Viscosity Solution of Optimal Stopping Problem for Stochastic Systems with Bounded Memory


 Briana Chapman
 2 years ago
 Views:
Transcription
1 Viscosiy Soluion of Opimal Sopping Problem for Sochasic Sysems wih Bounded Memory MouHsiung Chang Tao Pang Mousapha Pemy April 5, 202 Absrac We consider a finie ime horizon opimal sopping problem for a sysem of sochasic funcional differenial equaions wih a bounded memory. Under some sufficienly smooh condiions, a HamilonJacobiBellman (HJB) variaional inequaliy for he value funcion is derived via dynamical programming principle. I is shown ha he value funcion is he unique viscosiy soluion of he HJB variaional inequaliy. KEYWORDS: opimal sopping, sochasic conrol, sochasic funcional differenial equaions. AMS 2000 subjec classificaions: primary 60G40, 60G20; secondary 60H30, 93E20 The research of his paper is parially suppored by a gran W9NF04D0003 from he U. S. Army Research Office Mahemaical Sciences Division, U. S. Army Research Office, P. O. Box 22, RTP, NC 27709, USA. Deparmen of Mahemaics, Norh Carolina Sae Universiy, Raleigh, NC 27695, USA. (Corresponding Auhor) Deparmen of Mahemaics, Towson Universiy, Towson, MD , USA.
2 Inroducion Opimal conrol and opimal sopping problems over a finie or an infinie ime horizon for Iô s diffusion processes arise in many areas of science, engineering, and finance (see e.g. Fleming and Soner 4, Øksendal 35, Shiryaev 39, Karazas and Shreve 9 and references conained herein). The value funcion of hese problems are normally expressed as a viscosiy or a generalized soluion of a HamilonJacobiBellman equaion (HJBE) or a HamilonJacobiBellman variaional inequaliy (HJBVI) ha involves a second order parabolic or ellipic parial differenial equaion in a finie dimensional Euclidean space (see e.g. Lions 30 and 32). In an aemp o achieve beer accuracy and o accoun for he delayed effec of he sae variables in he modelling of real world sochasic conrol problems, he sochasic delay equaions and conrolled sochasic delay equaions have been he subjec of inensive sudies in recen years by many researchers such as Elsanousi, Larrssen 25, Elsanousi e al 3, Øksendal and Sulem 37, Larrssen and Risebro 27, and Bauer and Rieder 5. The conrolled or unconrolled sochasic delay equaions considered by he aforemenioned researchers are described by he following special classes of equaions ha conain discree and averaged delays: ( dx(s) = α s, X(s), X(s r), or ( + β s, X(s), X(s r), 0 r 0 r ( 0 dx(s) = α s, X(s), X(s r), ( + β s, X(s), X(s r), ) e λθ X(s + θ)dθ, u(s) ds () ) e λθ X(s + θ)dθ, u(s) dw (s), s, T, r 0 r ) e λθ X(s + θ)dθ ds (2) ) e λθ X(s + θ)dθ dw (s), s, T. In he above equaions, W ( ) = {W (s), s 0} is an mdimensional sandard Brownian moion defined on a cerain filered probabiliy space (Ω, F, P, F), u( ) = {u(s), s, T } is a conrol process aking values in he conrol se U in an Euclidean space, α and β are R n and R n m valued funcions defined on or 0, T R n R n R n U, 0, T R n R n R n, and λ > 0 is a given consan. Based on he above wo equaions or heir varians, Larssen 25 obained an HJB equaion for an opimal conrol problem, Elsanousi e al 3 considered a singular conrol problem and obained cerain explicily available soluions, Øksendal and Sulem 37 derived he maximum principle for he opimal 2
3 sochasic conrol. If he dynamics of he conrol problem wih delay exhibi a special srucure, Larssen and Risebro 27 and Bauer and Rieder 5 showed ha he value funcion acually lives in a finiedimensional space and he original problem can be reduced o a classical sochasic conrol problem wihou delay. Elsanousi and Larssen 2 reaed an opimal conrol problem and is applicaions o consumpion for () under parial observaion. We also menion ha opimal sopping problems were sudied in Elsanousi s unpublished disseraion for such special ype of equaions. This paper exends he resuls obained for finie dimensional diffusion processes and sochasic delay equaions described in (2) and invesigaes an opimal sopping problem over a finie ime horizon for a general sysem of sochasic funcional differenial equaions (SFDE) described below: dx(s) = f(s, X s )d + g(s, X s )dw (s), s, T, (3) where T > 0 and 0, T, respecively, denoe he erminal ime and an iniial ime of he opimal sopping problem. Again, W ( ) = {W (s), s 0} is a sandard mdimensional Brownian moion, and he drif f(s, X s ) and he diffusion coefficien g(s, X s ) (aking values in R n and R n m, respecively) depend explicily on he segmen X s of he sae process X( ) = {X(s), s r, T } over he ime inerval s r, s, where X s : r, 0 R n is defined by X s (θ) = X(s + θ), θ r, 0. The consideraion of such a sysem enables us o model many real world problems ha have afereffecs (see e.g. Kolmanovsky and Shaikhe 24 and references conained herein for applicaion examples). I is clear ha his equaion also includes (2) as a special case and many oher equaions ha can no be modelled in he form of (2). When r = 0, i is also clear ha he SFDE (3) reduces o he following Iô s diffusion process (wihou delay): dx(s) = f(s, X(s))ds + g(s, X(s))dW (s), s, T. This paper reas a finie ime horizon opimal sopping problem (see Secion 2 for he problem saemen). We derive an infinie dimensional HJB variaional inequaliy (HJBVI) for he value funcion via a dynamic programming principle (see e.g. Larssen 25). I is shown ha he value funcion is he unique viscosiy soluion of he HJBVI. The proof of uniqueness involves embedding he funcion space W,2 (( r, 0); R n ) ino he Banach space C( r, 0; R n ) and exending he concep of viscosiy soluion for conrolled Iô s diffusion process developed by Crandall e al 9, and Lions 30 and 32 o an infinie dimensional seing. Alhough infinie dimensional HJBVIs for opimal sopping problems and heir applicaions o pricing of American opion have been sudied very recenly by a few researchers, hey eiher considered sochasic delay equaion of special form (2)(see e.g. Gapeev and Reiss 6 and 7) or sochasic equaions in Hilber spaces (see e.g. Gaarek and Świech 5 and Barbu and Marinelli 4). This paper differs from he aforemenioned papers in he following significan ways: i) The segmened soluion process {X s, s, T } is a srong Markov process in he Banach space C( r, 0; R n ) whose norm is no differeniable and is herefore more difficul o handle han any Hilber space considered in 3
4 5 and 4; ii) he infiniedimensional HJBVI uniquely involves he exensions DV (, ψ) and D 2 V (, ψ) of firs and second order Fréche derivaives DV (, ψ) and D 2 V (, ψ) from C and C o (C B) and (C B) (see Subsecion 3. for definiions of hese spaces), respecively; and iii) he infiniedimensional HJBVI also involves he infiniesimal generaor SV (, ψ) of he semigroup of shif operaors value funcions ha does no appear in he special class of equaions (2) in he aforemenioned papers. This paper is organized as follows. The noaion and preliminary resuls ha are needed for formulaing he opimal sopping problem as well as he problem saemen are conained in Secion 2. In Secion 3, he HJBVI for he value funcion is heurisically derived using Bellman s ype dynamic programming principle. The verificaion heorem is also proved here. In Secion 4, he coninuiy of he value funcion is proved. Alhough coninuous, he value funcion is no known o be smooh enough o be a classical soluion of he HJBVI in general cases. I is shown in Secion 4, however, ha he value funcion is he unique viscosiy soluion of he HJBVI. 2 The Opimal Sopping Problem Le r > 0 be a fixed consan, and le J = r, 0 denoe he duraion of he bounded memory of he sochasic funcional differenial equaions considered in his paper. For he sake of simpliciy, denoe C(J; R n ), he space of coninuous funcions φ : J R n, by C. Noe ha C is a real separable Banach space under he supnorm defined by φ = sup φ(θ), θ J φ C where is he Euclidean norm in R n. In addiion o he space C, we also consider L 2 (J; R n ), he Hilber space of Lebesque squaredinegrable funcions φ : J R n equipped wih he inner produc ( ) and he Hilberian norm 2 defined by (φ ψ) = 0 r φ(θ), ψ(θ) dθ and φ 2 = (φ φ) 2, φ, ψ L 2 (J, R n ), where, he inner produc in R n. Noe ha he space C can be coninuously embedded ino L 2 (J; R n ) (see e.g. Rudin 38). In fac, i is easy o verify ha φ 2 r φ, φ C. Convenion 2. Throughou he res of he paper, le T > 0 denoe he erminal ime and 0, T be an iniial ime of he opimal sopping problem. We shall use he following convenional noaion for funcional differenial equaions (see Hale 8): If ψ C( r, T ; R n ) and s, T, le ψ s C be defined by ψ s (θ) = ψ(s + θ), θ J. 4
5 In addiion, hroughou he res of he paper, we will use K and Λ o denoe generic consans and heir values may change from line o line. Le {W (s), s 0} be an mdimensional sandard Brownian moion defined on a complee filered probabiliy space (Ω, F, P ; F), where F denoes he smalles σfield ha conains all subses of Ω, and F = {F(s), s 0} is he P augmenaion of he naural filraion {F W (s), s 0} generaed by he Brownian moion {W (s), s 0}, i.e., if s 0, and F W (s) = σ{w (), 0 s} F(s) = F W (s) {A Ω B F such ha A B and P (B) = 0 }, where he operaor denoes ha F(s) is he smalles σalgebra such ha F W (s) F(s) and {A Ω B F such ha A B and P (B) = 0 } F(s). Consider he following sysem of sochasic funcional differenial equaions: dx(s) = f(s, X s )ds + g(s, X s )dw (s), s, T ; (4) wih he iniial funcion X = ψ, where ψ is a given Cvalued random variable ha is F()measurable. Here, f : 0, T C R n and g : 0, T C R n m are given deerminisic funcionals. Le L 2 (Ω, C) be he space of Cvalued random variables Ξ : Ω C such ha ( ) Ξ L 2 = Ξ(ω) 2 2 dp (ω) <. Ω Le L 2 (Ω, C; F()) be he space of hose Ξ L 2 (Ω, C) which are F()measurable. Definiion 2.2 A process {X(s;, ψ ), s r, T } is said o be a (srong) soluion of (4) on he inerval r, T and hrough he iniial daum (, ψ ) 0, T L 2 (Ω, C; F()) if i saisfies he following condiions:. X ( ;, ψ ) = ψ ; 2. X(s;, ψ ) is F(s)measurable for each s, T ; 3. The process {X(s;, ψ ), s, T } is coninuous and i saisfies he following sochasic inegral equaion P a.s. X(s) = ψ (0) + s f(λ, X λ )dλ + s g(λ, X λ )dw (λ), s, T. (5) 5
6 In addiion, he (srong) soluion process {X(s;, ψ ), s r, T } of (4) is said o be (srongly) unique if { X(s;, ψ ), s r, T } is also a (srong) soluion of (4) on r, T and hrough he same iniial daum (, ψ ), hen P {X(s;, ψ ) = X(s;, ψ ), s, T } =. Throughou he res of he paper, we assume ha he funcionals f : 0, T C R n, and g : 0, T C R n m are coninuous funcionals and hey saisfy he following condiions (Assumpion 2.3 & 2.4) o ensure he exisence and uniqueness of a (srong) soluion {X(s;, ψ ), s r, T } for each (, ψ ) 0, T L 2 (Ω, C; F()). (See Mohammed 33, 34.) Assumpion 2.3 There exiss a consan K > 0 such ha f(, ϕ) f(s, φ) + g(, ϕ) g(s, φ) K( s + ϕ φ ) (, ϕ), (s, φ) 0, T C. Assumpion 2.4 There exiss a consan K > 0 such ha f(, φ) + g(, φ) K( + φ ) (, φ) 0, T C. Le {X(s;, ψ ), s, T } be he soluion of (4) hrough he iniial daum (, ψ ) 0, T C. We consider he corresponding Cvalued process {X s (, ψ ), s, T } defined by X s (θ;, ψ ) X(s + θ;, ψ ), θ J. (6) For each 0, T, define G() s,t G(, s) where G(, s) is defined by G(, s) = σ(x(u;, ψ ), u s). Noe ha, i can be shown ha for each s, T, G(, s) = σ(x u (, ψ ), u s). This is due o he sample pah s coninuiy of he process {X(s;, ψ ), s, T }. One can hen esablish he following Markov propery (see Mohammed 33, 34). Theorem 2.5 Le Assumpions 2.3 and 2.4 hold. Then he corresponding C valued soluion process of (4) describes a Cvalued Markov process in he following sense: For any (, ψ ) 0, T L 2 (Ω, C), he Markovian propery P {X s (, ψ ) B G(, α)} = P {X s (, ψ ) B X α (, ψ )} p(α, X α (, ψ ), s, B) holds a.s. for α s and B B(C), where B(C) is he Borel σalgebra of subses of C. 6
7 In he above, he funcion p :, T C, T B(C) 0, denoes he ransiion probabiliies of he Cvalued Markov process {X s (, ψ ), s, T }. A random funcion τ : Ω 0, is said o be a G()sopping ime if {τ s} G(, s), s. Le T be he collecion of all G()sopping imes, and le T T be he collecion of all G()sopping imes τ T such ha τ T a.s.. For each τ T T, le he subσalgebra G(, τ) of F be defined by G(, τ) = {A F A { τ s} G(, s) s, T }. Wih a lile bi more effor, one can show ha he corresponding Cvalued soluion process of (4) is also a srong Markov process in C. Tha is P {X s (, ψ ) B G(, τ)} = P {X s (, ψ ) B X τ (, ψ )} p(τ, X τ (, ψ ), s, B) holds a.s. for all τ T T, all deerminisic s τ, T, and B B(C). If he drif f and he diffusion coefficien g are imeindependen, i.e., f(s, φ) f(φ) and g(s, φ) g(φ), hen (4) reduces o he following auonomous sysem: dx(s) = f(x s )ds + g(x s )dw (s). (7) In his case, we usually assume he iniial daum (, ψ ) = (0, ψ) and denoe he soluion process of (7) hrough (0, ψ) and on he inerval r, T by {X(s; ψ), s r, T }. Then he corresponding Cvalued soluion process {X s (ψ), s r, T } of (7) is a srong Markov process wih imehomogeneous probabiliy ransiion funcion p(ψ, s, B) p(0, ψ, s, B) = p(, ψ, + s, B) for all s, 0, ψ C, and B B(C). Assume L and Ψ are wo 2 Lipschiz coninuous realvalued funcionals on 0, T C wih a mos polynomial growh in L 2 (J; R n ). In oher words, here exis posiive consans K, Λ, and k such ha and L(, ψ) L(s, φ) + Ψ(, ψ) Ψ(s, φ) K( s + ψ φ 2 ) K( s + ψ φ ) (, ψ), (s, φ) 0, T C. (8) L(, φ) + Ψ(, φ) Λ( + φ 2 ) k, (, φ) 0, T C. (9) Given he iniial daum (, ψ) 0, T C, our objecive is o find an opimal sopping ime τ T T ha maximizes he following expeced performance index: τ J(τ;, ψ) E e ρ(s ) L(s, X s )ds + e ρ(τ ) Ψ(τ, X τ ), (0) where ρ > 0 denoes a discoun facor. In his case, he value funcion V : 0, T C R is defined o be V (, ψ) sup J(τ;, ψ). () τ T T 7
8 For he auonomous case, i.e., dx(s) = f(x s )d + σ(x s )dw (s), s, T, (2) he following opimal sopping problem is a special case of wha will be reaed in his paper: Find an opimal sopping ime τ T0 T ha maximizes he following expeced performance index: τ J(τ; ψ) E e ρs L(X s )ds + e ρτ Ψ(X τ ). (3) 0 In his case, he value funcion V : C R is defined o be 3 HJB Variaional Inequaliy 3. The Infiniesimal Generaor V (ψ) sup J(τ; ψ). (4) τ T0 T Le C and C be he space of bounded linear funcionals Φ : C R and bounded bilinear funcionals Φ : C C R, of he space C, respecively. They are equipped wih he operaor norms which will be, respecively, denoed by and. Le B = {v {0}, v R n }, where {0} : r, 0 R is defined by { 0 for θ r, 0), {0} (θ) = for θ = 0. We form he direc sum C B = {φ + v {0} φ C, v R n } and equip i wih he norm, also denoed by, defined by φ + v {0} = sup φ(θ) + v, φ C, v R n. θ r,0 Again, le (C B) and (C B) be spaces of bounded linear and bilinear funcionals of C B, respecively. The following wo resuls can be found in Lemma 3. and Lemma 3.2 on pp of Mohammed 33. If Γ C, hen Γ has a unique (coninuous) bilinear exension Γ : (C B) R saisfying he following weak coninuiy propery: (W) If {ξ (k) } k= is a bounded sequence in C such ha ξ(k) (θ) ξ(θ) as k for all θ J for some ξ C B, hen Γ(ξ (k) ) Γ(ξ) as k. The exension map C (C B), Γ Γ is a linear isomeric injecive map. 8
9 If Γ C, hen Γ has a unique (coninuous) linear exension Γ (C B) saisfying he following weak coninuiy propery: (W2) If {ξ (k) } k= and {ζ(k) } k= are bounded sequences in C such ha ξ (k) (θ) ξ(θ) and ζ (k) (θ) ζ(θ) as k for all θ J for some ξ, ζ C B, hen Γ(ξ (k), ζ (k) ) Γ(ξ, ζ) as k. For a sufficienly smooh funcional Φ : C R, we can define is Fréche derivaives wih respec o φ C. (For more deails abou Fréche derivaives, please refer o 2.) From he resuls saed above, we know ha is firs order Fréche derivaive, DΦ(φ) C, has a unique and (coninuous) linear exension DΦ(φ) (C B). Similarly, is second order Fréche derivaive, D 2 Φ(φ) C, has a unique and coninuous linear exension D 2 Φ(φ) (C B). For a Borel measurable funcion Φ : C R, we also define S(Φ)(φ) lim Φ( h 0+ h φ h ) Φ(φ) for all φ C, where φ : r, T R n is an exension of φ : r, 0 R n defined by φ() = { φ() if r, 0) φ(0) if 0, and again φ C is defined by φ (θ) = φ( + θ), θ r, 0. (5) Le ˆD(S), he domain of he operaor S, be he se of Φ : C R such ha he above limi exiss for each φ C. Define D(S) as he se of all funcionals Ψ : 0, T C R such ha Ψ(, ) ˆD(S), 0, T. Throughou he end, le C,2 lip (0, T C) be he space of funcions Φ : 0, T C R which saisfies he following condiions:. Φ : 0, T C R, DΦ : 0, T C C and D 2 Φ : 0, T C C exis and are coninuous. 2. Is second order Fréche derivaive D 2 Φ saisfies he following global Lipschiz condiion: D 2 Φ(, φ) D 2 Φ(, ϕ) K φ ϕ 0, T, φ, ϕ C. The following example shows ha ˆD(S) is no a subse of Clip 2 (C). Therefore, i is no redundan o require ha a funcion Φ C,2 lip (0, T C) D(S) for deriving he infiniedimensional HJB variaional inequaliy. Example. Assume n =. Le Φ : C R be independen of he ime variable and be defined by ( Φ(φ) = φ r ), φ C. 2 9
10 Then i is clear ha Φ C 2 (C) bu Φ / ˆD(S), since ϕ C, ( DΦ(φ)(ϕ) = ϕ r ), 2 D 2 Φ(φ)(ϕ, ϕ) = 0, and D 2 Φ is globally Lipschiz. However, S(Φ)(φ) = lim Φ( 0 + φ ) Φ(φ) = lim 0 + φ ( ) ( ) r 2 φ r 2 which exiss only if φ has a righ derivaive a r 2. Le Φ : 0, T C R be a Borel measurable funcion and consider he following wo smoohness condiions: Smoohness Condiion (i). Φ C,2 lip (0, T C). Smoohness Condiion (ii). Φ D(S), i.e., Φ(, ) ˆD(S) for each 0, T. The following resul will be used laer on in his paper. Theorem 3. (Mohammed 33, 34) Suppose ha Φ C(0, T C) saisfies Smoohness condiions (i) and (ii). Le {X s, s, T } be he Cvalued Markov soluion process of Equaion (4) wih he iniial daa (, ϕ ) 0, T C. Then EΦ( + ɛ, X +ɛ ) Φ(, ϕ ) lim ɛ 0 ɛ = Φ(, ϕ ) + S(Φ)(, ϕ ) + DΦ(, ϕ )(f(, ϕ ) {0} ) + 2 m D 2 Φ(, ϕ )(g(, ϕ )(e j ) {0}, g(, ϕ )(e j ) {0} ), (6) j= where e j, j =, 2,, m, is he jh vecor of he sandard basis in R m. 3.2 Heurisic Derivaion We consider he following HJBVI: { max Ψ V, V on 0, T C, where } + AV + L ρv = 0 (7) AV (, ψ) S(V )(, ψ) + DV (, ψ)(f(, ψ) {0} ) + m D 2 2 V (, ψ)(g(, ψ)e i {0}, g(, ψ)e i {0} ). (8) i= 0
11 The above inequaliy shall be inerpreed as follows. and V + AV + L ρv 0 and V Ψ (9) ( V ) + AV + L ρv (V Ψ) = 0 (20) on 0, T C, where A is defined by (8). We heurisically derive he above variaional inequaliy as follows. A rigorous derivaion will be provided as a byproduc when we prove ha he value funcion is a viscosiy soluion of he HJBVI in he nex secion. Firs, we prove ha V (, ψ) Ψ(, ψ) for all (, ψ) 0, T C. Le τ T T. If τ =, hen by (0), we can ge J( τ;, ψ) = Ψ(, ψ). Therefore, V (, ψ) = sup J(τ;, ψ) J( τ;, ψ) = Ψ(, ψ). (2) τ T T The following dynamic programming principle (see Larssen 25) will be used o derive our HJBVI: +δ V (, ψ) E e ρ(s ) L(s, X s )ds + e ρδ V ( + δ, X +δ ), δ 0. (22) From his principle and Theorem 3., we have Ee ρδ V ( + δ, X +δ ) V (, ψ) lim δ 0 δ Ee ρδ V ( + δ, X +δ ) V ( + δ, X +δ ) = lim δ 0 δ EV ( + δ, X +δ ) V (, ψ) + lim δ 0 δ = ρv (, ψ) + V (, ψ) + AV (, ψ) L(, ψ), for all (, ψ) 0, T C provided ha V C,2 lip (0, T C) D(S). Tha is, V From (2) and (23), i follows ha max{ψ V, V + AV + L ρv 0. (23) + AV + L ρv } 0 (24)
12 on 0, T C. The derivaion of he inequaliy max{ψ V, V can be found in he nex secion. We herefore have he following resul. + AV + L ρv } 0 (25) Theorem 3.2 Suppose V : 0, T C is he value funcion defined by () and saisfies Smoohness Condiions (i) and (ii). Then he value funcion V saisfies he following HJB variaional inequaliy: { max Ψ V, V } + AV + L ρv = 0 (26) on 0, T C, and V (T, ψ) = Ψ(ψ), ψ C. Noe ha i is no known ha he value funcion V saisfies he Smoohness Condiions (i) and (ii). Therefore, we need o consider viscosiy soluions insead of classical soluions for HJB variaional inequaliy (26). In fac, i will be shown ha he value funcion is a unique viscosiy soluion of he HJB variaional inequaliy (26). These resuls shall be given in he nex secion. 4 Viscosiy Soluion In his secion, we shall show ha he value funcion V defined by () is acually he unique viscosiy soluion of he HJB variaional inequaliy (26). Firs, le us define he viscosiy soluion of (26) as follows. Definiion 4. Le w C(0, T C). We say ha w is a viscosiy subsoluion of (26) if for every Γ : 0, T C R saisfying Smoohness Condiions (i)(ii) on 0, T C, we have { min Γ(, ψ) Ψ(, ψ), ργ(, ψ) Γ } (, ψ) AΓ(, ψ) L(, ψ) 0 a every (, ψ) 0, T C which is a local maximum of w Γ, wih Γ(, ψ) = w(, ψ). We say ha w is a viscosiy supersoluion of (26) if, for every Γ : 0, T C R saisfying Smoohness Condiions (i)(ii) on 0, T C, we have { min Γ(, ψ) Ψ(, ψ), ργ(, ψ) Γ } (, ψ) AΓ(, ψ) L(, ψ) 0. a every (, ψ) 0, T C which is a local minimum of w Γ, wih Γ(, ψ) = w(, ψ). We say ha w is a viscosiy soluion of (26) if i is a viscosiy supersoluion and a viscosiy subsoluion of (26). 2
13 As we can see in he definiion, a viscosiy soluion mus be coninuous. So firs we will show ha he value funcion V defined by () has his propery. Acually, we have he following resul: Lemma 4.2 The value funcion V : 0, T C R defined in () is coninuous and here exis consans K > 0 and k such ha, for every (, ψ) 0, T C, we have V (, ψ) K( + ψ 2 ) k. (27) Proof. I is clear ha V has a mos polynomial growh, since L and Φ have a mos polynomial growh wih he same k as in (9). Le Ξ(s) = X s (, ψ), s, T, be he Cvalued soluion of (4) wih iniial daa (, ψ) 0, T C. In view of Remark (v) following he proof of Theorem I.2 and in he proof of Theorem III. pp. 33 of Mohammed 34, he rajecory map (, ψ) X s (, ψ) from 0, T C o L 2 (Ω, C) is globally Lipschiz in ψ uniformly wih respec o on compac ses, and coninuous in for fixed ψ. Therefore, given wo Cvalued soluions Ξ (s) = X s (, ψ ) and Ξ 2 (s) = X s (, ψ 2 ), s, T of (4) wih iniial daa (, ψ ) and (, ψ 2 ), respecively, we have E Ξ (s) Ξ 2 (s) K ψ ψ 2 2, (28) where K is a posiive consan ha depends on he Lipschiz consan in Assumpions 2.3 and T. Using he Lipshiz coninuiy of L, Ψ : 0, T C R, here exiss ye anoher consan Λ > 0 such ha, J(τ;, ψ ) J(τ;, ψ 2 ) ΛE Ξ (τ) Ξ 2 (τ). (29) Therefore, using (29) and (28), we have V (, ψ ) V (, ψ 2 ) sup J(τ;, ψ ) J(τ;, ψ 2 ) τ T T Λ sup E Ξ (τ) Ξ 2 (τ) τ T T Λ ψ ψ 2 2. (30) This implies he (uniform) coninuiy of V (, ψ) wih respec o ψ. We nex show he coninuiy of V (, ψ) wih respec o. Le Ξ (s) = X s (, ψ), s, T and Ξ 2 (s) = X s ( 2, ψ), s 2, T, be wo Cvalued soluions of (4) wih iniial daa (, ψ) and ( 2, ψ), respecively. Wihou loss of generaliy, we assume ha < 2. Then we can ge J(τ;, ψ) J(τ; 2, ψ) 3
14 2 = E + τ 2 e ρ(ξ ) L(ξ, Ξ (ξ))dξ e ρ(ξ 2) L(ξ, Ξ (ξ)) L(ξ, Ξ 2 (ξ))dξ + e ρ(τ ) Ψ(τ, Ξ (τ)) e ρ(τ 2) Ψ(τ, Ξ 2 (τ)). (3) Therefore, here exiss a consan Λ > 0 such ha J(τ;, ψ) J(τ; 2, ψ) ( ) Λ 2 E Ξ (τ) + E Ξ (τ) Ξ 2 (τ). (32) Le ε > 0 be any give small consan. Using he compacness of 0, T and he uniform coninuiy of he rajecory map in, we know ha here exiss a consan η > 0 such ha if 2 < η hen E Ξ (s) Ξ 2 (s) ε 2Λ. In addiion, here exiss a consan K > 0 such ha E Then for 2 < min { η, sup Ξ (s) s,t ε 2ΛK }, we have K 0, T. J(τ;, ψ) J(τ; 2, ψ) ε 2 + ε 2 = ε. Consequenly, This complees he proof. V (, ψ) V ( 2, ψ) ε. Before we show ha he value funcion is a viscosiy soluion of he HJB variaional inequaliy (26), we need o prove some resuls relaed o he dynamic programming principle (22) which can also be found in 25. The resuls are given nex in Lemma 4.3 and Lemma 4.5. Lemma 4.3 Le α, β T T be G()sopping imes and > 0 such ha α β a.s.. Then we have E e ρ(α ) V (α, X α ) β E e ρ(ξ ) L(ξ, X ξ )dξ α + E e ρ(β ) V (β, X β ). (33) Proof. By virue of (0) and (), we can ge β E e ρ(β ) V (β, X β ) + e ρ(ξ ) L(ξ, X ξ )dξ α 4
15 τ = sup E e ρ(ξ β) e ρ(β ) L(ξ, X ξ )dξ + e ρ(τ β) e ρ(β ) Ψ(τ, X τ ) τ Tβ T β β + E e ρ(ξ ) L(ξ, X ξ )dξ α τ = sup E e ρ(ξ ) L(ξ, X ξ )dξ + e ρ(τ ) Ψ(τ, X τ ) τ Tβ T β β + E e ρ(ξ ) L(ξ, X ξ )dξ α τ = sup τ T T β E sup E τ Tα T α τ = Ee ρ(α ) V (α, X α ). α e ρ(ξ ) L(ξ, X ξ )dξ + e ρ(τ ) Ψ(τ, X τ ) e ρ(α ) e ρ(ξ α) L(ξ, X ξ )dξ + e ρ(α ) e ρ(τ α) Ψ(τ, X τ ) This complees he proof. Now le us give he definiion of ɛopimal sopping ime which will be used in he nex lemma. Definiion 4.4 For each ɛ > 0, a G()sopping ime τ ɛ T T is said o be ɛopimal if τɛ 0 V (, ψ) E e ρ(ξ ) L(ξ, X ξ )dξ + e ρ(τɛ ) V (τ ɛ, X τɛ ) ɛ. (34) Lemma 4.5 Le θ be a sopping ime such ha θ τ ɛ a.s., for any ɛ > 0, where τ ɛ T T is ɛopimal. Then, θ V (, ψ) = E e ρ(ξ ) L(ξ, X ξ )dξ + e ρ(θ ) V (θ, X θ ). (35) Proof. Le θ be a sopping ime such ha θ τ ɛ a.s., for any ɛopimal τ ɛ T T. Using Lemma 4.3, we have τɛ Ee ρ(θ ) V (θ, X θ ) E e ρ(ξ ) L(ξ, X ξ )dξ θ + Ee ρ(τɛ ) V (τ ɛ, X τɛ ). (36) This implies ha θ Ee ρ(θ ) V (θ, X θ ) + E e ρ(ξ ) L(ξ, X ξ )dξ τɛ E e ρ(ξ ) L(ξ, X ξ )dξ 5 + Ee ρ(τɛ ) V (τ ɛ, X τɛ ). (37)
16 Noe ha τ ɛ is he ɛopimal sopping ime, hen we can ge τɛ 0 V (, ψ) E e ρ(ξ ) L(ξ, X ξ )dξ + e ρ(τɛ ) V (τ ɛ, X τɛ ) ɛ. (38) On he oher hand, by virue of (37), we can ge Thus, we can ge V (, ψ) E e ρ(θ ) V (θ, X θ ) + V (, ψ) E e ρ(τɛ ) V (τ ɛ, X τɛ ) + θ e ρ(ξ ) L(ξ, X ξ )dξ e ρ(ξ ) L(ξ, X ξ )dξ. (39) θ 0 V (, ψ) E e ρ(ξ ) L(ξ, X ξ )dξ + e ρ(θ ) V (θ, X θ ) ɛ. (40) τɛ Now we le ɛ 0 in he above inequaliy and we can ge θ V (, ψ) = E e ρ(ξ ) L(ξ, X ξ )dξ + Ee ρ(θ ) V (θ, X θ ). This complees he proof. Now we are ready o show ha he value funcion V defined by () is a viscosiy soluion of he HJBVI (26). Theorem 4.6 The value funcion V is a viscosiy soluion of he HJB variaional inequaliy (26). Proof. We need o prove ha V is boh a viscosiy supersoluion and a viscosiy subsoluion of (26). Firs we prove ha V is a viscosiy supersoluion. Le (, ψ) 0, T C and Γ C,2 lip (0, T C) D(S) saisfying Γ V on he neighborhood N(, ψ) of (, ψ) wih Γ(, ψ) = V (, ψ), we wan o prove he he viscosiy supersoluion inequaliy, i.e., { min Γ(, ψ) Ψ(, ψ), ργ(, ψ) Γ } (, ψ) AΓ(, ψ) L(, ψ) 0. (4) We know ha V Ψ on N(, ψ) and Γ(, ψ) = V (, ψ), so we have Therefore, we jus need o prove ha Γ(, ψ) Ψ(, ψ) 0. ργ(, ψ) Γ (, ψ) AΓ(, ψ) L(, ψ) 0. 6
17 Since Γ C,2 lip (0, T C) D(S), by virue of Theorem 3. pp. 78 of Mohammed 33, for s T, we have Ee ρ(s ) Γ(s, X s ) Γ(, ψ) s ( ) Γ(ξ, = E e ρ(ξ ) Xξ ) + AΓ(ξ, X ξ ) ργ(ξ, X ξ ) dξ. (42) ξ For any s, T such ha (s, X s ) N(, ψ), from Lemma 4.3, we can ge s V (, ψ) E e ρ(ξ ) L(ξ, X ξ )dξ + E e ρ(s ) V (s, X s ). (43) By virue of (42), Γ V and V (, ψ) = Γ(, ψ), we can ge s 0 E e ρ(ξ ) L(ξ, X ξ )dξ + E e ρ(s ) V (s, X s ) V (, ψ) s E e ρ(ξ ) L(ξ, X ξ )dξ + E e ρ(s ) Γ(s, X s ) Γ(, ψ) s ( E e ρ(ξ ) L(ξ, X ξ ) + Γ(ξ, X ξ) + AΓ(ξ, X ξ ) ξ ) ργ(ξ, X ξ ) dξ. (44) Dividing boh sides of he above inequaliy by (s ), we have s ( 0 E e ρ(ξ ) L(ξ, X ξ ) + Γ(ξ, X ξ) + AΓ(ξ, X ξ ) s ξ ) ργ(ξ, X ξ ) dξ. (45) Now le s in (45), and we obain Γ (, ψ) + AΓ(, ψ) + L(, ψ) ργ(, ψ) 0. (46) which proves he inequaliy (4). Nex we wan o prove ha V is also a viscosiy subsoluion of (26). Le (, ψ) 0, T C and Γ C,2 lip (0, T C) D(S) saisfying Γ V on he neighborhood N(, ψ) of (, ψ) wih Γ(, ψ) = V (, ψ), we wan o prove ha { min Γ(, ψ) Ψ(, ψ), ργ(, ψ) Γ } (, ψ) AΓ(, ψ) L(, ψ) 0. (47) I is easy o ge ha Γ(, ψ) = V (, ψ) Ψ(, ψ). 7
18 Therefore, we need o show ha ργ(, ψ) Γ (, ψ) AΓ(, ψ) L(, ψ) 0. (48) Le θ T T be a sopping ime such ha θ τ ɛ for every τ ɛ, ɛopimal sopping ime. Using Lemma 4.5, we can ge θ V (, ψ) = E e ρ(ξ ) L(ξ, X ξ )dξ + E e ρ(θ ) V (θ, X θ ). (49) Using he Dynkin s formula (see Mohammed 33), we have E e ρ(θ ) Γ(θ, X θ ) Γ(, ψ) θ ( ) Γ(ξ, = E e ρ(ξ ) Xξ ) + AΓ(ξ, X ξ ) ργ(ξ, X ξ ) dξ. ξ Since Γ V on N(, ψ) and Γ(, ψ) = V (, ψ), for all θ such ha (θ, X θ ) N(, ψ), we can ge E e ρ(θ ) V (θ, X θ ) V (, ψ) E e ρ(θ ) Γ(θ, X θ ) Γ(, ψ) θ ( ) Γ(ξ, = E e ρ(ξ ) Xξ ) + AΓ(ξ, X ξ ) ργ(ξ, X ξ ) dξ ξ Combining his wih (49), he above inequaliy implies θ ( 0 E e ρ(ξ ) L(ξ, X ξ ) + Γ(ξ, X ) ξ) + AΓ(ξ, X ξ ) ργ(ξ, X ξ ) dξ. (50) ξ Dividing (50) by E(θ ) and sending Eθ, we deduce Γ (, ψ) + AΓ(, ψ) + L(, ψ) ργ(, ψ) 0, (5) which proves (48). Therefore, V is also a viscosiy subsoluion. This complees he proof of he heorem. In order o prove he uniqueness we need following resuls. We will use he nex resul proven in Ekeland and Lebourg 0 and also in a general form in Segall 4 and Bourgain 6. The reader is also referred o Crandall e al 9 and Lions 3 for an applicaion example of his resul in a seing similar o ours. Lemma 4.7 Le Φ be a bounded above and upper semiconinuous realvalued funcion on a closed ball B of a Banach space X which has he RadonNikodym propery. Then for any ɛ > 0 here exiss an elemen u X wih norm a mos ɛ, where X is he dual of X, such ha Φ + u aains is maximum on B. 8
19 Noe ha every separable Hilber space (X, X ) saisfies he Radon Nikodym propery (see e.g. Ekeland and Lebourg 0). In order o apply Lemma 4.7, we shall herefore resric ourself o a subspace X of C = C( r, 0; R n ) which is a separable Hilber space and dense in C. One of he good candidaes is he Sobolev space W,2 (( r, 0); R n ), where W,2 (( r, 0); R n ) = {φ L 2 ( r, 0; R n ); φ,2 < }, where φ 2,2 = φ φ 2 2, wih φ being he firs derivaive in he sense of disribuion of φ. From he Sobolev embedding heorems (see e.g. Adams ), i is known ha W,2 (( r, 0); R n ) C and ha W,2 (( r, 0); R n ) is dense in C. For more abou Sobolev spaces and corresponding resuls, one can refer o Adams. Theorem 4.8 (Comparison Principle) Assume ha V (, ψ) and V 2 (, ψ) are boh coninuous wih respec o he argumen (, ψ) 0, T C and are respecively viscosiy subsoluion and supersoluion of (26) wih a mos a polynomial growh, i.e., here exis consans Λ > 0 and k such ha, V i (, ψ) Λ( + ψ 2 ) k, for (, ψ) 0, T C, i =, 2. Then, on every closed ball B of W,2 (( r, 0); R n ), we have V (, ψ) V 2 (, ψ) for all (, ψ) 0, T B. (52) Before we give he proof of he above heorem, we firs need o do some preparaion works. Le V and V 2 be, respecively, a viscosiy subsoluion and supersoluion of (26). For any 0 < δ, γ < and for all ψ, φ W,2 (( r, 0); R n ) and, s 0, T, define Θ δγ (, s, ψ, φ) ψ φ 22 + ψ 0 φ s 2 δ and + γ exp( + ψ ψ 0 2 2) + exp( + φ φ 0 2 2), (53) Φ δγ (, s, ψ, φ) V (, ψ) V 2 (s, φ) Θ δγ (, s, ψ, φ), (54) where ψ 0, φ 0 W,2 (( r, 0); R n ) wih ψ 0 (θ) = θ r ψ( r θ), φ0 (θ) = θ φ( r θ), θ r, 0. r Moreover, using he polynomial growh condiion for V and V 2, we have lim Φ δγ(, s, ψ, φ) =. (55) ψ 2+ φ 2 9
20 The funcion Φ δγ is a realvalued funcion ha is bounded above and coninuous on 0, T 0, T W,2 (( r, 0); R n ) W,2 (( r, 0); R n ), since he he embedding of W,2 (( r, 0); R n ) in C is coninuous. Therefore, from Lemma 4.7 (which is applicable by virue of (55)), for any > ɛ > 0, here exis a coninuous linear funcional T ɛ in he opological dual of W,2 (( r, 0); R n ) W,2 (( r, 0); R n ), wih norm a mos ɛ, such ha he funcion Φ δγ + T ɛ aains i maximum in 0, T 0, T B B, for any closed ball B of W,2 (( r, 0); R n ). (see Lemma 4.7). Le B be a closed ball of W,2 (( r, 0); R n ) cenered a 0. Denoe by ( δγɛ, s δγɛ, ψ δγɛ, φ δγɛ ) he maximum of Φ δγ + T ɛ on 0, T 0, T B B. Wihou loss of generaliy, we assume ha for any given δ, γ and ɛ, here exiss a consan M δγɛ such ha he maximum value Φ δγ + T ɛ + M δγɛ is zero. In oher words, we have Φ δγ ( δγɛ, s δγɛ, ψ δγɛ, φ δγɛ ) + T ɛ (ψ δγɛ, φ δγɛ ) + M δγɛ = 0. (56) We have he following lemmas. Lemma 4.9 Le B be a closed ball of W,2 (( r, 0); R n ) cenered a 0, and le ( δγɛ, s δγɛ, ψ δγɛ, φ δγɛ ) be he maximum of Φ δγ +T ɛ +M δγɛ on 0, T 0, T B B for some δ, γ, ɛ (0, ). Then, we have lim ɛ 0,δ 0 ( ψ δγɛ φ δγɛ ψ 0 δγɛ φ 0 δγɛ δγɛ s δγɛ 2) = 0, (57) Proof. have Le r B be he radius of he ball B. Then, for all δ, γ, ɛ (0, ), we ψ δγɛ 2 2 ψ δγɛ 2,2 < rb, 2 and φ δγɛ 2 2 φ δγɛ 2 2,2 < rb. 2 Noing ha ( δγɛ, s δγɛ, ψ δγɛ, φ δγɛ ) is he maximum of Φ δγ + T ɛ + M δγɛ, we ge Φ δγ ( δγɛ, δγɛ, ψ δγɛ, ψ δγɛ ) + T ɛ (ψ δγɛ, ψ δγɛ ) + Φ δγ (s δγɛ, s δγɛ, φ δγɛ, φ δγɛ ) + T ɛ (φ δγɛ, φ δγɛ ) 2Φ δγ ( δγɛ, s δγɛ, ψ δγɛ, φ δγɛ ) + 2T ɛ (ψ δγɛ, φ δγɛ ). (58) I implies V ( δγɛ, ψ δγɛ ) V 2 ( δγɛ, ψ δγɛ ) 2γ(exp( + ψ δγɛ ψ 0 δγɛ 2 2)) + T ɛ (ψ δγɛ, ψ δγɛ ) + V (s δγɛ, φ δγɛ ) V 2 (s δγɛ, φ δγɛ ) 2γ(exp( + φ δγɛ φ 0 δγɛ 2 2)) + T ɛ (φ δγɛ, φ δγɛ ) 2V ( δγɛ, ψ δγɛ ) 2V 2 (s δγɛ, φ δγɛ ) 2 ψ δγɛ φ δγɛ ψδγɛ 0 φ 0 δ δγɛ 2 2 ( + δγɛ s δγɛ 2 2γ exp( + ψ δγɛ ψδγɛ 0 2 2) ) + exp( + φ δγɛ φ 0 δγɛ 2 2) + 2T ɛ (ψ δγɛ, φ δγɛ ). (59) 20
The Transport Equation
The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be
More informationStochastic Optimal Control Problem for Life Insurance
Sochasic Opimal Conrol Problem for Life Insurance s. Basukh 1, D. Nyamsuren 2 1 Deparmen of Economics and Economerics, Insiue of Finance and Economics, Ulaanbaaar, Mongolia 2 School of Mahemaics, Mongolian
More informationOptimal Stock Selling/Buying Strategy with reference to the Ultimate Average
Opimal Sock Selling/Buying Sraegy wih reference o he Ulimae Average Min Dai Dep of Mah, Naional Universiy of Singapore, Singapore Yifei Zhong Dep of Mah, Naional Universiy of Singapore, Singapore July
More informationnonlocal conditions.
ISSN 17493889 prin, 17493897 online Inernaional Journal of Nonlinear Science Vol.11211 No.1,pp.39 Boundary Value Problem for Some Fracional Inegrodifferenial Equaions wih Nonlocal Condiions Mohammed
More informationMTH6121 Introduction to Mathematical Finance Lesson 5
26 MTH6121 Inroducion o Mahemaical Finance Lesson 5 Conens 2.3 Brownian moion wih drif........................... 27 2.4 Geomeric Brownian moion........................... 28 2.5 Convergence of random
More informationAn Optimal Selling Strategy for Stock Trading Based on Predicting the Maximum Price
An Opimal Selling Sraegy for Sock Trading Based on Predicing he Maximum Price Jesper Lund Pedersen Universiy of Copenhagen An opimal selling sraegy for sock rading is presened in his paper. An invesor
More informationTerm Structure of Prices of Asian Options
Term Srucure of Prices of Asian Opions Jirô Akahori, Tsuomu Mikami, Kenji Yasuomi and Teruo Yokoa Dep. of Mahemaical Sciences, Risumeikan Universiy 111 Nojihigashi, Kusasu, Shiga 5258577, Japan Email:
More informationA NOTE ON THE ALMOST EVERYWHERE CONVERGENCE OF ALTERNATING SEQUENCES WITH DUNFORD SCHWARTZ OPERATORS
C O L L O Q U I U M M A T H E M A T I C U M VOL. LXII 1991 FASC. I A OTE O THE ALMOST EVERYWHERE COVERGECE OF ALTERATIG SEQUECES WITH DUFORD SCHWARTZ OPERATORS BY RYOTARO S A T O (OKAYAMA) 1. Inroducion.
More informationOn the degrees of irreducible factors of higher order Bernoulli polynomials
ACTA ARITHMETICA LXII.4 (1992 On he degrees of irreducible facors of higher order Bernoulli polynomials by Arnold Adelberg (Grinnell, Ia. 1. Inroducion. In his paper, we generalize he curren resuls on
More informationDYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS
DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS Hong Mao, Shanghai Second Polyechnic Universiy Krzyszof M. Osaszewski, Illinois Sae Universiy Youyu Zhang, Fudan Universiy ABSTRACT Liigaion, exper
More informationA Generalized Bivariate OrnsteinUhlenbeck Model for Financial Assets
A Generalized Bivariae OrnseinUhlenbeck Model for Financial Asses Romy Krämer, Mahias Richer Technische Universiä Chemniz, Fakulä für Mahemaik, 917 Chemniz, Germany Absrac In his paper, we sudy mahemaical
More informationANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS
ANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS R. Caballero, E. Cerdá, M. M. Muñoz and L. Rey () Deparmen of Applied Economics (Mahemaics), Universiy of Málaga,
More informationRandom Walk in 1D. 3 possible paths x vs n. 5 For our random walk, we assume the probabilities p,q do not depend on time (n)  stationary
Random Walk in D Random walks appear in many cones: diffusion is a random walk process undersanding buffering, waiing imes, queuing more generally he heory of sochasic processes gambling choosing he bes
More informationA general decomposition formula for derivative prices in stochastic volatility models
A general decomposiion formula for derivaive prices in sochasic volailiy models Elisa Alòs Universia Pompeu Fabra C/ Ramón rias Fargas, 57 85 Barcelona Absrac We see ha he price of an european call opion
More informationOptimal Investment and Consumption Decision of Family with Life Insurance
Opimal Invesmen and Consumpion Decision of Family wih Life Insurance Minsuk Kwak 1 2 Yong Hyun Shin 3 U Jin Choi 4 6h World Congress of he Bachelier Finance Sociey Torono, Canada June 25, 2010 1 Speaker
More informationON THE PRICING OF EQUITYLINKED LIFE INSURANCE CONTRACTS IN GAUSSIAN FINANCIAL ENVIRONMENT
Teor Imov r.amaem.sais. Theor. Probabiliy and Mah. Sais. Vip. 7, 24 No. 7, 25, Pages 15 111 S 949(5)6344 Aricle elecronically published on Augus 12, 25 ON THE PRICING OF EQUITYLINKED LIFE INSURANCE
More informationA UNIFIED APPROACH TO MATHEMATICAL OPTIMIZATION AND LAGRANGE MULTIPLIER THEORY FOR SCIENTISTS AND ENGINEERS
A UNIFIED APPROACH TO MATHEMATICAL OPTIMIZATION AND LAGRANGE MULTIPLIER THEORY FOR SCIENTISTS AND ENGINEERS RICHARD A. TAPIA Appendix E: Differeniaion in Absrac Spaces I should be no surprise ha he differeniaion
More informationTime Consistency in Portfolio Management
1 Time Consisency in Porfolio Managemen Traian A Pirvu Deparmen of Mahemaics and Saisics McMaser Universiy Torono, June 2010 The alk is based on join work wih Ivar Ekeland Time Consisency in Porfolio Managemen
More informationINDEPENDENT MARGINALS OF OPERATOR LÉVY S PROBABILITY MEASURES ON FINITE DIMENSIONAL VECTOR SPACES
Journal of Applied Analysis 1, 1 (1995), pp. 39 45 INDEPENDENT MARGINALS OF OPERATOR LÉVY S PROBABILITY MEASURES ON FINITE DIMENSIONAL VECTOR SPACES A. LUCZAK Absrac. We find exponens of independen marginals
More informationAND BACKWARD SDE. Nizar Touzi nizar.touzi@polytechnique.edu. Ecole Polytechnique Paris Département de Mathématiques Appliquées
OPIMAL SOCHASIC CONROL, SOCHASIC ARGE PROBLEMS, AND BACKWARD SDE Nizar ouzi nizar.ouzi@polyechnique.edu Ecole Polyechnique Paris Déparemen de Mahémaiques Appliquées Chaper 12 by Agnès OURIN May 21 2 Conens
More informationOption Pricing Under Stochastic Interest Rates
I.J. Engineering and Manufacuring, 0,3, 889 ublished Online June 0 in MECS (hp://www.mecspress.ne) DOI: 0.585/ijem.0.03. Available online a hp://www.mecspress.ne/ijem Opion ricing Under Sochasic Ineres
More informationOption PutCall Parity Relations When the Underlying Security Pays Dividends
Inernaional Journal of Business and conomics, 26, Vol. 5, No. 3, 22523 Opion Puall Pariy Relaions When he Underlying Securiy Pays Dividends Weiyu Guo Deparmen of Finance, Universiy of Nebraska Omaha,
More informationA Note on Renewal Theory for T iid Random Fuzzy Variables
Applied Mahemaical Sciences, Vol, 6, no 6, 97979 HIKARI Ld, wwwmhikaricom hp://dxdoiorg/988/ams6686 A Noe on Renewal Theory for T iid Rom Fuzzy Variables Dug Hun Hong Deparmen of Mahemaics, Myongji
More informationOn Galerkin Approximations for the Zakai Equation with Diffusive and Point Process Observations
On Galerkin Approximaions for he Zakai Equaion wih Diffusive and Poin Process Observaions An der Fakulä für Mahemaik und Informaik der Universiä Leipzig angenommene DISSERTATION zur Erlangung des akademischen
More informationTEMPORAL PATTERN IDENTIFICATION OF TIME SERIES DATA USING PATTERN WAVELETS AND GENETIC ALGORITHMS
TEMPORAL PATTERN IDENTIFICATION OF TIME SERIES DATA USING PATTERN WAVELETS AND GENETIC ALGORITHMS RICHARD J. POVINELLI AND XIN FENG Deparmen of Elecrical and Compuer Engineering Marquee Universiy, P.O.
More informationWorking Paper On the timing option in a futures contract. SSE/EFI Working Paper Series in Economics and Finance, No. 619
econsor www.econsor.eu Der OpenAccessPublikaionsserver der ZBW LeibnizInformaionszenrum Wirschaf The Open Access Publicaion Server of he ZBW Leibniz Informaion Cenre for Economics Biagini, Francesca;
More informationINTEREST RATE FUTURES AND THEIR OPTIONS: SOME PRICING APPROACHES
INTEREST RATE FUTURES AND THEIR OPTIONS: SOME PRICING APPROACHES OPENGAMMA QUANTITATIVE RESEARCH Absrac. Exchangeraded ineres rae fuures and heir opions are described. The fuure opions include hose paying
More informationDETERMINISTIC INVENTORY MODEL FOR ITEMS WITH TIME VARYING DEMAND, WEIBULL DISTRIBUTION DETERIORATION AND SHORTAGES KUNSHAN WU
Yugoslav Journal of Operaions Research 2 (22), Number, 67 DEERMINISIC INVENORY MODEL FOR IEMS WIH IME VARYING DEMAND, WEIBULL DISRIBUION DEERIORAION AND SHORAGES KUNSHAN WU Deparmen of Bussines Adminisraion
More informationMean Field Games. Math 581 Project
Mean Field Games Tiago Miguel Saldanha Salvador Mah 58 Projec April 23 Conens Inroducion 2 2 Analysis of second order MFG 3 2. On he FokkerPlank equaion................................ 4 2.2 Exisence
More informationDynamic Information. Albina Danilova Department of Mathematical Sciences Carnegie Mellon University. September 16, 2008. Abstract
Sock Marke Insider Trading in Coninuous Time wih Imperfec Dynamic Informaion Albina Danilova Deparmen of Mahemaical Sciences Carnegie Mellon Universiy Sepember 6, 28 Absrac This paper sudies he equilibrium
More informationStochastic Calculus and Option Pricing
Sochasic Calculus and Opion Pricing Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Sochasic Calculus 15.450, Fall 2010 1 / 74 Ouline 1 Sochasic Inegral 2 Iô s Lemma 3 BlackScholes
More informationOptimal Time to Sell in Real Estate Portfolio Management
Opimal ime o Sell in Real Esae Porfolio Managemen Fabrice Barhélémy and JeanLuc Prigen hema, Universiy of CergyPonoise, CergyPonoise, France Emails: fabricebarhelemy@ucergyfr; jeanlucprigen@ucergyfr
More informationFourier Series Solution of the Heat Equation
Fourier Series Soluion of he Hea Equaion Physical Applicaion; he Hea Equaion In he early nineeenh cenury Joseph Fourier, a French scienis and mahemaician who had accompanied Napoleon on his Egypian campaign,
More informationThe option pricing framework
Chaper 2 The opion pricing framework The opion markes based on swap raes or he LIBOR have become he larges fixed income markes, and caps (floors) and swapions are he mos imporan derivaives wihin hese markes.
More informationMath 201 Lecture 12: CauchyEuler Equations
Mah 20 Lecure 2: CauchyEuler Equaions Feb., 202 Many examples here are aken from he exbook. The firs number in () refers o he problem number in he UA Cusom ediion, he second number in () refers o he problem
More informationDIFFERENTIAL EQUATIONS with TI89 ABDUL HASSEN and JAY SCHIFFMAN. A. Direction Fields and Graphs of Differential Equations
DIFFERENTIAL EQUATIONS wih TI89 ABDUL HASSEN and JAY SCHIFFMAN We will assume ha he reader is familiar wih he calculaor s keyboard and he basic operaions. In paricular we have assumed ha he reader knows
More informationSEMIMARTINGALE STOCHASTIC APPROXIMATION PROCEDURE AND RECURSIVE ESTIMATION. Chavchavadze Ave. 17 a, Tbilisi, Georgia, Email: toronj333@yahoo.
SEMIMARTINGALE STOCHASTIC APPROXIMATION PROCEDURE AND RECURSIVE ESTIMATION N. LAZRIEVA, 2, T. SHARIA 3, 2 AND T. TORONJADZE Georgian American Universiy, Business School, 3, Alleyway II, Chavchavadze Ave.
More informationOptimalCompensationwithHiddenAction and LumpSum Payment in a ContinuousTime Model
Appl Mah Opim (9) 59: 99 46 DOI.7/s45895 OpimalCompensaionwihHiddenAcion and LumpSum Paymen in a ConinuousTime Model Jakša Cvianić Xuhu Wan Jianfeng Zhang Published online: 6 June 8 Springer Science+Business
More informationEconomics Honors Exam 2008 Solutions Question 5
Economics Honors Exam 2008 Soluions Quesion 5 (a) (2 poins) Oupu can be decomposed as Y = C + I + G. And we can solve for i by subsiuing in equaions given in he quesion, Y = C + I + G = c 0 + c Y D + I
More information17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides
7 Laplace ransform. Solving linear ODE wih piecewise coninuous righ hand sides In his lecure I will show how o apply he Laplace ransform o he ODE Ly = f wih piecewise coninuous f. Definiion. A funcion
More informationJournal Of Business & Economics Research September 2005 Volume 3, Number 9
Opion Pricing And Mone Carlo Simulaions George M. Jabbour, (Email: jabbour@gwu.edu), George Washingon Universiy YiKang Liu, (yikang@gwu.edu), George Washingon Universiy ABSTRACT The advanage of Mone Carlo
More informationInductance and Transient Circuits
Chaper H Inducance and Transien Circuis Blinn College  Physics 2426  Terry Honan As a consequence of Faraday's law a changing curren hrough one coil induces an EMF in anoher coil; his is known as muual
More informationDependent Interest and Transition Rates in Life Insurance
Dependen Ineres and ransiion Raes in Life Insurance Krisian Buchard Universiy of Copenhagen and PFA Pension January 28, 2013 Absrac In order o find marke consisen bes esimaes of life insurance liabiliies
More informationVerification Theorems for Models of Optimal Consumption and Investment with Retirement and Constrained Borrowing
MATHEMATICS OF OPERATIONS RESEARCH Vol. 36, No. 4, November 2, pp. 62 635 issn 364765X eissn 526547 364 62 hp://dx.doi.org/.287/moor..57 2 INFORMS Verificaion Theorems for Models of Opimal Consumpion
More informationA Brief Introduction to the Consumption Based Asset Pricing Model (CCAPM)
A Brief Inroducion o he Consumpion Based Asse Pricing Model (CCAPM We have seen ha CAPM idenifies he risk of any securiy as he covariance beween he securiy's rae of reurn and he rae of reurn on he marke
More informationOn the paper Is Itô calculus oversold? by A. Izmailov and B. Shay
On he paper Is Iô calculus oversold? by A. Izmailov and B. Shay M. Rukowski and W. Szazschneider March, 1999 The main message of he paper Is Iô calculus oversold? by A. Izmailov and B. Shay is, we quoe:
More informationOptimal Life Insurance Purchase, Consumption and Investment
Opimal Life Insurance Purchase, Consumpion and Invesmen Jinchun Ye a, Sanley R. Pliska b, a Dep. of Mahemaics, Saisics and Compuer Science, Universiy of Illinois a Chicago, Chicago, IL 667, USA b Dep.
More informationadaptive control; stochastic systems; certainty equivalence principle; longterm
COMMUICATIOS I IFORMATIO AD SYSTEMS c 2006 Inernaional Press Vol. 6, o. 4, pp. 299320, 2006 003 ADAPTIVE COTROL OF LIEAR TIME IVARIAT SYSTEMS: THE BET O THE BEST PRICIPLE S. BITTATI AD M. C. CAMPI Absrac.
More informationThe Heisenberg group and Pansu s Theorem
The Heisenberg group and Pansu s Theorem July 31, 2009 Absrac The goal of hese noes is o inroduce he reader o he Heisenberg group wih is Carno Carahéodory meric and o Pansu s differeniaion heorem. As
More informationOn the Role of the Growth Optimal Portfolio in Finance
QUANTITATIVE FINANCE RESEARCH CENTRE QUANTITATIVE FINANCE RESEARCH CENTRE Research Paper 144 January 2005 On he Role of he Growh Opimal Porfolio in Finance Eckhard Plaen ISSN 14418010 www.qfrc.us.edu.au
More informationDuration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613.
Graduae School of Business Adminisraion Universiy of Virginia UVAF38 Duraion and Convexiy he price of a bond is a funcion of he promised paymens and he marke required rae of reurn. Since he promised
More informationConditional Default Probability and Density
Condiional Defaul Probabiliy and Densiy N. El Karoui, M. Jeanblanc, Y. Jiao, B. Zargari Absrac This paper proposes differen mehods o consruc condiional survival processes, i.e, families of maringales decreasing
More informationPATHWISE PROPERTIES AND PERFORMANCE BOUNDS FOR A PERISHABLE INVENTORY SYSTEM
PATHWISE PROPERTIES AND PERFORMANCE BOUNDS FOR A PERISHABLE INVENTORY SYSTEM WILLIAM L. COOPER Deparmen of Mechanical Engineering, Universiy of Minnesoa, 111 Church Sree S.E., Minneapolis, MN 55455 billcoop@me.umn.edu
More informationAppendix A: Area. 1 Find the radius of a circle that has circumference 12 inches.
Appendi A: Area workedou s o OddNumbered Eercises Do no read hese workedou s before aemping o do he eercises ourself. Oherwise ou ma mimic he echniques shown here wihou undersanding he ideas. Bes wa
More informationSinglemachine Scheduling with Periodic Maintenance and both Preemptive and. Nonpreemptive jobs in Remanufacturing System 1
Absrac number: 050407 Singlemachine Scheduling wih Periodic Mainenance and boh Preempive and Nonpreempive jobs in Remanufacuring Sysem Liu Biyu hen Weida (School of Economics and Managemen Souheas Universiy
More informationTechnical Appendix to Risk, Return, and Dividends
Technical Appendix o Risk, Reurn, and Dividends Andrew Ang Columbia Universiy and NBER Jun Liu UC San Diego This Version: 28 Augus, 2006 Columbia Business School, 3022 Broadway 805 Uris, New York NY 10027,
More informationCommunication Networks II Contents
3 / 1  Communicaion Neworks II (Görg)  www.comnes.unibremen.de Communicaion Neworks II Conens 1 Fundamenals of probabiliy heory 2 Traffic in communicaion neworks 3 Sochasic & Markovian Processes (SP
More informationFourier series. Learning outcomes
Fourier series 23 Conens. Periodic funcions 2. Represening ic funcions by Fourier Series 3. Even and odd funcions 4. Convergence 5. Halfrange series 6. The complex form 7. Applicaion of Fourier series
More informationModeling VIX Futures and Pricing VIX Options in the Jump Diusion Modeling
Modeling VIX Fuures and Pricing VIX Opions in he Jump Diusion Modeling Faemeh Aramian Maseruppsas i maemaisk saisik Maser hesis in Mahemaical Saisics Maseruppsas 2014:2 Maemaisk saisik April 2014 www.mah.su.se
More informationComplex Fourier Series. Adding these identities, and then dividing by 2, or subtracting them, and then dividing by 2i, will show that
Mah 344 May 4, Complex Fourier Series Par I: Inroducion The Fourier series represenaion for a funcion f of period P, f) = a + a k coskω) + b k sinkω), ω = π/p, ) can be expressed more simply using complex
More informationDOES TRADING VOLUME INFLUENCE GARCH EFFECTS? SOME EVIDENCE FROM THE GREEK MARKET WITH SPECIAL REFERENCE TO BANKING SECTOR
Invesmen Managemen and Financial Innovaions, Volume 4, Issue 3, 7 33 DOES TRADING VOLUME INFLUENCE GARCH EFFECTS? SOME EVIDENCE FROM THE GREEK MARKET WITH SPECIAL REFERENCE TO BANKING SECTOR Ahanasios
More informationUSE OF EDUCATION TECHNOLOGY IN ENGLISH CLASSES
USE OF EDUCATION TECHNOLOGY IN ENGLISH CLASSES Mehme Nuri GÖMLEKSİZ Absrac Using educaion echnology in classes helps eachers realize a beer and more effecive learning. In his sudy 150 English eachers were
More informationMathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)
Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions
More informationOptimal Reinsurance/Investment Problems for General Insurance Models
Opimal Reinsurance/Invesmen Problems for General Insurance Models Yuping Liu and Jin Ma Absrac. In his paper he uiliy opimizaion problem for a general insurance model is sudied. he reserve process of he
More informationABSTRACT KEYWORDS. Markov chain, Regulation of payments, Linear regulator, Bellman equations, Constraints. 1. INTRODUCTION
QUADRATIC OPTIMIZATION OF LIFE AND PENSION INSURANCE PAYMENTS BY MOGENS STEFFENSEN ABSTRACT Quadraic opimizaion is he classical approach o opimal conrol of pension funds. Usually he paymen sream is approximaed
More informationAn Optimal Control Approach to InventoryProduction Systems with Weibull Distributed Deterioration
Journal of Mahemaics and Saisics 5 (3):64, 9 ISSN 5493644 9 Science Publicaions An Opimal Conrol Approach o InvenoryProducion Sysems wih Weibull Disribued Deerioraion Md. Aiul Baen and Anon Abdulbasah
More informationOptimal Life Insurance, Consumption and Portfolio: A Dynamic Programming Approach
28 American Conrol Conference Wesin Seale Hoel, Seale, Washingon, USA June 1113, 28 WeA1.5 Opimal Life Insurance, Consumpion and Porfolio: A Dynamic Programming Approach Jinchun Ye (Pin: 584) Absrac A
More informationRepresenting Periodic Functions by Fourier Series. (a n cos nt + b n sin nt) n=1
Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals
More informationA ProductionInventory System with Markovian Capacity and Outsourcing Option
OPERATIONS RESEARCH Vol. 53, No. 2, March April 2005, pp. 328 349 issn 0030364X eissn 15265463 05 5302 0328 informs doi 10.1287/opre.1040.0165 2005 INFORMS A ProducionInvenory Sysem wih Markovian Capaciy
More informationLife insurance cash flows with policyholder behaviour
Life insurance cash flows wih policyholder behaviour Krisian Buchard,,1 & Thomas Møller, Deparmen of Mahemaical Sciences, Universiy of Copenhagen Universiesparken 5, DK2100 Copenhagen Ø, Denmark PFA Pension,
More informationIntroduction to Stochastic Calculus
IEOR E477: Financial Engineering: Coninuousime Models Fall 21 c 21 by Marin Haugh Inroducion o Sochasic Calculus hese noes provide an inroducion o sochasic calculus, he branch of mahemaics ha is mos idenified
More informationSupply Chain Management Using Simulation Optimization By Miheer Kulkarni
Supply Chain Managemen Using Simulaion Opimizaion By Miheer Kulkarni This problem was inspired by he paper by Jung, Blau, Pekny, Reklaii and Eversdyk which deals wih supply chain managemen for he chemical
More informationOptimal Life Insurance Purchase and Consumption/Investment under Uncertain Lifetime
Opimal Life Insurance Purchase and Consumpion/Invesmen under Uncerain Lifeime Sanley R. Pliska a,, a Dep. of Finance, Universiy of Illinois a Chicago, Chicago, IL 667, USA Jinchun Ye b b Dep. of Mahemaics,
More informationCredit Index Options: the noarmageddon pricing measure and the role of correlation after the subprime crisis
Second Conference on The Mahemaics of Credi Risk, Princeon May 2324, 2008 Credi Index Opions: he noarmageddon pricing measure and he role of correlaion afer he subprime crisis Damiano Brigo  Join work
More informationChapter 7. Response of FirstOrder RL and RC Circuits
Chaper 7. esponse of FirsOrder L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural
More informationThe Application of Multi Shifts and Break Windows in Employees Scheduling
The Applicaion of Muli Shifs and Brea Windows in Employees Scheduling Evy Herowai Indusrial Engineering Deparmen, Universiy of Surabaya, Indonesia Absrac. One mehod for increasing company s performance
More informationNetwork Effects, Pricing Strategies, and Optimal Upgrade Time in Software Provision.
Nework Effecs, Pricing Sraegies, and Opimal Upgrade Time in Sofware Provision. YiNung Yang* Deparmen of Economics Uah Sae Universiy Logan, UT 84322353 April 3, 995 (curren version Feb, 996) JEL codes:
More informationAlmostsure hedging with permanent price impact
Almossure hedging wih permanen price impac B. Bouchard and G. Loeper and Y. Zou November 3, 215 Absrac We consider a financial model wih permanen price impac. Coninuous ime rading dynamics are derived
More informationResearch Article Optimal Geometric Mean Returns of Stocks and Their Options
Inernaional Journal of Sochasic Analysis Volume 2012, Aricle ID 498050, 8 pages doi:10.1155/2012/498050 Research Aricle Opimal Geomeric Mean Reurns of Socks and Their Opions Guoyi Zhang Deparmen of Mahemaics
More informationAnalysis of Tailored BaseSurge Policies in Dual Sourcing Inventory Systems
Analysis of Tailored BaseSurge Policies in Dual Sourcing Invenory Sysems Ganesh Janakiraman, 1 Sridhar Seshadri, 2, Anshul Sheopuri. 3 Absrac We sudy a model of a firm managing is invenory of a single
More informationUnitlinked life insurance in Lévyprocess financial markets
CURANDO Universiä Ulm Abeilung Zahlenheorie und Wahrscheinlichkeisheorie Unilinked life insurance in Lévyprocess financial markes Modeling, Hedging and Saisics Disseraion zur Erlangung des Dokorgrades
More informationNiche Market or Mass Market?
Niche Marke or Mass Marke? Maxim Ivanov y McMaser Universiy July 2009 Absrac The de niion of a niche or a mass marke is based on he ranking of wo variables: he monopoly price and he produc mean value.
More informationA Probability Density Function for Google s stocks
A Probabiliy Densiy Funcion for Google s socks V.Dorobanu Physics Deparmen, Poliehnica Universiy of Timisoara, Romania Absrac. I is an approach o inroduce he Fokker Planck equaion as an ineresing naural
More informationRelative velocity in one dimension
Connexions module: m13618 1 Relaive velociy in one dimension Sunil Kumar Singh This work is produced by The Connexions Projec and licensed under he Creaive Commons Aribuion License Absrac All quaniies
More informationPricing FixedIncome Derivaives wih he ForwardRisk Adjused Measure Jesper Lund Deparmen of Finance he Aarhus School of Business DK8 Aarhus V, Denmark Email: jel@hha.dk Homepage: www.hha.dk/~jel/ Firs
More informationT ϕ t ds t + ψ t db t,
16 PRICING II: MARTINGALE PRICING 2. Lecure II: Pricing European Derivaives 2.1. The fundamenal pricing formula for European derivaives. We coninue working wihin he Black and Scholes model inroduced in
More informationSAMPLE PATH PROPERTIES OF THE STOCHASTIC FLOWS
The Annals of Probabiliy 2004, Vol. 32, No. 1A, 1 27 Insiue of Mahemaical Saisics, 2004 SAMPLE PATH PROPERTIES OF THE STOCHASTIC FLOWS BY DMITRY DOLGOPYAT, 1 VADIM KALOSHIN 2 AND LEONID KORALOV 3 Universiyof
More informationARCH 2013.1 Proceedings
Aricle from: ARCH 213.1 Proceedings Augus 14, 212 Ghislain Leveille, Emmanuel Hamel A renewal model for medical malpracice Ghislain Léveillé École d acuaria Universié Laval, Québec, Canada 47h ARC Conference
More informationIndividual Health Insurance April 30, 2008 Pages 167170
Individual Healh Insurance April 30, 2008 Pages 167170 We have received feedback ha his secion of he e is confusing because some of he defined noaion is inconsisen wih comparable life insurance reserve
More informationINVESTIGATION OF THE INFLUENCE OF UNEMPLOYMENT ON ECONOMIC INDICATORS
INVESTIGATION OF THE INFLUENCE OF UNEMPLOYMENT ON ECONOMIC INDICATORS Ilona Tregub, Olga Filina, Irina Kondakova Financial Universiy under he Governmen of he Russian Federaion 1. Phillips curve In economics,
More information3 RungeKutta Methods
3 RungeKua Mehods In conras o he mulisep mehods of he previous secion, RungeKua mehods are singlesep mehods however, muliple sages per sep. They are moivaed by he dependence of he Taylor mehods on he
More information= r t dt + σ S,t db S t (19.1) with interest rates given by a mean reverting OrnsteinUhlenbeck or Vasicek process,
Chaper 19 The BlackScholesVasicek Model The BlackScholesVasicek model is given by a sandard imedependen BlackScholes model for he sock price process S, wih imedependen bu deerminisic volailiy σ
More information23.3. Even and Odd Functions. Introduction. Prerequisites. Learning Outcomes
Even and Odd Funcions 23.3 Inroducion In his Secion we examine how o obain Fourier series of periodic funcions which are eiher even or odd. We show ha he Fourier series for such funcions is considerabl
More information1. y 5y + 6y = 2e t Solution: Characteristic equation is r 2 5r +6 = 0, therefore r 1 = 2, r 2 = 3, and y 1 (t) = e 2t,
Homework6 Soluions.7 In Problem hrough 4 use he mehod of variaion of parameers o find a paricular soluion of he given differenial equaion. Then check your answer by using he mehod of undeermined coeffiens..
More informationSignal Processing and Linear Systems I
Sanford Universiy Summer 214215 Signal Processing and Linear Sysems I Lecure 5: Time Domain Analysis of Coninuous Time Sysems June 3, 215 EE12A:Signal Processing and Linear Sysems I; Summer 1415, Gibbons
More information4 Convolution. Recommended Problems. x2[n] 1 2[n]
4 Convoluion Recommended Problems P4.1 This problem is a simple example of he use of superposiion. Suppose ha a discreeime linear sysem has oupus y[n] for he given inpus x[n] as shown in Figure P4.11.
More informationTimeInconsistent Portfolio Investment Problems
TimeInconsisen Porfolio Invesmen Problems Yidong Dong Ronnie Sircar April 2014; revised Ocober 6, 2014 Absrac The explici resuls for he classical Meron opimal invesmen/consumpion problem rely on he use
More informationOptimal market dealing under constraints
Opimal marke dealing under consrains Eienne Chevalier M hamed Gaïgi Vahana Ly Vah Mohamed Mnif June 25, 2015 Absrac We consider a marke dealer acing as a liquidiy provider by coninuously seing bid and
More informationTimeinhomogeneous Lévy Processes in CrossCurrency Market Models
Timeinhomogeneous Lévy Processes in CrossCurrency Marke Models Disseraion zur Erlangung des Dokorgrades der Mahemaischen Fakulä der AlberLudwigsUniversiä Freiburg i. Brsg. vorgeleg von Naaliya Koval
More informationPROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE
Profi Tes Modelling in Life Assurance Using Spreadshees PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Erik Alm Peer Millingon 2004 Profi Tes Modelling in Life Assurance Using Spreadshees
More information