# ME 111: Engineering Drawing

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 ME 111: Engineering Drawing Lecture Engineering Curves and Theory of Projection Indian Institute of Technology Guwahati Guwahati

2 Eccentrici ty = Distance of the point from the focus Distance of the point from the directric When eccentricity < 1 Ellipse =1 Parabola > 1 Hyperbola eg. when e=1/2, the curve is an Ellipse, when e=1, it is a parabola and when e=2, it is a hyperbola. 2

3 Focus-Directrix or Eccentricity Method Given : the distance of focus from the directrix and eccentricity Example : Draw an ellipse if the distance of focus from the directrix is 70 mm and the eccentricity is 3/4. 1. Draw the directrix AB and axis CC 2. Mark F on CC such that CF = 70 mm. 3. Divide CF into 7 equal parts and mark V at the fourth division from C. Now, e = FV/ CV = 3/4. 4. At V, erect a perpendicular VB = VF. Join CB. Through F, draw a line at 45 to meet CB produced at D. Through D, drop a perpendicular DV on CC. Mark O at the midpoint of V V. 3

4 Focus-Directrix or Eccentricity Method ( Continued) 5. With F as a centre and radius = 1 1, cut two arcs on the perpendicular through 1 to locate P1 and P1. Similarly, with F as centre and radii = 2 2, 3 3, etc., cut arcs on the corresponding perpendiculars to locate P2 and P2, P3 and P3, etc. Also, cut similar arcs on the perpendicular through O to locate V1 and V1. 6. Draw a smooth closed curve passing through V, P1, P/2, P/3,, V1,, V,, V1, P/3, P/2, P1. 7. Mark F on CC such that V F = VF. 4

5 Constructing a Parabola (Eccentricity Method) Example. Draw a parabola if the distance of the focus from the directrix is 60 mm. 1. Draw directrix AB and axis CC as shown. 2. Mark F on CC such that CF = 60 mm. 3. Mark V at the midpoint of CF. Therefore, e = VF/ VC = At V, erect a perpendicular VB = VF. Join CB. 5. Mark a few points, say, 1, 2, 3, on VC and erect perpendiculars through them meeting CB produced at 1, 2, 3, 6. With F as a centre and radius = 1 1, cut two arcs on the perpendicular through 1 to locate P1 and P1. Similarly, with F as a centre and radii = 2 2, 3 3, etc., cut arcs on the corresponding perpendiculars to locate P2 and P2, P3 and P3, etc. 7. Draw a smooth curve passing through V, P1, P2, P3 P3, P2, P1. 5

6 Constructing a Hyperbola (Eccentricity Method) Draw a hyperbola of e = 3/2 if the distance of the focus from the directrix = 50 mm. Construction similar to ellipse and parabola 6

7 Drawing Tangent and Normal to any conic When a tangent at any point on the curve (P) is produced to meet the directrix, the line joining the focus with this meeting point (FT) will be at right angle to the line joining the focus with the point of contact (PF). The normal to the curve at any point is perpendicular to the tangent at that point. 7

8 Another definition of the ellipse An ellipse is the set of all points in a plane for which the sum of the distances from the two fixed points (the foci) in the plane is constant. 8

9 Arcs of Circle Method Given conditions: (1) the major axis and minor axis are known OR (2) the major axis and the distance between the foci are known Draw AB & CD perpendicular to each other as the major diameter minor diameter respectively. With centre as C or D, and half the major diameter as radius draw arcs to intersect the major diameter to obtain the foci at X and Y. Mark a number of points along line segment XY and number them. Points need not be equidistant. Set the compass to radius B-1 and draw two arcs, with Y as center. Set the compass to radius A1, and draw two arcs with X as center. Intersection points of the two arcs are points on the ellipse. Repeat this step for all the remaining points. Use the French curve to connect the points, thus drawing the ellipse. 9

10 Constructing an Ellipse (Concentric Circle Method) Given: Major axis and minor axis With center C, draw two concentric circles with diameters equal to major and minor diameters of the ellipse. Draw the major and minor diameters. Construct a line AB at any angle through C. Mark points D and E where the line intersects the smaller circle. From points A and B, draw lines parallel to the minor diameter. Draw lines parallel to the major diameter through D & E. The intersection of the lines from A and D is point F, and from B and E is point G. Points F & G lies on the ellipse. Extend lines FD & BG and lines AF and GE to obtain two more points in the other quadrants. Repeat steps 2-6 to create more points in each quadrant and then draw a smooth 10 curve through the points.

11 Constructing a Parabola (Parallelogram Method) Example: Draw a parabola of base 100 mm and axis 50 mm if the axis makes 70 to the base. 1. Draw the base RS = 100 mm and through its midpoint K, draw the axis KV = 50 mm, inclined at 70 to RS. Draw a parallelogram RSMN such that SM is parallel and equal to KV. 2. Divide RN and RK into the same number of equal parts, say 5. Number the divisions as 1, 2, 3, 4 and 1, 2, 3, 4, starting from R. 3. Join V 1, V 2, V 3 and V 4. Through 1, 2, 3 and 4, draw lines parallel to KV to meet V 1 at P1, V 2 at P2, V 3 at P3 and V 4 at P4, respectively. 4. Obtain P5, P6, P7 and P8 in the other half of the rectangle in a similar way. Alternatively, these points can be obtained by drawing lines parallel to RS through P1, P2, P3 and P4. For example, draw P1 P8 such that P1 x = x P8. Join P1, P2, P3 P8 to obtain the parabola. 11

12 Hyperbola A Hyperbola is obtained when a section plane, parallel/inclined to the axis cuts the cone on one side of the axis. A Rectangular Hyperbola is obtained when a section, parallel to the axis cuts the cone on one side of the axis. 12

13 Hyperbola Mathematical definition A hyperbola is defined as the set of points in a plane whose distances from two fixed points called foci, in the plane have a constant difference. 13

14 Constructing a Hyperbola Given: Distance between Foci and Distance between vertices Draw the axis of symmetry and construct a perpendicular through the axis. Locate focal point F equidistant from the perpendicular and on either side of it. Locate points A and B on the axis equidistant from the perpendicular. AB is the distance between vertices With F as center and radius R1, and draw the arcs. With R1 + AB, radius, and F as center, draw a second set of arcs. The intersection of the two arcs on each side of the perpendicular are points on the hyperbola Select a new radius R2 and repeat step 2. Continue this process until several points on the hyperbola are marked 14

15 Roulettes Roulettes are curves generated by the rolling contact of one curve or line on another curve or line, without slipping. There are various types of roulettes. The most common types of roulettes used in engineering practice are: Cycloids, Trochoids, and Involutes.

16 Cycloid Generating circle Base line A Cycloid is generated by a point on the circumference of a circle rolling along a straight line without slipping The rolling circle is called the Generating circle The straight line is called the Directing line or Base line

17 Constructing a cycloid Generating circle has its center at C and has a radius of C-P. Straight line PP is equal in length to the circumference of the circle and is tangent to the circle at point P. Divide the circle into a number of equal segments, such as 12. intersections of the radii and the circle. Number the From each point of intersection on the circle, draw a construction line parallel to line PP and extending up to line P C. Divide the line CC into the same number of equal parts, and number them. Draw vertical lines from each point to intersect the extended horizontal centerline of the circle. Label each point as C1, C2, C3,. C12.

18 Constructing a cycloid (contd.) Using point C1 as the center and radius of the circle C-P, draw an arc that intersects the horizontal line extended from point 1 at P1. Set the compass at point C2, then draw an arc that intersects the horizontal line passing through point 2 at P2. Repeat this process using points C3, C4,. C12, to locate points along the horizontal line extended from points 3, 4, 5, etc.. Draw a smooth curve connecting P1, P2, P3, etc to form the cycloid Draw normal NN and Tangent TT

19 Epicycloid The cycloid is called Epicycloid when the generating circle rolls along another circle outside it.

20 Constructing an Epicycloid 1) With O as centre and OC as radius, draw an arc to represent locus of centre. 2) Divide arc PQ in to 12 equal parts and name them as 1, 2,., 12. 3) Join O1, O2, and produce them to cut the locus of centres at C1, C2,. 4) Taking C1 as centre, and radius equal to 20 mm, draw an arc cutting the arc through 1 at P1. Similarly obtain points P2, P3,., P12. 5) Join P1, P2.. With French curve

21 Hypocycloid Hypocycloid is obtained when the generating circle rolls along another circle inside it.

22 Constructing an Hypocycloid Construction is similar to epicycloid. The generating circle is to be drawn below the base circle

23 Trochoid Trochoid is a curve generated by a point outside or inside the circle rolling along a straight line. If the point is outside the circle the curve obtained is called Superior Trochoid If the point is inside the circle, the curve obtained is called Inferior Trochoid

24 Classification of Cycloidal curves Generating Circle Generating point On the generating circle Outside the generating circle Inside the generating circle On the directing line Outside the directing line Inside the directing line Cycloid Epicycloid Hypocycloid Superior trochoid Inferior trochoid Superior epitrochoid Inferior epitrochoid Superior Hypotrochoid Inferior hypotrochoid

25 Involute An Involute is a curve traced by the free end of a thread unwound from a circle or a polygon in such a way that the thread is always tight and tangential to the circle or side of the polygon

26 Construction of Involute of circle Draw the circle with c as center and CP as radius. Draw line PQ = 2πCP, tangent to the circle at P Divide the circle into 12 equal parts. Number them as 1, 2 Divide the line PQ into 12 equal parts and number as 1, 2.. Draw tangents to the circle at 1, 2,3. Locate points P1, P2 such that 1- P1 = P1, 2-P2 = P2. Join P, P1, P2. The tangent to the circle at any point on it is always normal to the its involute. Join CN. Draw a semicircle with CN as diameter, cutting the circle at M. MN is the normal.

27 ME 111: Engineering Drawing Theory of Projections Indian Institute of Technology Guwahati Guwahati

28 Projection theory 3-D objects and structures are represented graphically on 2-D media. All projection theory are based on two variables: Line of sight Plane of projection.

29 Projection system

30 Plane of Projection A plane of projection (i.e, an image or picture plane) is an imaginary flat plane upon which the image created by the line of sight is projected. The image is produced by connecting the points where the lines of sight pierce the projection plane. In effect, 3-D object is transformed into a 2-D representation, also called projections. The paper or computer screen on which a drawing is created is a plane of projection.

31 Projection Methods Projection methods are very important techniques in engineering drawing. Two projection methods used are: Perspective and Parallel.

32 In perspective projection, all lines of sight start at a single point.

33 In parallel projection, all lines of sight are parallel.

34 Parallel vs Perspective Projection Parallel projection Distance from the observer to the object is infinite, projection lines are parallel object is positioned at infinity. Less realistic but easier to draw. Χ Perspective projection Distance from the observer to the object is finite and the object is viewed from a single point projectors are not parallel. Perspective projections mimic what the human eyes see, however, they are difficult to draw.

### The Geometry of Piles of Salt Thinking Deeply About Simple Things

The Geometry of Piles of Salt Thinking Deeply About Simple Things PCMI SSTP Tuesday, July 15 th, 2008 By Troy Jones Willowcreek Middle School Important Terms (the word line may be replaced by the word

### Angles that are between parallel lines, but on opposite sides of a transversal.

GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,

### Geometry Notes PERIMETER AND AREA

Perimeter and Area Page 1 of 57 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter

### 1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?

1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width

### Chapter 1. Creating Sketches in. the Sketch Mode-I. Evaluation chapter. Logon to www.cadcim.com for more details. Learning Objectives

Chapter 1 Creating Sketches in Learning Objectives the Sketch Mode-I After completing this chapter you will be able to: Use various tools to create a geometry. Dimension a sketch. Apply constraints to

### Determine whether the following lines intersect, are parallel, or skew. L 1 : x = 6t y = 1 + 9t z = 3t. x = 1 + 2s y = 4 3s z = s

Homework Solutions 5/20 10.5.17 Determine whether the following lines intersect, are parallel, or skew. L 1 : L 2 : x = 6t y = 1 + 9t z = 3t x = 1 + 2s y = 4 3s z = s A vector parallel to L 1 is 6, 9,

### Leaving Certificate. Design and Communication. (Ordinary Level and Higher Level)

An Roinn Oideachais agus Eolaíochta Leaving Certificate Design and Communication Graphics Syllabus (Ordinary Level and Higher Level) LEAVING CERTIFICATE PROGRAMMES Aims and Principles 1. The general aim

### Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

### OD1641 PRINCIPLES OF DRAFTING AND SHOP DRAWINGS

SUBCOURSE OD1641 EDITION 8 PRINCIPLES OF DRAFTING AND SHOP DRAWINGS US ARMY REPAIR SHOP TECHNICIAN WARRANT OFFICER ADVANCED CORRESPONDENCE COURSE MOS/SKILL LEVEL: 441A PRINCIPLES OF DRAFTING AND SHOP

### Leaving Certificate Design and Communication Graphics Syllabus. Ordinary level and Higher level

Leaving Certificate Design and Communication Graphics Syllabus Ordinary level and Higher level For implementation in September, 2007 LEAVING CERTIFICATE DESIGN AND COMMUNICATION GRAPHICS CONTENTS Preface

### SolidWorks Implementation Guides. Sketching Concepts

SolidWorks Implementation Guides Sketching Concepts Sketching in SolidWorks is the basis for creating features. Features are the basis for creating parts, which can be put together into assemblies. Sketch

### Estimated Pre Calculus Pacing Timeline

Estimated Pre Calculus Pacing Timeline 2010-2011 School Year The timeframes listed on this calendar are estimates based on a fifty-minute class period. You may need to adjust some of them from time to

### South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

### SA B 1 p where is the slant height of the pyramid. V 1 3 Bh. 3D Solids Pyramids and Cones. Surface Area and Volume of a Pyramid

Accelerated AAG 3D Solids Pyramids and Cones Name & Date Surface Area and Volume of a Pyramid The surface area of a regular pyramid is given by the formula SA B 1 p where is the slant height of the pyramid.

### Gymnázium, Brno, Slovanské nám. 7, SCHEME OF WORK Mathematics SCHEME OF WORK. http://agb.gymnaslo. cz

SCHEME OF WORK Subject: Mathematics Year: Third grade, 3.X School year:../ List of topics Topics Time period 1. Revision (functions, plane geometry) September 2. Constructive geometry in the plane October

### EVERY DAY COUNTS CALENDAR MATH 2005 correlated to

EVERY DAY COUNTS CALENDAR MATH 2005 correlated to Illinois Mathematics Assessment Framework Grades 3-5 E D U C A T I O N G R O U P A Houghton Mifflin Company YOUR ILLINOIS GREAT SOURCE REPRESENTATIVES:

### Understand the Sketcher workbench of CATIA V5.

Chapter 1 Drawing Sketches in Learning Objectives the Sketcher Workbench-I After completing this chapter you will be able to: Understand the Sketcher workbench of CATIA V5. Start a new file in the Part

### Gouvernement du Québec Ministère de l Éducation, 2004 04-00910 ISBN 2-550-43701-2

Gouvernement du Québec Ministère de l Éducation, 2004 04-00910 ISBN 2-550-43701-2 Legal deposit Bibliothèque nationale du Québec, 2004 1. INTRODUCTION This Definition of the Domain for Summative Evaluation

### Two vectors are equal if they have the same length and direction. They do not

Vectors define vectors Some physical quantities, such as temperature, length, and mass, can be specified by a single number called a scalar. Other physical quantities, such as force and velocity, must

Engineering Drawing Traditional Drawing Tools DRAWING TOOLS DRAWING TOOLS 1. T-Square 2. Triangles DRAWING TOOLS HB for thick line 2H for thin line 3. Adhesive Tape 4. Pencils DRAWING TOOLS 5. Sandpaper

### We can display an object on a monitor screen in three different computer-model forms: Wireframe model Surface Model Solid model

CHAPTER 4 CURVES 4.1 Introduction In order to understand the significance of curves, we should look into the types of model representations that are used in geometric modeling. Curves play a very significant

### BEZIER CURVES AND SURFACES

Department of Applied Mathematics and Computational Sciences University of Cantabria UC-CAGD Group COMPUTER-AIDED GEOMETRIC DESIGN AND COMPUTER GRAPHICS: BEZIER CURVES AND SURFACES Andrés Iglesias e-mail:

### The Inversion Transformation

The Inversion Transformation A non-linear transformation The transformations of the Euclidean plane that we have studied so far have all had the property that lines have been mapped to lines. Transformations

### 42 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. Figure 1.18: Parabola y = 2x 2. 1.6.1 Brief review of Conic Sections

2 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.18: Parabola y = 2 1.6 Quadric Surfaces 1.6.1 Brief review of Conic Sections You may need to review conic sections for this to make more sense. You

### Bicycle Math. presented to the Olivetti Club. Timothy E. Goldberg. March 30, 2010. Cornell University Ithaca, New York

Bicycle Math presented to the Olivetti Club Timothy E. Goldberg Cornell University Ithaca, New York March 30, 2010 Abstract Some pretty interesting mathematics, especially geometry, arises naturally from

### Geometry - Semester 2. Mrs. Day-Blattner 1/20/2016

Geometry - Semester 2 Mrs. Day-Blattner 1/20/2016 Agenda 1/20/2016 1) 20 Question Quiz - 20 minutes 2) Jan 15 homework - self-corrections 3) Spot check sheet Thales Theorem - add to your response 4) Finding

### Using GeoGebra to create applets for visualization and exploration.

Handouts for ICTCM workshop on GeoGebra, March 2007 By Mike May, S.J. mikemaysj@gmail.com Using GeoGebra to create applets for visualization and exploration. Overview: I) We will start with a fast tour

### Tutorial 1: The Freehand Tools

UNC Charlotte Tutorial 1: The Freehand Tools In this tutorial you ll learn how to draw and construct geometric figures using Sketchpad s freehand construction tools. You ll also learn how to undo your

### GeoGebra Help Official Manual 3.2

GeoGebra Help Official Manual 3.2 Markus Hohenwarter and Judith Hohenwarter www.geogebra.org GeoGebra Help 3.2 Last modified: April 22, 2009 Authors Markus Hohenwarter, markus@geogebra.org Judith Hohenwarter,

### Elements of Plane Geometry by LK

Elements of Plane Geometry by LK These are notes indicating just some bare essentials of plane geometry and some problems to think about. We give a modified version of the axioms for Euclidean Geometry

### Triangle Centers MOP 2007, Black Group

Triangle Centers MOP 2007, Black Group Zachary Abel June 21, 2007 1 A Few Useful Centers 1.1 Symmedian / Lemmoine Point The Symmedian point K is defined as the isogonal conjugate of the centroid G. Problem

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY

GEOMETRY Student Name: The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2015 - /YJ {, ~ h (} l J/VJJJ,O 8:30 to 11:30 a.m., only The possession or use

### Illinois State Standards Alignments Grades Three through Eleven

Illinois State Standards Alignments Grades Three through Eleven Trademark of Renaissance Learning, Inc., and its subsidiaries, registered, common law, or pending registration in the United States and other

### Inversion. Chapter 7. 7.1 Constructing The Inverse of a Point: If P is inside the circle of inversion: (See Figure 7.1)

Chapter 7 Inversion Goal: In this chapter we define inversion, give constructions for inverses of points both inside and outside the circle of inversion, and show how inversion could be done using Geometer

### REVIEW OF CONIC SECTIONS

REVIEW OF CONIC SECTIONS In this section we give geometric definitions of parabolas, ellipses, and hperbolas and derive their standard equations. The are called conic sections, or conics, because the result

### CHAPTER 1. LINES AND PLANES IN SPACE

CHAPTER 1. LINES AND PLANES IN SPACE 1. Angles and distances between skew lines 1.1. Given cube ABCDA 1 B 1 C 1 D 1 with side a. Find the angle and the distance between lines A 1 B and AC 1. 1.2. Given

### ( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those

1.(6pts) Which of the following vectors has the same direction as v 1,, but has length 6? (a), 4, 4 (b),, (c) 4,, 4 (d), 4, 4 (e) 0, 6, 0 The length of v is given by ( 1) + + 9 3 We would like to make

### Section 11.1: Vectors in the Plane. Suggested Problems: 1, 5, 9, 17, 23, 25-37, 40, 42, 44, 45, 47, 50

Section 11.1: Vectors in the Plane Page 779 Suggested Problems: 1, 5, 9, 17, 3, 5-37, 40, 4, 44, 45, 47, 50 Determine whether the following vectors a and b are perpendicular. 5) a = 6, 0, b = 0, 7 Recall

### Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.

Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.

### 12 Surface Area and Volume

12 Surface Area and Volume 12.1 Three-Dimensional Figures 12.2 Surface Areas of Prisms and Cylinders 12.3 Surface Areas of Pyramids and Cones 12.4 Volumes of Prisms and Cylinders 12.5 Volumes of Pyramids

### Objectives. Cabri Jr. Tools

^Åíáîáíó=NO Objectives To learn how to construct all types of triangles using the Cabri Jr. application To reinforce the difference between a construction and a drawing Cabri Jr. Tools fåíêççìåíáçå `çåëíêìåíáåö

### Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross

CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal

### HIGH SCHOOL: GEOMETRY (Page 1 of 4)

HIGH SCHOOL: GEOMETRY (Page 1 of 4) Geometry is a complete college preparatory course of plane and solid geometry. It is recommended that there be a strand of algebra review woven throughout the course

### Surface Area and Volume Cylinders, Cones, and Spheres

Surface Area and Volume Cylinders, Cones, and Spheres Michael Fauteux Rosamaria Zapata CK12 Editor Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable

### L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

### Graphical Representation of Multivariate Data

Graphical Representation of Multivariate Data One difficulty with multivariate data is their visualization, in particular when p > 3. At the very least, we can construct pairwise scatter plots of variables.

### Dear Accelerated Pre-Calculus Student:

Dear Accelerated Pre-Calculus Student: I am very excited that you have decided to take this course in the upcoming school year! This is a fastpaced, college-preparatory mathematics course that will also

### North Carolina Community College System Diagnostic and Placement Test Sample Questions

North Carolina Community College System Diagnostic and Placement Test Sample Questions 01 The College Board. College Board, ACCUPLACER, WritePlacer and the acorn logo are registered trademarks of the College

### Motion Graphs. It is said that a picture is worth a thousand words. The same can be said for a graph.

Motion Graphs It is said that a picture is worth a thousand words. The same can be said for a graph. Once you learn to read the graphs of the motion of objects, you can tell at a glance if the object in

### MA 408 Computer Lab Two The Poincaré Disk Model of Hyperbolic Geometry. Figure 1: Lines in the Poincaré Disk Model

MA 408 Computer Lab Two The Poincaré Disk Model of Hyperbolic Geometry Put your name here: Score: Instructions: For this lab you will be using the applet, NonEuclid, created by Castellanos, Austin, Darnell,

### Technical Drawing Specifications Resource A guide to support VCE Visual Communication Design study design 2013-17

A guide to support VCE Visual Communication Design study design 2013-17 1 Contents INTRODUCTION The Australian Standards (AS) Key knowledge and skills THREE-DIMENSIONAL DRAWING PARALINE DRAWING Isometric

### Algebra 1 Course Title

Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

### Module 8 Lesson 4: Applications of Vectors

Module 8 Lesson 4: Applications of Vectors So now that you have learned the basic skills necessary to understand and operate with vectors, in this lesson, we will look at how to solve real world problems

### Pre Calculus Math 40S: Explained!

www.math0s.com 97 Conics Lesson Part I The Double Napped Cone Conic Sections: There are main conic sections: circle, ellipse, parabola, and hyperbola. It is possible to create each of these shapes by passing

### GeoGebra. 10 lessons. Gerrit Stols

GeoGebra in 10 lessons Gerrit Stols Acknowledgements GeoGebra is dynamic mathematics open source (free) software for learning and teaching mathematics in schools. It was developed by Markus Hohenwarter

Advanced GMAT Math Questions Version Quantitative Fractions and Ratios 1. The current ratio of boys to girls at a certain school is to 5. If 1 additional boys were added to the school, the new ratio of

### Algebra II and Trigonometry

Algebra II and Trigonometry Textbooks: Algebra 2: California Publisher: McDougal Li@ell/Houghton Mifflin (2006 EdiHon) ISBN- 13: 978-0618811816 Course descriphon: Algebra II complements and expands the

### Guidelines for Mathematics Laboratory in Schools Class X

Guidelines for Mathematics Laboratory in Schools Class X Central Board of Secondary Education Preet Vihar, Delhi 110092. 1 2 1. Introduction Taking into consideration the national aspirations and expectations

### Baltic Way 1995. Västerås (Sweden), November 12, 1995. Problems and solutions

Baltic Way 995 Västerås (Sweden), November, 995 Problems and solutions. Find all triples (x, y, z) of positive integers satisfying the system of equations { x = (y + z) x 6 = y 6 + z 6 + 3(y + z ). Solution.

### MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem

MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem David L. Finn November 30th, 2004 In the next few days, we will introduce some of the basic problems in geometric modelling, and

### Understanding Basic Calculus

Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

### Mathematics on the Soccer Field

Mathematics on the Soccer Field Katie Purdy Abstract: This paper takes the everyday activity of soccer and uncovers the mathematics that can be used to help optimize goal scoring. The four situations that

### Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two

### For Environmental Health Science Students. Engineering Drawing. Wuttet Taffesse, Laikemariam Kassa. Haramaya University

LECTURE NOTES For Environmental Health Science Students Engineering Drawing Wuttet Taffesse, Laikemariam Kassa Haramaya University In collaboration with the Ethiopia Public Health Training Initiative,

### Algebra 2 Year-at-a-Glance Leander ISD 2007-08. 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks

Algebra 2 Year-at-a-Glance Leander ISD 2007-08 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks Essential Unit of Study 6 weeks 3 weeks 3 weeks 6 weeks 3 weeks 3 weeks

### Using the Quadrant. Protractor. Eye Piece. You can measure angles of incline from 0º ( horizontal ) to 90º (vertical ). Ignore measurements >90º.

Using the Quadrant Eye Piece Protractor Handle You can measure angles of incline from 0º ( horizontal ) to 90º (vertical ). Ignore measurements 90º. Plumb Bob ø

### Optical Illusions Essay Angela Wall EMAT 6690

Optical Illusions Essay Angela Wall EMAT 6690! Optical illusions are images that are visually perceived differently than how they actually appear in reality. These images can be very entertaining, but

### THREE DIMENSIONAL GEOMETRY

Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

### Wallingford Public Schools - HIGH SCHOOL COURSE OUTLINE

Wallingford Public Schools - HIGH SCHOOL COURSE OUTLINE Course Title: Computer Aided Drafting & Design Course Number: 7163 Department: Career and Technical Education Grade(s): 9-12 Level(s): Academic Credit:

### H.Calculating Normal Vectors

Appendix H H.Calculating Normal Vectors This appendix describes how to calculate normal vectors for surfaces. You need to define normals to use the OpenGL lighting facility, which is described in Chapter

### MATH 21. College Algebra 1 Lecture Notes

MATH 21 College Algebra 1 Lecture Notes MATH 21 3.6 Factoring Review College Algebra 1 Factoring and Foiling 1. (a + b) 2 = a 2 + 2ab + b 2. 2. (a b) 2 = a 2 2ab + b 2. 3. (a + b)(a b) = a 2 b 2. 4. (a

### Tennessee Mathematics Standards 2009-2010 Implementation. Grade Six Mathematics. Standard 1 Mathematical Processes

Tennessee Mathematics Standards 2009-2010 Implementation Grade Six Mathematics Standard 1 Mathematical Processes GLE 0606.1.1 Use mathematical language, symbols, and definitions while developing mathematical

### 12-1 Representations of Three-Dimensional Figures

Connect the dots on the isometric dot paper to represent the edges of the solid. Shade the tops of 12-1 Representations of Three-Dimensional Figures Use isometric dot paper to sketch each prism. 1. triangular

### Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

### A. The answer as per this document is No, it cannot exist keeping all distances rational.

Rational Distance Conor.williams@gmail.com www.unsolvedproblems.org: Q. Given a unit square, can you find any point in the same plane, either inside or outside the square, that is a rational distance from

### The Australian Curriculum Mathematics

The Australian Curriculum Mathematics Mathematics ACARA The Australian Curriculum Number Algebra Number place value Fractions decimals Real numbers Foundation Year Year 1 Year 2 Year 3 Year 4 Year 5 Year

### Solutions for Review Problems

olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

### Exhibit 7.5: Graph of Total Costs vs. Quantity Produced and Total Revenue vs. Quantity Sold

244 13. 7.5 Graphical Approach to CVP Analysis (Break-Even Chart) A break-even chart is a graphical representation of the following on the same axes: 1. Fixed costs 2. Total costs at various levels of

### Mathematics Placement Examination (MPE)

Practice Problems for Mathematics Placement Eamination (MPE) Revised August, 04 When you come to New Meico State University, you may be asked to take the Mathematics Placement Eamination (MPE) Your inital

### Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155

Chapter Test Bank 55 Test Form A Chapter Name Class Date Section. Find a unit vector in the direction of v if v is the vector from P,, 3 to Q,, 0. (a) 3i 3j 3k (b) i j k 3 i 3 j 3 k 3 i 3 j 3 k. Calculate

### Mathematics 31 Pre-calculus and Limits

Mathematics 31 Pre-calculus and Limits Overview After completing this section, students will be epected to have acquired reliability and fluency in the algebraic skills of factoring, operations with radicals

### Review Sheet for Test 1

Review Sheet for Test 1 Math 261-00 2 6 2004 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And

### 2.3 WINDOW-TO-VIEWPORT COORDINATE TRANSFORMATION

2.3 WINDOW-TO-VIEWPORT COORDINATE TRANSFORMATION A world-coordinate area selected for display is called a window. An area on a display device to which a window is mapped is called a viewport. The window

### On the Arc Length of Parametric Cubic Curves

Journal for Geometry and Graphics Volume 3 (1999), No. 1, 1 15 On the Arc Length of Parametric Cubic Curves Zsolt Bancsik, Imre Juhász Department of Descriptive Geometry, University of Miskolc, H-3515

CHALLENGE PROBLEMS: CHALLENGE PROBLEMS 1 CHAPTER A Click here for answers S Click here for solutions A 1 Find points P and Q on the parabola 1 so that the triangle ABC formed b the -ais and the tangent

### Classroom Tips and Techniques: The Student Precalculus Package - Commands and Tutors. Content of the Precalculus Subpackage

Classroom Tips and Techniques: The Student Precalculus Package - Commands and Tutors Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft This article provides a systematic exposition

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

### Solutions to Exercises, Section 5.1

Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle

### Exam 1 Sample Question SOLUTIONS. y = 2x

Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

### NEW MEXICO Grade 6 MATHEMATICS STANDARDS

PROCESS STANDARDS To help New Mexico students achieve the Content Standards enumerated below, teachers are encouraged to base instruction on the following Process Standards: Problem Solving Build new mathematical

### Objectives After completing this section, you should be able to:

Chapter 5 Section 1 Lesson Angle Measure Objectives After completing this section, you should be able to: Use the most common conventions to position and measure angles on the plane. Demonstrate an understanding

### Section 9.5: Equations of Lines and Planes

Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that

### Midterm 2 Review Problems (the first 7 pages) Math 123-5116 Intermediate Algebra Online Spring 2013

Midterm Review Problems (the first 7 pages) Math 1-5116 Intermediate Algebra Online Spring 01 Please note that these review problems are due on the day of the midterm, Friday, April 1, 01 at 6 p.m. in

### Section 4: The Basics of Satellite Orbits

Section 4: The Basics of Satellite Orbits MOTION IN SPACE VS. MOTION IN THE ATMOSPHERE The motion of objects in the atmosphere differs in three important ways from the motion of objects in space. First,

### The Math in Laser Light Math

The Math in Laser Light Math When graphed, many mathematical curves are eautiful to view. These curves are usually rought into graphic form y incorporating such devices as a plotter, printer, video screen,

### a. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F

FINAL REVIEW WORKSHEET COLLEGE ALGEBRA Chapter 1. 1. Given the following equations, which are functions? (A) y 2 = 1 x 2 (B) y = 9 (C) y = x 3 5x (D) 5x + 2y = 10 (E) y = ± 1 2x (F) y = 3 x + 5 a. all

### CS 4204 Computer Graphics

CS 4204 Computer Graphics 3D views and projection Adapted from notes by Yong Cao 1 Overview of 3D rendering Modeling: *Define object in local coordinates *Place object in world coordinates (modeling transformation)