# Section 1.8 Coordinate Geometry

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Section 1.8 Coordinate Geometry The Coordinate Plane Just as points on a line can be identified with real numbers to form the coordinate line, points in a plane can be identified with ordered pairs of numbers to form the coordinate plane or Cartesian plane. To do this, we draw two perpendicular real lines that intersect at 0 on each line. Usually, one line is horizontal with positive direction to the right and is called the x-axis; the other line is vertical with positive direction upward and is called the y-axis. The point of intersection of the x-axis and the y-axis is the origin O, and the two axes divide the plane into four quadrants, labeled I, II, III, and IV in the Figure below (left). (The points on the coordinate axes are not assigned to any quadrant.) Any point P in the coordinate plane can be located by a unique ordered pair of numbers (a,b), as shown in the Figure above (left). The first number a is called the x-coordinate of P; the second number b is called the y-coordinate of P. We can think of the coordinates of P as its address, because they specify its location in the plane. Several points are labeled with their coordinates in the Figure above (right). EXAMPLE: Describe and sketch the regions given by each set. (a) {(x,y) x 0} (b) {(x,y) y = 1} (c) {(x,y) y < 1} 1

2 EXAMPLE: Describe and sketch the regions given by each set. (a) {(x,y) x 0} (b) {(x,y) y = 1} (c) {(x,y) y < 1} Solution: (a) The points whose x-coordinates are 0 or positive lie on the y-axis or to the right of it. (b) The set of all points with y-coordinate 1 is a horizontal line one unit above the x-axis. (c) The region consists of all points that lie between (but not on) the horizontal lines y = 1 and y = 1. The Distance and Midpoint Formulas

3 Graphs of Equations in Two Variables An equation in two variables, such as y = x + 1, expresses a relationship between two quantities. A point (x,y) satisfies the equation if it makes the equation true when the values for x and y are substituted into the equation. For example, the point (3, 10) satisfies the equation y = x +1 because 10 = 3 +1, but the point (1,3) does not, because EXAMPLE: Sketch the graph of the equation x y = 3. Solution: We first solve the given equation for y to get y = x 3 This helps us calculate the y-coordinates in the following table and eventually sketch the graph. EXAMPLE: Sketch the graph of the equation y = x. Solution: We find some of the points that satisfy the equation in the following table. In the Figure below we plot these points and then connect them by a smooth curve. A curve with this shape is called a parabola. EXAMPLE: Sketch the graph of the equation y = x. 3

4 EXAMPLE: Sketch the graph of the equation y = x. Solution: We make a table of values that helps us to sketch the graph of the equation. Intercepts The x-coordinates of the points where a graph intersects the x-axis are called the x-intercepts of the graph and are obtained by setting y = 0 in the equation of the graph. The y-coordinates of the points where a graph intersects the y-axis are called the y-intercepts of the graph and are obtained by setting x = 0 in the equation of the graph. EXAMPLE: Find the x- and y-intercepts of the graph of the equation y = x. Solution: To find the x-intercepts, we set y = 0 and solve for x. Thus 0 = x x = x = ± The x-intercepts are and. To find the y-intercepts, we set x = 0 and solve for y. Thus y = 0 y = The y-intercept is. 4

5 Circles EXAMPLE: Graph each equation. (a) x +y = 5 (b) (x ) +(y +1) = 5 Solution: (a) Rewriting the equation as x +y = 5, we see that this is an equation of the circle of radius 5 centered at the origin. (b) Rewriting the equation as (x ) +(y ( 1)) = 5 we see that this is an equation of the circle of radius 5 centered at (, 1). EXAMPLE: (a) Find an equation of the circle with radius 3 and center (, 5). (b) Find an equation of the circle that has the points P(1,8) and Q(5, 6) as the endpoints of a diameter. 5

6 EXAMPLE: (a) Find an equation of the circle with radius 3 and center (, 5). (b) Find an equation of the circle that has the points P(1,8) and Q(5, 6) as the endpoints of a diameter. Solution: (a) Using the equation of a circle with r = 3, h =, and k = 5, we obtain (x ) +(y ( 5)) = 3 = (x ) +(y +5) = 9 (b) We first observe that the center is the midpoint of the diameter PQ, so by the Midpoint Formula the center is ( x1 +x, y ) ( 1 +y 1+5 =, 8+( 6) ) ( 6 =, ) = (3,1) The radius r is the distance from P to the center, so by the Distance Formula r = (x x 1 ) +(y y 1 ) = (3 1) +(1 8) = +( 7) = 4+49 = 53 Therefore, the equation of the circle is (x 3) +(y 1) = 53 EXAMPLE: Show that the equation x +y +x 6y+7 = 0 represents a circle, and find the center and radius of the circle. x +y +x 6y +7 = 0 x +x+y 6y = 7 x +x 1+y y 3 = 7 x +x 1+1 +y y 3+3 = (x+1) +(y 3) = 3 (x ( 1)) +(y 3) = ( 3) Comparing this equation with the standard equation of a circle, we see that h = 1, k = 3, and r = 3, so the given equation represents a circle with center ( 1,3) and radius 3. 6

7 Symmetry The Figure on the right shows the graph of y = x. Notice that the part of the graph to the left of the y-axis is the mirror image of the part to the right of the y-axis. The reason is that if the point (x,y) is on the graph, then so is ( x,y), and these points are reflections of each other about the y-axis. In this situation we say the graph is symmetric with respect to the y-axis. Similarly, we say a graph is symmetric with respect to the x-axis if whenever the point (x, y) is on the graph, then so is (x, y). A graph is symmetric with respect to the origin if whenever (x,y) is on the graph, so is ( x, y). EXAMPLE: Test the equation x = y for symmetry and sketch the graph. 7

8 EXAMPLE: Test the equation x = y for symmetry and sketch the graph. Solution: If y is replaced by y in the equation x = y, we get x = ( y) x = y and so the equation is unchanged. Therefore, the graph is symmetric about the x-axis. But changing x to x gives the equation x = y, which is not the same as the original equation, so the graph is not symmetric about the y-axis. We use the symmetry about the x-axis to sketch the graph by first plotting points just for y > 0 and then reflecting the graph in the x-axis, as shown in the Figure below. EXAMPLE: Test the equation y = x 3 9x for symmetry and sketch the graph. Solution: If we replace x by x and y by y in the equation, we get y = ( x) 3 9( x) y = x 3 +9x y = x 3 9x and so the equation is unchanged. This means that the graph is symmetric with respect to the origin. We sketch it by first plotting points for x > 0 and then using symmetry about the origin. 8

9 Appendix EXAMPLE: Show that the equation x +y +4y+3 = 0 represents a circle, and find the center and radius of the circle. x +y +4y +3 = 0 x +y +4y = 3 x +y +y = 3 x +y +y + = 3+ x +(y +) = 1 (x 0) +(y ( )) = 1 Comparing this equation with the standard equation of a circle, we see that h = 0, k =, and r = 1, so the given equation represents a circle with center (0, ) and radius 1. EXAMPLE: Show that the equation x +y 6x+y+8 = 0 represents a circle, and find the center and radius of the circle. x +y 6x+y +8 = 0 x 6x+y +y = 8 x x 3+y +y 1 = 8 x x 3+3 +y +y 1+1 = (x 3) +(y +1) = (x 3) +(y ( 1)) = ( ) Comparing this equation with the standard equation of a circle, we see that h = 3, k = 1, and r =, so the given equation represents a circle with center (3, 1) and radius. EXAMPLE: Show that the equation x +y +8x 10y +34 = 0 represents a circle, and find the center and radius of the circle. 9

10 EXAMPLE: Show that the equation x +y +8x 10y +34 = 0 represents a circle, and find the center and radius of the circle. x +y +8x 10y +34 = 0 x +8x+y 10y = 34 x +x 4+y y 5 = 34 x +x 4+4 +y y 5+5 = (x+4) +(y 5) = 7 (x ( 4)) +(y 5) = ( 7) Comparing this equation with the standard equation of a circle, we see that h = 4, k = 5, and r = 7, so the given equation represents a circle with center ( 4,5) and radius 7. EXAMPLE: Show that the equation x +y +x+y 1 = 0 represents a circle, and find the center and radius of the circle. x +x 1 + x +y +x+y 1 = 0 x +x+y +y = 1 x +x 1 +y +y 1 = 1 ( ) 1 +y +y 1 ( ) 1 + = 1+ ( x+ 1 ( + y + ) 1 ) = 3 ( ( x )) 1 ( ( + y 1 = )) ( 3 ( ) 1 + ) ( ) 1 Comparing this equation with the standard equation of a circle, we see that h = 1/, k = 1/, and r = 3/, so the given equation represents a circle with center ( 1/, 1/) and radius 3/. EXAMPLE: Show that the equation x +y x+ 6 5 y the center and radius of the circle. = 0 represents a circle, and find 10

11 EXAMPLE: Show that the equation x +y x+ 6 5 y the center and radius of the circle. = 0 represents a circle, and find x x 1 + x +y x+ 6 5 y = 0 x x+y y = x x 1 +y +y 3 5 = ( ) 1 +y +y 3 ( ) = 39 ( ) ( ( x ) 1 ( + y + 5) 3 = 1 ( x 1 ( ( + y ) 3 )) = 1 5 ) } {{ } 1 Comparing this equation with thestandard equation of a circle, we see that h = 1/, k = 3/5, and r = 1, so the given equation represents a circle with center (1/, 3/5) and radius 1. 11

### Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20

Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding

1.2 GRAPHS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs

### Section summaries. d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. 1 + y 2. x1 + x 2

Chapter 2 Graphs Section summaries Section 2.1 The Distance and Midpoint Formulas You need to know the distance formula d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2 and the midpoint formula ( x1 + x 2, y ) 1 + y 2

### GRAPHING (2 weeks) Main Underlying Questions: 1. How do you graph points?

GRAPHING (2 weeks) The Rectangular Coordinate System 1. Plot ordered pairs of numbers on the rectangular coordinate system 2. Graph paired data to create a scatter diagram 1. How do you graph points? 2.

### GRAPHING LINEAR EQUATIONS IN TWO VARIABLES

GRAPHING LINEAR EQUATIONS IN TWO VARIABLES The graphs of linear equations in two variables are straight lines. Linear equations may be written in several forms: Slope-Intercept Form: y = mx+ b In an equation

### Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross

CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal

### MATH 105: Finite Mathematics 1-1: Rectangular Coordinates, Lines

MATH 105: Finite Mathematics 1-1: Rectangular Coordinates, Lines Prof. Jonathan Duncan Walla Walla College Winter Quarter, 2006 Outline 1 Rectangular Coordinate System 2 Graphing Lines 3 The Equation of

### Mathematics Chapter 8 and 10 Test Summary 10M2

Quadratic expressions and equations Expressions such as x 2 + 3x, a 2 7 and 4t 2 9t + 5 are called quadratic expressions because the highest power of the variable is 2. The word comes from the Latin quadratus

Problem 1 The Parabola Examine the data in L 1 and L to the right. Let L 1 be the x- value and L be the y-values for a graph. 1. How are the x and y-values related? What pattern do you see? To enter the

### ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola

### Plot the following two points on a graph and draw the line that passes through those two points. Find the rise, run and slope of that line.

Objective # 6 Finding the slope of a line Material: page 117 to 121 Homework: worksheet NOTE: When we say line... we mean straight line! Slope of a line: It is a number that represents the slant of a line

### Graphing Linear Equations

Graphing Linear Equations I. Graphing Linear Equations a. The graphs of first degree (linear) equations will always be straight lines. b. Graphs of lines can have Positive Slope Negative Slope Zero slope

### Section 1.1 Linear Equations: Slope and Equations of Lines

Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

Graphing Quadratic Functions In our consideration of polynomial functions, we first studied linear functions. Now we will consider polynomial functions of order or degree (i.e., the highest power of x

### CHAPTER 2: POLYNOMIAL AND RATIONAL FUNCTIONS

CHAPTER 2: POLYNOMIAL AND RATIONAL FUNCTIONS 2.01 SECTION 2.1: QUADRATIC FUNCTIONS (AND PARABOLAS) PART A: BASICS If a, b, and c are real numbers, then the graph of f x = ax2 + bx + c is a parabola, provided

### Patterns, Equations, and Graphs. Section 1-9

Patterns, Equations, and Graphs Section 1-9 Goals Goal To use tables, equations, and graphs to describe relationships. Vocabulary Solution of an equation Inductive reasoning Review: Graphing in the Coordinate

### 4.4 Transforming Circles

Specific Curriculum Outcomes. Transforming Circles E13 E1 E11 E3 E1 E E15 analyze and translate between symbolic, graphic, and written representation of circles and ellipses translate between different

### Curve Sketching GUIDELINES FOR SKETCHING A CURVE: A. Domain. B. Intercepts: x- and y-intercepts.

Curve Sketching GUIDELINES FOR SKETCHING A CURVE: A. Domain. B. Intercepts: x- and y-intercepts. C. Symmetry: even (f( x) = f(x)) or odd (f( x) = f(x)) function or neither, periodic function. ( ) ( ) D.

### Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.

1 Linear Transformations Prepared by: Robin Michelle King A transformation of an object is a change in position or dimension (or both) of the object. The resulting object after the transformation is called

### Test Bank Exercises in. 7. Find the intercepts, the vertical asymptote, and the slant asymptote of the graph of

Test Bank Exercises in CHAPTER 5 Exercise Set 5.1 1. Find the intercepts, the vertical asymptote, and the horizontal asymptote of the graph of 2x 1 x 1. 2. Find the intercepts, the vertical asymptote,

### Section 2.1 Intercepts; Symmetry; Graphing Key Equations

Intercepts: An intercept is the point at which a graph crosses or touches the coordinate axes. x intercept is 1. The point where the line crosses (or intercepts) the x-axis. 2. The x-coordinate of a point

### In this section, we ll review plotting points, slope of a line and different forms of an equation of a line.

Math 1313 Section 1.2: Straight Lines In this section, we ll review plotting points, slope of a line and different forms of an equation of a line. Graphing Points and Regions Here s the coordinate plane:

### The x-intercepts of the graph are the x-values for the points where the graph intersects the x-axis. A parabola may have one, two, or no x-intercepts.

Chapter 10-1 Identify Quadratics and their graphs A parabola is the graph of a quadratic function. A quadratic function is a function that can be written in the form, f(x) = ax 2 + bx + c, a 0 or y = ax

### Ordered Pairs. Graphing Lines and Linear Inequalities, Solving System of Linear Equations. Cartesian Coordinates System.

Ordered Pairs Graphing Lines and Linear Inequalities, Solving System of Linear Equations Peter Lo All equations in two variables, such as y = mx + c, is satisfied only if we find a value of x and a value

### Section 2.1 Rectangular Coordinate Systems

P a g e 1 Section 2.1 Rectangular Coordinate Systems 1. Pythagorean Theorem In a right triangle, the lengths of the sides are related by the equation where a and b are the lengths of the legs and c is

5.1 The Unit Circle Copyright Cengage Learning. All rights reserved. Objectives The Unit Circle Terminal Points on the Unit Circle The Reference Number 2 The Unit Circle In this section we explore some

### Lesson 19: Equations for Tangent Lines to Circles

Student Outcomes Given a circle, students find the equations of two lines tangent to the circle with specified slopes. Given a circle and a point outside the circle, students find the equation of the line

### 1 Functions, Graphs and Limits

1 Functions, Graphs and Limits 1.1 The Cartesian Plane In this course we will be dealing a lot with the Cartesian plane (also called the xy-plane), so this section should serve as a review of it and its

### with "a", "b" and "c" representing real numbers, and "a" is not equal to zero.

3.1 SOLVING QUADRATIC EQUATIONS: * A QUADRATIC is a polynomial whose highest exponent is. * The "standard form" of a quadratic equation is: ax + bx + c = 0 with "a", "b" and "c" representing real numbers,

### PARABOLAS AND THEIR FEATURES

STANDARD FORM PARABOLAS AND THEIR FEATURES If a! 0, the equation y = ax 2 + bx + c is the standard form of a quadratic function and its graph is a parabola. If a > 0, the parabola opens upward and the

### Graphing the Complex Roots of Quadratic Functions on a Three Dimensional Coordinate Space

IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728. Volume 5, Issue 5 (Mar. - Apr. 2013), PP 27-36 Graphing the Complex Roots of Quadratic Functions on a Three Dimensional Coordinate Space Aravind

### Title: Graphing Quadratic Equations in Standard Form Class: Math 100 or 107 Author: Sharareh Masooman Instructions to tutor: Read instructions under

Title: Graphing Quadratic Equations in Standard Form Class: Math 100 or 107 Author: Sharareh Masooman Instructions to tutor: Read instructions under Activity and follow all steps for each problem exactly

### 7. The solutions of a quadratic equation are called roots. SOLUTION: The solutions of a quadratic equation are called roots. The statement is true.

State whether each sentence is true or false. If false, replace the underlined term to make a true sentence. 1. The axis of symmetry of a quadratic function can be found by using the equation x =. The

### Section 1.10 Lines. The Slope of a Line

Section 1.10 Lines The Slope of a Line EXAMPLE: Find the slope of the line that passes through the points P(2,1) and Q(8,5). = 5 1 8 2 = 4 6 = 2 1 EXAMPLE: Find the slope of the line that passes through

### Techniques of Differentiation Selected Problems. Matthew Staley

Techniques of Differentiation Selected Problems Matthew Staley September 10, 011 Techniques of Differentiation: Selected Problems 1. Find /dx: (a) y =4x 7 dx = d dx (4x7 ) = (7)4x 6 = 8x 6 (b) y = 1 (x4

### Exam 2 Review. 3. How to tell if an equation is linear? An equation is linear if it can be written, through simplification, in the form.

Exam 2 Review Chapter 1 Section1 Do You Know: 1. What does it mean to solve an equation? To solve an equation is to find the solution set, that is, to find the set of all elements in the domain of the

### Helpsheet. Giblin Eunson Library LINEAR EQUATIONS. library.unimelb.edu.au/libraries/bee. Use this sheet to help you:

Helpsheet Giblin Eunson Library LINEAR EQUATIONS Use this sheet to help you: Solve linear equations containing one unknown Recognize a linear function, and identify its slope and intercept parameters Recognize

### MATH 60 NOTEBOOK CERTIFICATIONS

MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5

### Section 2.2 Equations of Lines

Section 2.2 Equations of Lines The Slope of a Line EXAMPLE: Find the slope of the line that passes through the points P(2,1) and Q(8,5). = 5 1 8 2 = 4 6 = 2 1 EXAMPLE: Find the slope of the line that passes

### Elements of a graph. Click on the links below to jump directly to the relevant section

Click on the links below to jump directly to the relevant section Elements of a graph Linear equations and their graphs What is slope? Slope and y-intercept in the equation of a line Comparing lines on

### Chapter 12. The Straight Line

302 Chapter 12 (Plane Analytic Geometry) 12.1 Introduction: Analytic- geometry was introduced by Rene Descartes (1596 1650) in his La Geometric published in 1637. Accordingly, after the name of its founder,

### 3.1. Quadratic Equations and Models. Quadratic Equations Graphing Techniques Completing the Square The Vertex Formula Quadratic Models

3.1 Quadratic Equations and Models Quadratic Equations Graphing Techniques Completing the Square The Vertex Formula Quadratic Models 3.1-1 Polynomial Function A polynomial function of degree n, where n

### 2. THE x-y PLANE 7 C7

2. THE x-y PLANE 2.1. The Real Line When we plot quantities on a graph we can plot not only integer values like 1, 2 and 3 but also fractions, like 3½ or 4¾. In fact we can, in principle, plot any real

### f is a parabola whose vertex is the point (h,k). The parabola is symmetric with

Math 1014: Precalculus with Transcendentals Ch. 3: Polynomials and Rational Functions Sec. 3.1 Quadratic Functions I. Quadratic Functions A. Definition 1. A quadratic function is a function of the form

### Practice Problems for Exam 1 Math 140A, Summer 2014, July 2

Practice Problems for Exam 1 Math 140A, Summer 2014, July 2 Name: INSTRUCTIONS: These problems are for PRACTICE. For the practice exam, you may use your book, consult your classmates, and use any other

### TEKS 2A.7.A Quadratic and square root functions: connect between the y = ax 2 + bx + c and the y = a (x - h) 2 + k symbolic representations.

Objectives Define, identify, and graph quadratic functions. Identify and use maximums and minimums of quadratic functions to solve problems. Vocabulary axis of symmetry standard form minimum value maximum

### What are the place values to the left of the decimal point and their associated powers of ten?

The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

### SECTION 0.11: SOLVING EQUATIONS. LEARNING OBJECTIVES Know how to solve linear, quadratic, rational, radical, and absolute value equations.

(Section 0.11: Solving Equations) 0.11.1 SECTION 0.11: SOLVING EQUATIONS LEARNING OBJECTIVES Know how to solve linear, quadratic, rational, radical, and absolute value equations. PART A: DISCUSSION Much

### 1.5. Transformations of graphs. Translating graphs vertically

Let c be a positive number. 1.5. Transformations of graphs Translating graphs vertically Translation upward. The vertical translation c units upward shifts given point onto the point which is located in

### Key Terms: Quadratic function. Parabola. Vertex (of a parabola) Minimum value. Maximum value. Axis of symmetry. Vertex form (of a quadratic function)

Outcome R3 Quadratic Functions McGraw-Hill 3.1, 3.2 Key Terms: Quadratic function Parabola Vertex (of a parabola) Minimum value Maximum value Axis of symmetry Vertex form (of a quadratic function) Standard

### September 14, Conics. Parabolas (2).notebook

9/9/16 Aim: What is parabola? Do now: 1. How do we define the distance from a point to the line? Conic Sections are created by intersecting a set of double cones with a plane. A 2. The distance from the

### APPLICATIONS OF DIFFERENTIATION

4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION So far, we have been concerned with some particular aspects of curve sketching: Domain, range, and symmetry (Chapter 1) Limits, continuity,

### Equations. #1-10 Solve for the variable. Inequalities. 1. Solve the inequality: 2 5 7. 2. Solve the inequality: 4 0

College Algebra Review Problems for Final Exam Equations #1-10 Solve for the variable 1. 2 1 4 = 0 6. 2 8 7 2. 2 5 3 7. = 3. 3 9 4 21 8. 3 6 9 18 4. 6 27 0 9. 1 + log 3 4 5. 10. 19 0 Inequalities 1. Solve

### Circle Name: Radius: Diameter: Chord: Secant:

12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane

### Pre-Calculus 20 Chapter 3 Notes

Section 3.1 Quadratic Functions in Vertex Form Pre-Calculus 20 Chapter 3 Notes Using a table of values, graph y = x 2 y x y=x 2-2 4-2 4 x Using a table of values, graph y = -1x 2 (or y = -x 2 ) y x y=-x

### Example 1. Example 1 Plot the points whose polar coordinates are given by

Polar Co-ordinates A polar coordinate system, gives the co-ordinates of a point with reference to a point O and a half line or ray starting at the point O. We will look at polar coordinates for points

### 2x - y 4 y -3x - 6 y < 2x 5x - 3y > 7

DETAILED SOLUTIONS AND CONCEPTS GRAPHICAL REPRESENTATION OF LINEAR INEQUALITIES IN TWO VARIABLES Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu.

10.9 Systems Of Inequalities Copyright Cengage Learning. All rights reserved. Objectives Graphing an Inequality Systems of Inequalities Systems of Linear Inequalities Application: Feasible Regions 2 Graphing

### Linear Equations Review

Linear Equations Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The y-intercept of the line y = 4x 7 is a. 7 c. 4 b. 4 d. 7 2. What is the y-intercept

### Algebra II: Strand 7. Conic Sections; Topic 1. Intersection of a Plane and a Cone; Task 7.1.2

1 TASK 7.1.2: THE CONE AND THE INTERSECTING PLANE Solutions 1. What is the equation of a cone in the 3-dimensional coordinate system? x 2 + y 2 = z 2 2. Describe the different ways that a plane could intersect

### The Parabola and the Circle

The Parabola and the Circle The following are several terms and definitions to aid in the understanding of parabolas. 1.) Parabola - A parabola is the set of all points (h, k) that are equidistant from

### Rationale/Lesson Abstract: Students will be able to solve a Linear- Quadratic System algebraically and graphically.

Grade Level/Course: Algebra 1 Lesson/Unit Plan Name: Linear- Quadratic Systems Rationale/Lesson Abstract: Students will be able to solve a Linear- Quadratic System algebraically and graphically. Timeframe:

### Vocabulary Words and Definitions for Algebra

Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

### 5 \$75 6 \$90 7 \$105. Name Hour. Review Slope & Equations of Lines. STANDARD FORM: Ax + By = C. 1. What is the slope of a vertical line?

Review Slope & Equations of Lines Name Hour STANDARD FORM: Ax + By = C 1. What is the slope of a vertical line? 2. What is the slope of a horizontal line? 3. Is y = 4 the equation of a horizontal or vertical

Quadratic Functions and Models MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: analyze the graphs of quadratic functions, write

### 2 Unit Bridging Course Day 2 Linear functions II: Finding equations

1 / 38 2 Unit Bridging Course Day 2 Linear functions II: Finding equations Clinton Boys 2 / 38 Finding equations of lines If we have the information of (i) the gradient of a line (ii) the coordinates of

### Rational functions are defined for all values of x except those for which the denominator hx ( ) is equal to zero. 1 Function 5 Function

Section 4.6 Rational Functions and Their Graphs Definition Rational Function A rational function is a function of the form that h 0. f g h where g and h are polynomial functions such Objective : Finding

### Linear Equations and Graphs

2.1-2.4 Linear Equations and Graphs Coordinate Plane Quadrants - The x-axis and y-axis form 4 "areas" known as quadrants. 1. I - The first quadrant has positive x and positive y points. 2. II - The second

### Class 9 Coordinate Geometry

ID : in-9-coordinate-geometry [1] Class 9 Coordinate Geometry For more such worksheets visit www.edugain.com Answer t he quest ions (1) Find the coordinates of the point shown in the picture. (2) Find

### Contents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles...

Contents Lines and Circles 3.1 Cartesian Coordinates.......................... 3. Distance and Midpoint Formulas.................... 3.3 Lines.................................. 3.4 Circles..................................

### Section 3.2. Graphing linear equations

Section 3.2 Graphing linear equations Learning objectives Graph a linear equation by finding and plotting ordered pair solutions Graph a linear equation and use the equation to make predictions Vocabulary:

### Mid-Chapter Quiz: Lessons 9-1 through 9-4. Find the midpoint of the line segment with endpoints at the given coordinates (7, 4), ( 1, 5)

Find the midpoint of the line segment with endpoints at the given coordinates (7, 4), (1, 5) Let (7, 4) be (x 1, y 1 ) and (1, 5) be (x 2, y 2 ). (2, 9), (6, 0) Let (2, 9) be (x 1, y 1 ) and (6, 0) be

### TImath.com Algebra 1. Graphing Quadratic Functions

Graphing Quadratic Functions ID: 9186 Time required 60 minutes Activity Overview In this activity, students will graph quadratic functions and study how the constants in the equations compare to the coordinates

### Frogs, Fleas and Painted Cubes: Homework Examples from ACE

Frogs, Fleas and Painted Cubes: Homework Examples from ACE Investigation 1: Introduction to Quadratic Functions, ACE #7, 14 Investigation 2: Quadratic Expressions, ACE #17, 24, 26, 36, 51 Investigation

### EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

### 7.1 Graphs of Quadratic Functions in Vertex Form

7.1 Graphs of Quadratic Functions in Vertex Form Quadratic Function in Vertex Form A quadratic function in vertex form is a function that can be written in the form f (x) = a(x! h) 2 + k where a is called

### 1.7 Graphs of Functions

64 Relations and Functions 1.7 Graphs of Functions In Section 1.4 we defined a function as a special type of relation; one in which each x-coordinate was matched with only one y-coordinate. We spent most

### Essential Question: What is the relationship among the focus, directrix, and vertex of a parabola?

Name Period Date: Topic: 9-3 Parabolas Essential Question: What is the relationship among the focus, directrix, and vertex of a parabola? Standard: G-GPE.2 Objective: Derive the equation of a parabola

Date Period Unit 0: Quadratic Relations DAY TOPIC Distance and Midpoint Formulas; Completing the Square Parabolas Writing the Equation 3 Parabolas Graphs 4 Circles 5 Exploring Conic Sections video This

### The domain is all real numbers. The range is all real numbers greater than or equal to the minimum value, or {y y 8}.

Use a table of values to graph each equation. State the domain and range. 1. y = 2x 2 + 4x 6 x y = 2x 2 + 4x 6 (x, y) 3 y = 2( 3) 2 + 4( 3) 6 = 0 ( 3,0) 2 y = 2( 2) 2 + 4( 2) 6 = ( 2, 6) 6 1 y = 2( 1)

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

### Study Guide and Review - Chapter 4

State whether each sentence is true or false. If false, replace the underlined term to make a true sentence. 1. The y-intercept is the y-coordinate of the point where the graph crosses the y-axis. The

### What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.

PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of

### EXPONENTS. To the applicant: KEY WORDS AND CONVERTING WORDS TO EQUATIONS

To the applicant: The following information will help you review math that is included in the Paraprofessional written examination for the Conejo Valley Unified School District. The Education Code requires

### Understanding Basic Calculus

Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

### POLAR COORDINATES DEFINITION OF POLAR COORDINATES

POLAR COORDINATES DEFINITION OF POLAR COORDINATES Before we can start working with polar coordinates, we must define what we will be talking about. So let us first set us a diagram that will help us understand

### Prime Coe cients Formula for Rotating Conics

Prime Coe cients Formula for Rotating Conics David Rose Polk State College David Rose (Institute) Prime Coe cients Formula for Rotating Conics 1 / 18 It is known that the graph of a conic section in the

### Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called.

Chapter 3 Vocabulary equivalent - Equations with the same solutions as the original equation are called. formula - An algebraic equation that relates two or more real-life quantities. unit rate - A rate

### Objective 1: Identify the characteristics of a quadratic function from its graph

Section 8.2 Quadratic Functions and Their Graphs Definition Quadratic Function A quadratic function is a second-degree polynomial function of the form, where a, b, and c are real numbers and. Every quadratic

### 55x 3 + 23, f(x) = x2 3. x x 2x + 3 = lim (1 x 4 )/x x (2x + 3)/x = lim

Slant Asymptotes If lim x [f(x) (ax + b)] = 0 or lim x [f(x) (ax + b)] = 0, then the line y = ax + b is a slant asymptote to the graph y = f(x). If lim x f(x) (ax + b) = 0, this means that the graph of

### Graphing Linear Equations in Two Variables

Math 123 Section 3.2 - Graphing Linear Equations Using Intercepts - Page 1 Graphing Linear Equations in Two Variables I. Graphing Lines A. The graph of a line is just the set of solution points of the

### Two vectors are equal if they have the same length and direction. They do not

Vectors define vectors Some physical quantities, such as temperature, length, and mass, can be specified by a single number called a scalar. Other physical quantities, such as force and velocity, must

### DO NOW Geometry Regents Lomac Date. due. Coordinate Plane: Equation of a Circle

DO NOW Geometry Regents Lomac 2014-2015 Date. due. Coordinate Plane: Equation of a Circle 8.5 (DN) TEAR OFF The Circle PAGE AND THEN DO THE DO NOW ON BACK OF PACKET (1) What do right triangles have to

### Find the vertex, the equation of the axis of symmetry, and the y-intercept of each graph.

Find the vertex, the equation of the axis of symmetry, and the y-intercept of each graph. 28. Find the vertex. Because the parabola opens up, the vertex is located at the minimum point of the parabola.

### CIRCLE COORDINATE GEOMETRY

CIRCLE COORDINATE GEOMETRY (EXAM QUESTIONS) Question 1 (**) A circle has equation x + y = 2x + 8 Determine the radius and the coordinates of the centre of the circle. r = 3, ( 1,0 ) Question 2 (**) A circle

### CHAPTER 3: GRAPHS OF QUADRATIC RELATIONS

CHAPTER 3: GRAPHS OF QUADRATIC RELATIONS Specific Expectations Addressed in the Chapter Collect data that can be represented as a quadratic relation, from experiments using appropriate equipment and technology