems. 2 Preliminaries We need some basic definiions and properies of fracional calculus which will be used in his paper. Definiion 1 A real funcion f is said o be in he space C μ, μ R if here exiss a real number p > μ, such ha f p f 1, where f 1 C[, ; and i is said o be in he space C n μ if and only if f n C μ, n N. Definiion 2 A funcion f C μ, μ 1 is said o be fracional inegrable of order > if and if, hen I f f. I f I f 1 s 1 fsds <, Γ Corresponding auhor. address: mohammed Copyrigh c World Academic Press, World Academic Union IJNS /434

2 4 Inernaional Journal of Nonlinear Science, Vol.11211, No.1, pp. 3-9 Nex, we inroduce he Capuo fracional derivaive. Definiion 3 he fracional derivaive in he Capuo sense is defined as D f d D f I n n f 1 d n s n 1 d n fs Γ n ds n ds for n 1 < n, n N, >, f C 1. n In paricular, if 1 < 2, hen D f 1 Γ2 s 1 f sds, where f s d2 fs ds, and f C is a funcion wih values in absrac space X. he ideniy I D f f + a + b, 1 where J, a, b are consans and oher properies of he fracional operaors used in he general heory of fracional differenial equaions can be found in [5], [9], and [11]. e Y CJ, X be a Banach space of all coninuous funcions x from a compac inerval J [, ] ino a Banach space X. e D {, s : s } be subse of R 2. Consider he fracional nonlinear inegrodifferenial equaion D x f, x, g, s, xsds, x hx, x kx, where 1 < 2, and he nonlinear funcions f, g, h, and k saisfy he following hypoheses: H1 f : J Y Y Y, g : D Y Y are joinly coninuous funcions and here exiss posiive consans B, C such ha { f, x, u f, y, v Cx y + u v g, s, x g, s, y B x y for any J,, s D, x, y, u, v Y. Moreover, le A sup J f,, H2 h : Y Y, and k : Y Y are coninuous funcions such ha for any x, y Y. { hx hy C x y kx ky C x y 2 g, s, ds, and max{a, B, C}. emma 1 he inegrodifferenial equaion D x f, g, sds, x hx, x kx, 3 is equivalen o he inegral equaion where y f, x hx + kx I y + I y 4 g, sds is a fracional inegrable of order funcion. IJNS for conribuion:

3 Mohammed M Maar: Boundary Value Problem for Some Fracional Inegrodifferenial Equaions 5 Proof. Applying he fracional inegral operaor I o boh sides of equaion 3, and using he ideniy 1, we ge I D x I f, x + a + b 1 Now, if, we have a hx, and if, we have g, sds s 1 fs, gs, rdrds. which implies ha herefore kx hx + b 1 b kx + hx + 1 s 1 fs, s 1 fs, gs, rdrds gs, rdrds. x hx + kx hx s 1 fs, gs, rdrds hx + kx s 1 fs, s 1 fs, gs, rdrds s 1 fs, gs, rdrds gs, rdrds which is equaion 4. On he oher hand, applying he fracional differenial operaor D o boh sides of equaion 4, i is easily o ge equaion 3. In view of emma 1, equaion 2 is equivalen o he inegral equaion x hx + kx I F x + I F x where F x fs, xs, saisfies he following esimaes and gs, r, xrdr is a fracional inegrable of order nonlinear operaor. he operaor F I F x I F x F + I F C s 1 x + Bs x + Ads C x + CB+1 x + CA Γ x + 1 IJNS homepage: hp://www.nonlinearscience.org.uk/

4 6 Inernaional Journal of Nonlinear Science, Vol.11211, No.1, pp. 3-9 I F x F y 1 + x y + 1 for every x, y Y, J. 3 Exisence problems We prove he exisence of he fracional nonlinear inegrodifferenial equaion 2 by using he well-known Banach fixed poin heorem. he following condiion is essenial o ge he conracion propery. H3 e < q < 1, and r be a posiive finie real number such ha 2 q 1 + Γ r 1 q 1 h + k + 22 Γ+1. Moreover, le B r {y Y : y r}. heorem 2 If he hypoheses H1-H3 are saisfied, hen he fracional inegrodifferenial equaion 2 has a unique soluion on J. Proof. Define he operaor Ψ : Y Y by Ψx hx + kx I F x + I F x. We show ha Ψ has a fixed poin on B r. his fixed poin is hen a soluion of equaion 2. Firsly, we show ha ΨB r B r. e x B r, hen Ψx hx + kx + I F x + I F x hx + kx + I F x + I F x h + C x + C x + k x x h + k q r + qr r x IJNS for conribuion:

5 Mohammed M Maar: Boundary Value Problem for Some Fracional Inegrodifferenial Equaions 7 Hence, he operaor Ψ maps B r ino iself. Nex, we prove ha Ψ is a conracion mapping on B r. e x, y B r, hen Ψx Ψy hx + kx I F x + I F x hy ky + I F y I F y hx hy + kx ky + I F y F x + I F x F y x y + x y x y x y x y q x y. + 1 Hence, he operaor Ψ has a unique fixed poin which is a soluion o equaion 2. he nex resul is based on he following well-known fixed poin heorem. heorem 3 Krasnoselkii e S be a closed convex and nonempy subse of a Banach space X. e P and Q be wo operaors such ha i P x + Qy S whenever x, y S; ii P is a conracion mapping; iii Q is compac and coninuous. hen here exiss z S such ha z P z + Qz. o apply he above heorem we need he following condiion insead of he condiion H1. H4 he funcions f : J Y Y, and g : D Y Y are joinly coninuous and here exiss a posiive consan such ha for all, x, y J Y Y. f, x, y heorem 4 If he hypoheses H2 and H4 are saisfied, and if C < 1, hen he fracional inegrodifferenial equaion 2 has a soluion on J. Proof. e r 1 C 1 2 h + k + Γ+1. Define he operaors P, and Q on he compac se B r {y Y : y r} Y by { P x hx + kx Qy I F y I F y. We observe ha hence I F y Qy, 2 5 IJNS homepage: hp://www.nonlinearscience.org.uk/

6 8 Inernaional Journal of Nonlinear Science, Vol.11211, No.1, pp. 3-9 and P x + Qy P x + Qy hx + kx + I F y I F y h + k C x + C herefore, if x, y B r, hen P x + Qy B r. On he oher hand, i is easily o show ha he operaor P is a conracion. Indeed, since P x P y hx hy + kx ky C x y + C x y C x y. By he hypohesis H4, he operaor Q is coninuous and by he inequaliy 5, i is uniformly bounded on B r. For he equiconinuiy of Qy, le 1, 2 in J, and y B r, we have x. hence I F y 1 I F y s 1 fs, ys, gs, r, yrdrds s 1 fs, ys, gs, r, yrdrds 1 2 s 1 1 s 1 ds s 1 ds Qy 1 Qy 2 I F y 1 I F y I F y 1 I F y As 2 1, he righ-hand side of he above inequaliy ends o zero which gives he equiconinuiy of Qy. So QB r is relaively compac. By he Arzela Ascoli heorem, Q is compac. Hence by he Krasnoselkii heorem here exiss a soluion o equaion 2. References [1] M. Benchohra, S. Hamania, S. K. Nouyas.Boundary value problems for differenial equaions wih fracional order and nonlocal condiions. Nonlinear Analysis, 7129: IJNS for conribuion:

7 Mohammed M Maar: Boundary Value Problem for Some Fracional Inegrodifferenial Equaions 9 [2] K. Balachandran, J. Y. Park.Nonlocal Cauchy problem for absrac fracional semilinear evoluion equaions.nonlinear Analysis, 7129: [3] D. Delbosco,. Rodino.Exisence and uniqueness for a fracional differenial equaion. Journal of Mahemaical Analysis and Applicaions, : [4] O. K. Jarada, A. Al-Omari, S. Momani.Exisence of he mild soluion for fracional semilinear iniial value problem. Nonlinear Analysis, 6928: [5] A. A. Kilbas, H. M. Srivasava, J. J. rujillo. heory and applicaions of fracional differenial equaions. Elsevier, Amserdam,26. [6] V. akshmikanham.heory of fracional funcional differenial equaions.nonlinear Analysis, 6928: [7] V. akshmikanham, A. S. Vasala.Basic heory of fracional differenial equaions. Nonlinear Analysis, 6928: [8] M Maar.On exisence and uniqueness of he mild soluion for fracional semilinear inegro-differenial equaions. Journal of Inegral Equaions and Applicaions, acceped. [9] K. S. Miller, B Ross.An inroducion o he fracional calculus and fracional differenial equaions. J.Wiley & Sons, New York, [1] G. M. N guerekaa. A Cauchy problem for some fracional absrac differenial equaion wih nonlocal condiion. Nonlinear Analysis, [11] I. Podlubny. Fracional differenial equaions. Academic Press, New York, IJNS homepage: hp://www.nonlinearscience.org.uk/

A NOTE ON THE ALMOST EVERYWHERE CONVERGENCE OF ALTERNATING SEQUENCES WITH DUNFORD SCHWARTZ OPERATORS

A NOTE ON THE ALMOST EVERYWHERE CONVERGENCE OF ALTERNATING SEQUENCES WITH DUNFORD SCHWARTZ OPERATORS C O L L O Q U I U M M A T H E M A T I C U M VOL. LXII 1991 FASC. I A OTE O THE ALMOST EVERYWHERE COVERGECE OF ALTERATIG SEQUECES WITH DUFORD SCHWARTZ OPERATORS BY RYOTARO S A T O (OKAYAMA) 1. Inroducion.

More information

The Transport Equation

The Transport Equation The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be

More information

Stochastic Optimal Control Problem for Life Insurance

Stochastic Optimal Control Problem for Life Insurance Sochasic Opimal Conrol Problem for Life Insurance s. Basukh 1, D. Nyamsuren 2 1 Deparmen of Economics and Economerics, Insiue of Finance and Economics, Ulaanbaaar, Mongolia 2 School of Mahemaics, Mongolian

More information

A UNIFIED APPROACH TO MATHEMATICAL OPTIMIZATION AND LAGRANGE MULTIPLIER THEORY FOR SCIENTISTS AND ENGINEERS

A UNIFIED APPROACH TO MATHEMATICAL OPTIMIZATION AND LAGRANGE MULTIPLIER THEORY FOR SCIENTISTS AND ENGINEERS A UNIFIED APPROACH TO MATHEMATICAL OPTIMIZATION AND LAGRANGE MULTIPLIER THEORY FOR SCIENTISTS AND ENGINEERS RICHARD A. TAPIA Appendix E: Differeniaion in Absrac Spaces I should be no surprise ha he differeniaion

More information

Differential Equations. Solving for Impulse Response. Linear systems are often described using differential equations.

Differential Equations. Solving for Impulse Response. Linear systems are often described using differential equations. Differenial Equaions Linear sysems are ofen described using differenial equaions. For example: d 2 y d 2 + 5dy + 6y f() d where f() is he inpu o he sysem and y() is he oupu. We know how o solve for y given

More information

17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides

17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides 7 Laplace ransform. Solving linear ODE wih piecewise coninuous righ hand sides In his lecure I will show how o apply he Laplace ransform o he ODE Ly = f wih piecewise coninuous f. Definiion. A funcion

More information

23.3. Even and Odd Functions. Introduction. Prerequisites. Learning Outcomes

23.3. Even and Odd Functions. Introduction. Prerequisites. Learning Outcomes Even and Odd Funcions 3.3 Inroducion In his Secion we examine how o obain Fourier series of periodic funcions which are eiher even or odd. We show ha he Fourier series for such funcions is considerabl

More information

23.3. Even and Odd Functions. Introduction. Prerequisites. Learning Outcomes

23.3. Even and Odd Functions. Introduction. Prerequisites. Learning Outcomes Even and Odd Funcions 23.3 Inroducion In his Secion we examine how o obain Fourier series of periodic funcions which are eiher even or odd. We show ha he Fourier series for such funcions is considerabl

More information

A Note on Renewal Theory for T -iid Random Fuzzy Variables

A Note on Renewal Theory for T -iid Random Fuzzy Variables Applied Mahemaical Sciences, Vol, 6, no 6, 97-979 HIKARI Ld, wwwm-hikaricom hp://dxdoiorg/988/ams6686 A Noe on Renewal Theory for T -iid Rom Fuzzy Variables Dug Hun Hong Deparmen of Mahemaics, Myongji

More information

Chapter 7. Response of First-Order RL and RC Circuits

Chapter 7. Response of First-Order RL and RC Circuits Chaper 7. esponse of Firs-Order L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural

More information

Option Put-Call Parity Relations When the Underlying Security Pays Dividends

Option Put-Call Parity Relations When the Underlying Security Pays Dividends Inernaional Journal of Business and conomics, 26, Vol. 5, No. 3, 225-23 Opion Pu-all Pariy Relaions When he Underlying Securiy Pays Dividends Weiyu Guo Deparmen of Finance, Universiy of Nebraska Omaha,

More information

Representing Periodic Functions by Fourier Series. (a n cos nt + b n sin nt) n=1

Representing Periodic Functions by Fourier Series. (a n cos nt + b n sin nt) n=1 Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

Lectures # 5 and 6: The Prime Number Theorem.

Lectures # 5 and 6: The Prime Number Theorem. Lecures # 5 and 6: The Prime Number Theorem Noah Snyder July 8, 22 Riemann s Argumen Riemann used his analyically coninued ζ-funcion o skech an argumen which would give an acual formula for π( and sugges

More information

Complex Fourier Series. Adding these identities, and then dividing by 2, or subtracting them, and then dividing by 2i, will show that

Complex Fourier Series. Adding these identities, and then dividing by 2, or subtracting them, and then dividing by 2i, will show that Mah 344 May 4, Complex Fourier Series Par I: Inroducion The Fourier series represenaion for a funcion f of period P, f) = a + a k coskω) + b k sinkω), ω = π/p, ) can be expressed more simply using complex

More information

DETERMINISTIC INVENTORY MODEL FOR ITEMS WITH TIME VARYING DEMAND, WEIBULL DISTRIBUTION DETERIORATION AND SHORTAGES KUN-SHAN WU

DETERMINISTIC INVENTORY MODEL FOR ITEMS WITH TIME VARYING DEMAND, WEIBULL DISTRIBUTION DETERIORATION AND SHORTAGES KUN-SHAN WU Yugoslav Journal of Operaions Research 2 (22), Number, 6-7 DEERMINISIC INVENORY MODEL FOR IEMS WIH IME VARYING DEMAND, WEIBULL DISRIBUION DEERIORAION AND SHORAGES KUN-SHAN WU Deparmen of Bussines Adminisraion

More information

INDEPENDENT MARGINALS OF OPERATOR LÉVY S PROBABILITY MEASURES ON FINITE DIMENSIONAL VECTOR SPACES

INDEPENDENT MARGINALS OF OPERATOR LÉVY S PROBABILITY MEASURES ON FINITE DIMENSIONAL VECTOR SPACES Journal of Applied Analysis 1, 1 (1995), pp. 39 45 INDEPENDENT MARGINALS OF OPERATOR LÉVY S PROBABILITY MEASURES ON FINITE DIMENSIONAL VECTOR SPACES A. LUCZAK Absrac. We find exponens of independen marginals

More information

Optimal Investment and Consumption Decision of Family with Life Insurance

Optimal Investment and Consumption Decision of Family with Life Insurance Opimal Invesmen and Consumpion Decision of Family wih Life Insurance Minsuk Kwak 1 2 Yong Hyun Shin 3 U Jin Choi 4 6h World Congress of he Bachelier Finance Sociey Torono, Canada June 25, 2010 1 Speaker

More information

A general decomposition formula for derivative prices in stochastic volatility models

A general decomposition formula for derivative prices in stochastic volatility models A general decomposiion formula for derivaive prices in sochasic volailiy models Elisa Alòs Universia Pompeu Fabra C/ Ramón rias Fargas, 5-7 85 Barcelona Absrac We see ha he price of an european call opion

More information

Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)

Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer) Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions

More information

ANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS

ANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS ANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS R. Caballero, E. Cerdá, M. M. Muñoz and L. Rey () Deparmen of Applied Economics (Mahemaics), Universiy of Málaga,

More information

Math 201 Lecture 12: Cauchy-Euler Equations

Math 201 Lecture 12: Cauchy-Euler Equations Mah 20 Lecure 2: Cauchy-Euler Equaions Feb., 202 Many examples here are aken from he exbook. The firs number in () refers o he problem number in he UA Cusom ediion, he second number in () refers o he problem

More information

Verification Theorems for Models of Optimal Consumption and Investment with Retirement and Constrained Borrowing

Verification Theorems for Models of Optimal Consumption and Investment with Retirement and Constrained Borrowing MATHEMATICS OF OPERATIONS RESEARCH Vol. 36, No. 4, November 2, pp. 62 635 issn 364-765X eissn 526-547 364 62 hp://dx.doi.org/.287/moor..57 2 INFORMS Verificaion Theorems for Models of Opimal Consumpion

More information

MTH6121 Introduction to Mathematical Finance Lesson 5

MTH6121 Introduction to Mathematical Finance Lesson 5 26 MTH6121 Inroducion o Mahemaical Finance Lesson 5 Conens 2.3 Brownian moion wih drif........................... 27 2.4 Geomeric Brownian moion........................... 28 2.5 Convergence of random

More information

ON THE PRICING OF EQUITY-LINKED LIFE INSURANCE CONTRACTS IN GAUSSIAN FINANCIAL ENVIRONMENT

ON THE PRICING OF EQUITY-LINKED LIFE INSURANCE CONTRACTS IN GAUSSIAN FINANCIAL ENVIRONMENT Teor Imov r.amaem.sais. Theor. Probabiliy and Mah. Sais. Vip. 7, 24 No. 7, 25, Pages 15 111 S 94-9(5)634-4 Aricle elecronically published on Augus 12, 25 ON THE PRICING OF EQUITY-LINKED LIFE INSURANCE

More information

Working Paper On the timing option in a futures contract. SSE/EFI Working Paper Series in Economics and Finance, No. 619

Working Paper On the timing option in a futures contract. SSE/EFI Working Paper Series in Economics and Finance, No. 619 econsor www.econsor.eu Der Open-Access-Publikaionsserver der ZBW Leibniz-Informaionszenrum Wirschaf The Open Access Publicaion Server of he ZBW Leibniz Informaion Cenre for Economics Biagini, Francesca;

More information

AP Calculus AB 2013 Scoring Guidelines

AP Calculus AB 2013 Scoring Guidelines AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a mission-driven no-for-profi organizaion ha connecs sudens o college success and opporuniy. Founded in 19, he College Board was

More information

Dynamic Information. Albina Danilova Department of Mathematical Sciences Carnegie Mellon University. September 16, 2008. Abstract

Dynamic Information. Albina Danilova Department of Mathematical Sciences Carnegie Mellon University. September 16, 2008. Abstract Sock Marke Insider Trading in Coninuous Time wih Imperfec Dynamic Informaion Albina Danilova Deparmen of Mahemaical Sciences Carnegie Mellon Universiy Sepember 6, 28 Absrac This paper sudies he equilibrium

More information

A Probability Density Function for Google s stocks

A Probability Density Function for Google s stocks A Probabiliy Densiy Funcion for Google s socks V.Dorobanu Physics Deparmen, Poliehnica Universiy of Timisoara, Romania Absrac. I is an approach o inroduce he Fokker Planck equaion as an ineresing naural

More information

Research Article Optimal Geometric Mean Returns of Stocks and Their Options

Research Article Optimal Geometric Mean Returns of Stocks and Their Options Inernaional Journal of Sochasic Analysis Volume 2012, Aricle ID 498050, 8 pages doi:10.1155/2012/498050 Research Aricle Opimal Geomeric Mean Reurns of Socks and Their Opions Guoyi Zhang Deparmen of Mahemaics

More information

Fourier Series Solution of the Heat Equation

Fourier Series Solution of the Heat Equation Fourier Series Soluion of he Hea Equaion Physical Applicaion; he Hea Equaion In he early nineeenh cenury Joseph Fourier, a French scienis and mahemaician who had accompanied Napoleon on his Egypian campaign,

More information

On the degrees of irreducible factors of higher order Bernoulli polynomials

On the degrees of irreducible factors of higher order Bernoulli polynomials ACTA ARITHMETICA LXII.4 (1992 On he degrees of irreducible facors of higher order Bernoulli polynomials by Arnold Adelberg (Grinnell, Ia. 1. Inroducion. In his paper, we generalize he curren resuls on

More information

Keldysh Formalism: Non-equilibrium Green s Function

Keldysh Formalism: Non-equilibrium Green s Function Keldysh Formalism: Non-equilibrium Green s Funcion Jinshan Wu Deparmen of Physics & Asronomy, Universiy of Briish Columbia, Vancouver, B.C. Canada, V6T 1Z1 (Daed: November 28, 2005) A review of Non-equilibrium

More information

Convexity theory for term structure equation: an extension to the jump-diffusion case

Convexity theory for term structure equation: an extension to the jump-diffusion case U.U.D.M. Projec Repor :5 Convexiy heory for erm srucure equaion: an exension o he jump-diffusion case Kailin Zeng Examensarbee i maemaik, 3 hp Handledare och examinaor: Johan Tysk Maj Deparmen of Mahemaics

More information

Modeling VIX Futures and Pricing VIX Options in the Jump Diusion Modeling

Modeling VIX Futures and Pricing VIX Options in the Jump Diusion Modeling Modeling VIX Fuures and Pricing VIX Opions in he Jump Diusion Modeling Faemeh Aramian Maseruppsas i maemaisk saisik Maser hesis in Mahemaical Saisics Maseruppsas 2014:2 Maemaisk saisik April 2014 www.mah.su.se

More information

The Heisenberg group and Pansu s Theorem

The Heisenberg group and Pansu s Theorem The Heisenberg group and Pansu s Theorem July 31, 2009 Absrac The goal of hese noes is o inroduce he reader o he Heisenberg group wih is Carno- Carahéodory meric and o Pansu s differeniaion heorem. As

More information

Research Article Solitary Wave Solutions for a Time-Fraction Generalized Hirota-Satsuma Coupled KdV Equation by a New Analytical Technique

Research Article Solitary Wave Solutions for a Time-Fraction Generalized Hirota-Satsuma Coupled KdV Equation by a New Analytical Technique Hindawi Publishing Corporaion Inernaional Journal of Differenial Equaions Volume, Aricle ID 954674, pages doi:.55//954674 Research Aricle Soliary Wave Soluions for a Time-Fracion Generalized Hiroa-Sasuma

More information

AP Calculus AB 2010 Scoring Guidelines

AP Calculus AB 2010 Scoring Guidelines AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in 1, he College

More information

Introduction to Stochastic Calculus

Introduction to Stochastic Calculus IEOR E477: Financial Engineering: Coninuous-ime Models Fall 21 c 21 by Marin Haugh Inroducion o Sochasic Calculus hese noes provide an inroducion o sochasic calculus, he branch of mahemaics ha is mos idenified

More information

Improper Integrals. Dr. Philippe B. laval Kennesaw State University. September 19, 2005. f (x) dx over a finite interval [a, b].

Improper Integrals. Dr. Philippe B. laval Kennesaw State University. September 19, 2005. f (x) dx over a finite interval [a, b]. Improper Inegrls Dr. Philippe B. lvl Kennesw Se Universiy Sepember 9, 25 Absrc Noes on improper inegrls. Improper Inegrls. Inroducion In Clculus II, sudens defined he inegrl f (x) over finie inervl [,

More information

Differential Equations and Linear Superposition

Differential Equations and Linear Superposition Differenial Equaions and Linear Superposiion Basic Idea: Provide soluion in closed form Like Inegraion, no general soluions in closed form Order of equaion: highes derivaive in equaion e.g. dy d dy 2 y

More information

Cointegration: The Engle and Granger approach

Cointegration: The Engle and Granger approach Coinegraion: The Engle and Granger approach Inroducion Generally one would find mos of he economic variables o be non-saionary I(1) variables. Hence, any equilibrium heories ha involve hese variables require

More information

Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation 1

Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation 1 Endpoin Sricharz esimaes and global soluions for he nonlinear Dirac equaion 1 Shuji Machihara, Makoo Nakamura, Kenji Nakanishi, and Tohru Ozawa Absrac. We prove endpoin Sricharz esimaes for he Klein-Gordon

More information

TWO OPTIMAL CONTROL PROBLEMS IN CANCER CHEMOTHERAPY WITH DRUG RESISTANCE

TWO OPTIMAL CONTROL PROBLEMS IN CANCER CHEMOTHERAPY WITH DRUG RESISTANCE Annals of he Academy of Romanian Scieniss Series on Mahemaics and is Applicaions ISSN 266-6594 Volume 3, Number 2 / 211 TWO OPTIMAL CONTROL PROBLEMS IN CANCER CHEMOTHERAPY WITH DRUG RESISTANCE Werner Krabs

More information

Economics Honors Exam 2008 Solutions Question 5

Economics Honors Exam 2008 Solutions Question 5 Economics Honors Exam 2008 Soluions Quesion 5 (a) (2 poins) Oupu can be decomposed as Y = C + I + G. And we can solve for i by subsiuing in equaions given in he quesion, Y = C + I + G = c 0 + c Y D + I

More information

Mean Field Games. Math 581 Project

Mean Field Games. Math 581 Project Mean Field Games Tiago Miguel Saldanha Salvador Mah 58 Projec April 23 Conens Inroducion 2 2 Analysis of second order MFG 3 2. On he Fokker-Plank equaion................................ 4 2.2 Exisence

More information

OPTIMAL PRODUCTION SALES STRATEGIES FOR A COMPANY AT CHANGING MARKET PRICE

OPTIMAL PRODUCTION SALES STRATEGIES FOR A COMPANY AT CHANGING MARKET PRICE REVISA DE MAEMÁICA: EORÍA Y APLICACIONES 215 22(1) : 89 112 CIMPA UCR ISSN: 149-2433 (PRIN), 2215-3373 (ONLINE) OPIMAL PRODUCION SALES SRAEGIES FOR A COMPANY A CHANGING MARKE PRICE ESRAEGIAS ÓPIMAS DE

More information

Relative velocity in one dimension

Relative velocity in one dimension Connexions module: m13618 1 Relaive velociy in one dimension Sunil Kumar Singh This work is produced by The Connexions Projec and licensed under he Creaive Commons Aribuion License Absrac All quaniies

More information

AND BACKWARD SDE. Nizar Touzi nizar.touzi@polytechnique.edu. Ecole Polytechnique Paris Département de Mathématiques Appliquées

AND BACKWARD SDE. Nizar Touzi nizar.touzi@polytechnique.edu. Ecole Polytechnique Paris Département de Mathématiques Appliquées OPIMAL SOCHASIC CONROL, SOCHASIC ARGE PROBLEMS, AND BACKWARD SDE Nizar ouzi nizar.ouzi@polyechnique.edu Ecole Polyechnique Paris Déparemen de Mahémaiques Appliquées Chaper 12 by Agnès OURIN May 21 2 Conens

More information

SEMIMARTINGALE STOCHASTIC APPROXIMATION PROCEDURE AND RECURSIVE ESTIMATION. Chavchavadze Ave. 17 a, Tbilisi, Georgia, E-mail: toronj333@yahoo.

SEMIMARTINGALE STOCHASTIC APPROXIMATION PROCEDURE AND RECURSIVE ESTIMATION. Chavchavadze Ave. 17 a, Tbilisi, Georgia, E-mail: toronj333@yahoo. SEMIMARTINGALE STOCHASTIC APPROXIMATION PROCEDURE AND RECURSIVE ESTIMATION N. LAZRIEVA, 2, T. SHARIA 3, 2 AND T. TORONJADZE Georgian American Universiy, Business School, 3, Alleyway II, Chavchavadze Ave.

More information

TEMPORAL PATTERN IDENTIFICATION OF TIME SERIES DATA USING PATTERN WAVELETS AND GENETIC ALGORITHMS

TEMPORAL PATTERN IDENTIFICATION OF TIME SERIES DATA USING PATTERN WAVELETS AND GENETIC ALGORITHMS TEMPORAL PATTERN IDENTIFICATION OF TIME SERIES DATA USING PATTERN WAVELETS AND GENETIC ALGORITHMS RICHARD J. POVINELLI AND XIN FENG Deparmen of Elecrical and Compuer Engineering Marquee Universiy, P.O.

More information

A Generalized Bivariate Ornstein-Uhlenbeck Model for Financial Assets

A Generalized Bivariate Ornstein-Uhlenbeck Model for Financial Assets A Generalized Bivariae Ornsein-Uhlenbeck Model for Financial Asses Romy Krämer, Mahias Richer Technische Universiä Chemniz, Fakulä für Mahemaik, 917 Chemniz, Germany Absrac In his paper, we sudy mahemaical

More information

5.8 Resonance 231. The study of vibrating mechanical systems ends here with the theory of pure and practical resonance.

5.8 Resonance 231. The study of vibrating mechanical systems ends here with the theory of pure and practical resonance. 5.8 Resonance 231 5.8 Resonance The sudy of vibraing mechanical sysems ends here wih he heory of pure and pracical resonance. Pure Resonance The noion of pure resonance in he differenial equaion (1) ()

More information

Niche Market or Mass Market?

Niche Market or Mass Market? Niche Marke or Mass Marke? Maxim Ivanov y McMaser Universiy July 2009 Absrac The de niion of a niche or a mass marke is based on he ranking of wo variables: he monopoly price and he produc mean value.

More information

AP Calculus BC 2010 Scoring Guidelines

AP Calculus BC 2010 Scoring Guidelines AP Calculus BC Scoring Guidelines The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in, he College Board

More information

4.8 Exponential Growth and Decay; Newton s Law; Logistic Growth and Decay

4.8 Exponential Growth and Decay; Newton s Law; Logistic Growth and Decay 324 CHAPTER 4 Exponenial and Logarihmic Funcions 4.8 Exponenial Growh and Decay; Newon s Law; Logisic Growh and Decay OBJECTIVES 1 Find Equaions of Populaions Tha Obey he Law of Uninhibied Growh 2 Find

More information

Chapter 2: Principles of steady-state converter analysis

Chapter 2: Principles of steady-state converter analysis Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer

More information

ANALYTIC PROOF OF THE PRIME NUMBER THEOREM

ANALYTIC PROOF OF THE PRIME NUMBER THEOREM ANALYTIC PROOF OF THE PRIME NUMBER THEOREM RYAN SMITH, YUAN TIAN Conens Arihmeical Funcions Equivalen Forms of he Prime Number Theorem 3 3 The Relaionshi Beween Two Asymoic Relaions 6 4 Dirichle Series

More information

Term Structure of Prices of Asian Options

Term Structure of Prices of Asian Options Term Srucure of Prices of Asian Opions Jirô Akahori, Tsuomu Mikami, Kenji Yasuomi and Teruo Yokoa Dep. of Mahemaical Sciences, Risumeikan Universiy 1-1-1 Nojihigashi, Kusasu, Shiga 525-8577, Japan E-mail:

More information

2.5 Life tables, force of mortality and standard life insurance products

2.5 Life tables, force of mortality and standard life insurance products Soluions 5 BS4a Acuarial Science Oford MT 212 33 2.5 Life ables, force of moraliy and sandard life insurance producs 1. (i) n m q represens he probabiliy of deah of a life currenly aged beween ages + n

More information

SMOOTHERS AND THEIR APPLICATIONS IN AUTONOMOUS SYSTEM THEORY. J. E. Palomar Tarancón. A.M.S. (MOS) Subject Classification Codes. 44A05, 34A99, 18B99

SMOOTHERS AND THEIR APPLICATIONS IN AUTONOMOUS SYSTEM THEORY. J. E. Palomar Tarancón. A.M.S. (MOS) Subject Classification Codes. 44A05, 34A99, 18B99 Elecronic Journal: Souhwes Journal of Pure an Applie Mahemaics Inerne: hp://raler.cameron.eu/swjpam.hml ISSN 1083-0464 Issue 2 December 2003 pp. 36 48. Submie: February 2003. Publishe: December 31 2003.

More information

Inductance and Transient Circuits

Inductance and Transient Circuits Chaper H Inducance and Transien Circuis Blinn College - Physics 2426 - Terry Honan As a consequence of Faraday's law a changing curren hrough one coil induces an EMF in anoher coil; his is known as muual

More information

Malliavin Calculus. Matheus Grasselli Tom Hurd Department of Mathematics & Statistics, McMaster University Hamilton, Ontario, Canada L8S 4K1

Malliavin Calculus. Matheus Grasselli Tom Hurd Department of Mathematics & Statistics, McMaster University Hamilton, Ontario, Canada L8S 4K1 Malliavin Calculus Maheus Grasselli Tom Hurd Deparmen of Mahemaics & Saisics, McMaser Universiy Hamilon, Onario, Canada L8S 4K1 April, 25 1 Inroducion 2 Malliavin Calculus 2.1 The Derivaive Operaor Consider

More information

DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS

DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS Hong Mao, Shanghai Second Polyechnic Universiy Krzyszof M. Osaszewski, Illinois Sae Universiy Youyu Zhang, Fudan Universiy ABSTRACT Liigaion, exper

More information

Stochastic integration with respect to multifractional Brownian motion via tangent fractional Brownian motions

Stochastic integration with respect to multifractional Brownian motion via tangent fractional Brownian motions Sochasic inegraion wih respec o mulifracional Brownian moion via angen fracional Brownian moions Eric Herbin, Joachim Lebovis, Jacques Lévy Véhel To cie his version: Eric Herbin, Joachim Lebovis, Jacques

More information

Linear Quadratic Optimal Control of. Problem æ. Birgit Jacob. Abstract. general does not process a solution on the whole interval.

Linear Quadratic Optimal Control of. Problem æ. Birgit Jacob. Abstract. general does not process a solution on the whole interval. Journal of Mahemaical Sysems, Esimaion, and Conrol Vol. 5, No. 1, 1995, pp. 1í28 cæ 1995 Birkhíauser-Boson Linear Quadraic Opimal Conrol of TimeíVarying Sysems wih Indeænie Coss on Hilber Spaces: The Finie

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULY OF MAHEMAICAL SUDIES MAHEMAICS FOR PAR I ENGINEERING Lecures MODULE 3 FOURIER SERIES Periodic signals Whole-range Fourier series 3 Even and odd uncions Periodic signals Fourier series are used in

More information

3 Runge-Kutta Methods

3 Runge-Kutta Methods 3 Runge-Kua Mehods In conras o he mulisep mehods of he previous secion, Runge-Kua mehods are single-sep mehods however, muliple sages per sep. They are moivaed by he dependence of he Taylor mehods on he

More information

An empirical analysis about forecasting Tmall air-conditioning sales using time series model Yan Xia

An empirical analysis about forecasting Tmall air-conditioning sales using time series model Yan Xia An empirical analysis abou forecasing Tmall air-condiioning sales using ime series model Yan Xia Deparmen of Mahemaics, Ocean Universiy of China, China Absrac Time series model is a hospo in he research

More information

Viscosity Solution of Optimal Stopping Problem for Stochastic Systems with Bounded Memory

Viscosity Solution of Optimal Stopping Problem for Stochastic Systems with Bounded Memory Viscosiy Soluion of Opimal Sopping Problem for Sochasic Sysems wih Bounded Memory Mou-Hsiung Chang Tao Pang Mousapha Pemy April 5, 202 Absrac We consider a finie ime horizon opimal sopping problem for

More information

Steps for D.C Analysis of MOSFET Circuits

Steps for D.C Analysis of MOSFET Circuits 10/22/2004 Seps for DC Analysis of MOSFET Circuis.doc 1/7 Seps for D.C Analysis of MOSFET Circuis To analyze MOSFET circui wih D.C. sources, we mus follow hese five seps: 1. ASSUME an operaing mode 2.

More information

Modeling Stock Price Dynamics with Fuzzy Opinion Networks

Modeling Stock Price Dynamics with Fuzzy Opinion Networks Modeling Sock Price Dynamics wih Fuzzy Opinion Neworks Li-Xin Wang Deparmen of Auomaion Science and Technology Xian Jiaoong Universiy, Xian, P.R. China Email: lxwang@mail.xju.edu.cn Key words: Sock price

More information

ON THE APPROXIMATION CAPABILITY OF NEURAL NETWORKS DYNAMIC SYSTEM MODELING AND CONTROL

ON THE APPROXIMATION CAPABILITY OF NEURAL NETWORKS DYNAMIC SYSTEM MODELING AND CONTROL 122 Asian Journal of Conrol, Vol. 3, No. 2, pp. 122-13, June 21 ON THE APPROXIMATION CAPABILITY OF NEURAL NETWORKS DYNAMIC SYSTEM MODELING AND CONTROL Chu Kwong Chak, Gang Feng and Jian Ma ABSTRACT This

More information

The Linear, Nonlinear and Partial Differential Equations are not Fractional Order Differential Equations

The Linear, Nonlinear and Partial Differential Equations are not Fractional Order Differential Equations Universal Jornal of Engineering Science ( 46-, OI.89/jes.. hp//www.hrpb.org The Linear, Nonlinear and Parial ifferenial Eqaions are no Fracional Order ifferenial Eqaions Ali Karci eparmen of Comper Engineering,

More information

On the paper Is Itô calculus oversold? by A. Izmailov and B. Shay

On the paper Is Itô calculus oversold? by A. Izmailov and B. Shay On he paper Is Iô calculus oversold? by A. Izmailov and B. Shay M. Rukowski and W. Szazschneider March, 1999 The main message of he paper Is Iô calculus oversold? by A. Izmailov and B. Shay is, we quoe:

More information

Why Did the Demand for Cash Decrease Recently in Korea?

Why Did the Demand for Cash Decrease Recently in Korea? Why Did he Demand for Cash Decrease Recenly in Korea? Byoung Hark Yoo Bank of Korea 26. 5 Absrac We explores why cash demand have decreased recenly in Korea. The raio of cash o consumpion fell o 4.7% in

More information

Use SeDuMi to Solve LP, SDP and SCOP Problems: Remarks and Examples*

Use SeDuMi to Solve LP, SDP and SCOP Problems: Remarks and Examples* Use SeDuMi o Solve LP, SDP and SCOP Problems: Remarks and Examples* * his file was prepared by Wu-Sheng Lu, Dep. of Elecrical and Compuer Engineering, Universiy of Vicoria, and i was revised on December,

More information

cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)

cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins) Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer

More information

Optimal Stock Selling/Buying Strategy with reference to the Ultimate Average

Optimal Stock Selling/Buying Strategy with reference to the Ultimate Average Opimal Sock Selling/Buying Sraegy wih reference o he Ulimae Average Min Dai Dep of Mah, Naional Universiy of Singapore, Singapore Yifei Zhong Dep of Mah, Naional Universiy of Singapore, Singapore July

More information

Option Pricing Under Stochastic Interest Rates

Option Pricing Under Stochastic Interest Rates I.J. Engineering and Manufacuring, 0,3, 8-89 ublished Online June 0 in MECS (hp://www.mecs-press.ne) DOI: 0.585/ijem.0.03. Available online a hp://www.mecs-press.ne/ijem Opion ricing Under Sochasic Ineres

More information

A DYNAMIC PROGRAMMING APPROACH TO THE PARISI FUNCTIONAL

A DYNAMIC PROGRAMMING APPROACH TO THE PARISI FUNCTIONAL A DYNAMIC PROGRAMMING APPROACH TO THE PARISI FUNCTIONAL AUKOSH JAGANNATH AND IAN TOBASCO Absrac. G. Parisi prediced an imporan variaional formula for he hermodynamic limi of he inensive free energy for

More information

LECTURE 7 Interest Rate Models I: Short Rate Models

LECTURE 7 Interest Rate Models I: Short Rate Models LECTURE 7 Ineres Rae Models I: Shor Rae Models Spring Term 212 MSc Financial Engineering School of Economics, Mahemaics and Saisics Birkbeck College Lecurer: Adriana Breccia email: abreccia@emsbbkacuk

More information

Contents. 1. The simplest operator whose average is the Hilbert. transform WHY THE RIESZ TRANSFORMS ARE AVERAGES OF THE DYADIC SHIFTS?

Contents. 1. The simplest operator whose average is the Hilbert. transform WHY THE RIESZ TRANSFORMS ARE AVERAGES OF THE DYADIC SHIFTS? Publ. Ma. (22), 29 228 Proceedings of he 6 h Inernaional Conference on Harmonic Analysis and Parial Differenial Equaions. El Escorial, 2. WHY THE RIESZ TRANSFORMS ARE AVERAGES OF THE DYADIC SHIFTS? S.

More information

On the Role of the Growth Optimal Portfolio in Finance

On the Role of the Growth Optimal Portfolio in Finance QUANTITATIVE FINANCE RESEARCH CENTRE QUANTITATIVE FINANCE RESEARCH CENTRE Research Paper 144 January 2005 On he Role of he Growh Opimal Porfolio in Finance Eckhard Plaen ISSN 1441-8010 www.qfrc.us.edu.au

More information

Signal Processing and Linear Systems I

Signal Processing and Linear Systems I Sanford Universiy Summer 214-215 Signal Processing and Linear Sysems I Lecure 5: Time Domain Analysis of Coninuous Time Sysems June 3, 215 EE12A:Signal Processing and Linear Sysems I; Summer 14-15, Gibbons

More information

Circuit Types. () i( t) ( )

Circuit Types. () i( t) ( ) Circui Types DC Circuis Idenifying feaures: o Consan inpus: he volages of independen volage sources and currens of independen curren sources are all consan. o The circui does no conain any swiches. All

More information

The Torsion of Thin, Open Sections

The Torsion of Thin, Open Sections EM 424: Torsion of hin secions 26 The Torsion of Thin, Open Secions The resuls we obained for he orsion of a hin recangle can also be used be used, wih some qualificaions, for oher hin open secions such

More information

Graduate Macro Theory II: Notes on Neoclassical Growth Model

Graduate Macro Theory II: Notes on Neoclassical Growth Model Graduae Macro Theory II: Noes on Neoclassical Growh Model Eric Sims Universiy of Nore Dame Spring 2011 1 Basic Neoclassical Growh Model The economy is populaed by a large number of infiniely lived agens.

More information

DIFFERENTIAL EQUATIONS with TI-89 ABDUL HASSEN and JAY SCHIFFMAN. A. Direction Fields and Graphs of Differential Equations

DIFFERENTIAL EQUATIONS with TI-89 ABDUL HASSEN and JAY SCHIFFMAN. A. Direction Fields and Graphs of Differential Equations DIFFERENTIAL EQUATIONS wih TI-89 ABDUL HASSEN and JAY SCHIFFMAN We will assume ha he reader is familiar wih he calculaor s keyboard and he basic operaions. In paricular we have assumed ha he reader knows

More information

Solution of a differential equation of the second order by the method of NIGAM

Solution of a differential equation of the second order by the method of NIGAM Tire : Résoluion d'une équaion différenielle du second[...] Dae : 16/02/2011 Page : 1/6 Soluion of a differenial equaion of he second order by he mehod of NIGAM Summarized: We presen in his documen, a

More information

Answer, Key Homework 2 David McIntyre 45123 Mar 25, 2004 1

Answer, Key Homework 2 David McIntyre 45123 Mar 25, 2004 1 Answer, Key Homework 2 Daid McInyre 4123 Mar 2, 2004 1 This prin-ou should hae 1 quesions. Muliple-choice quesions may coninue on he ne column or page find all choices before making your selecion. The

More information

1 The basic circulation problem

1 The basic circulation problem 2WO08: Graphs and Algorihms Lecure 4 Dae: 26/2/2012 Insrucor: Nikhil Bansal The Circulaion Problem Scribe: Tom Slenders 1 The basic circulaion problem We will consider he max-flow problem again, bu his

More information

Impact of Debt on Primary Deficit and GSDP Gap in Odisha: Empirical Evidences

Impact of Debt on Primary Deficit and GSDP Gap in Odisha: Empirical Evidences S.R. No. 002 10/2015/CEFT Impac of Deb on Primary Defici and GSDP Gap in Odisha: Empirical Evidences 1. Inroducion The excessive pressure of public expendiure over is revenue receip is financed hrough

More information

Second Order Linear Differential Equations

Second Order Linear Differential Equations Second Order Linear Differenial Equaions Second order linear equaions wih consan coefficiens; Fundamenal soluions; Wronskian; Exisence and Uniqueness of soluions; he characerisic equaion; soluions of homogeneous

More information

Time Consistency in Portfolio Management

Time Consistency in Portfolio Management 1 Time Consisency in Porfolio Managemen Traian A Pirvu Deparmen of Mahemaics and Saisics McMaser Universiy Torono, June 2010 The alk is based on join work wih Ivar Ekeland Time Consisency in Porfolio Managemen

More information

Longevity 11 Lyon 7-9 September 2015

Longevity 11 Lyon 7-9 September 2015 Longeviy 11 Lyon 7-9 Sepember 2015 RISK SHARING IN LIFE INSURANCE AND PENSIONS wihin and across generaions Ragnar Norberg ISFA Universié Lyon 1/London School of Economics Email: ragnar.norberg@univ-lyon1.fr

More information

AP Calculus AB 2007 Scoring Guidelines

AP Calculus AB 2007 Scoring Guidelines AP Calculus AB 7 Scoring Guidelines The College Board: Connecing Sudens o College Success The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and

More information

Analysis of Pricing and Efficiency Control Strategy between Internet Retailer and Conventional Retailer

Analysis of Pricing and Efficiency Control Strategy between Internet Retailer and Conventional Retailer Recen Advances in Business Managemen and Markeing Analysis of Pricing and Efficiency Conrol Sraegy beween Inerne Reailer and Convenional Reailer HYUG RAE CHO 1, SUG MOO BAE and JOG HU PARK 3 Deparmen of

More information

Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary

Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary Random Walk in -D Random walks appear in many cones: diffusion is a random walk process undersanding buffering, waiing imes, queuing more generally he heory of sochasic processes gambling choosing he bes

More information

Life insurance cash flows with policyholder behaviour

Life insurance cash flows with policyholder behaviour Life insurance cash flows wih policyholder behaviour Krisian Buchard,,1 & Thomas Møller, Deparmen of Mahemaical Sciences, Universiy of Copenhagen Universiesparken 5, DK-2100 Copenhagen Ø, Denmark PFA Pension,

More information

An Optimal Selling Strategy for Stock Trading Based on Predicting the Maximum Price

An Optimal Selling Strategy for Stock Trading Based on Predicting the Maximum Price An Opimal Selling Sraegy for Sock Trading Based on Predicing he Maximum Price Jesper Lund Pedersen Universiy of Copenhagen An opimal selling sraegy for sock rading is presened in his paper. An invesor

More information