Power functions: f(x) = x n, n is a natural number The graphs of some power functions are given below. n even n odd


 Brianne Barker
 1 years ago
 Views:
Transcription
1 5.1 Polynomial Functions A polynomial unctions is a unction o the orm = a n n + a n1 n a 1 + a 0 Eample: = The domain o a polynomial unction is the set o all real numbers. The intercepts are the solutions o the equation a n n + a n1 n a 1 + a 0 = 0 The yintercept is y = 0 = a 0. The graph o a polynomial unction does not have holes or gaps we say that a polynomial unction is continuous and it does not have sharp corners or cusps we say it is smooth Power unctions: = n, n is a natural number The graphs o some power unctions are given below n even n odd Notice that when n is even, a power unction y = n behaves like a parabola graph is symmetric about the yais and contains points 1,1, 0,0, 1,1. When n is odd, a power unction y = n, n > 1 has the graph similar to the cube unction symmetric about the origin, contains the points 1,1, 0,0, 1,1. Power unction = a n, a 0 The graph o = a n is obtained rom the graph o y = n by stretching by a actor o a, i a is positive, and stretching by the actor o a and relecting about the ais, i a is negative. n even n odd
2 Zeros o a polynomial unction I r is such a number that r = 0, then r is called a zero o the unction. I r is a zero o a polynomial unction, then we have the ollowing: i r = 0 ii r, 0 is an intercept o iii r is a actor o, that is = rq q is the quotient in the division r We say that r is a zero o multiplicity n, i n is the largest power, such that = r n q Eample: Let = Note that 1 = = = 0. Thereore, r = 1 is a zero o. This also means, that 1,0 is an intercept and that 1 is a actor o, that is, when is divided by 1 the remainder is 0. To ind the other actor, q, we perorm the division Thereore, = = What is the multiplicity o that zero? Since 1 is a actor o, then the multiplicity o r = 1 is at least 1. I 1 had the multiplicity two, then would have 1 as a actor. Which means that the quotient q above, q = , would have 1 as a actor. I 1 were a actor o q, then 1 would be a zero o q. But q1 = = 3 0. This means that 1 is not a actor o q and consequently, 1 is not a actor o. Hence the multiplicity o 1 is one. Eample: Find all zeros o unction = and determine their multiplicity To ind zeros, solve the equation = = 03 = 0 or + = 0 or +3= 0 or  5 = 0 So the zeros are : 3, , 3, 5 To ind the multiplicities: i actor the polynomial completely; use eponents to indicate multiple actors ii The multiplicity o a zero r is the eponent o the actor r that appears in the product = zeros multiplicity 1 1
3 Suppose r is the zero o a polynomial unction. Remember that r,0 is the intercepts then I r is a zero o even multiplicity, then the graph o will touch the ais at the intercept r, 0 as shown below. or I r is a zero o odd multiplicity, then the graph o will cross the ais at the intercept r,0 as shown below. Multiplicity one Multiplicity larger than 1 odd or or One o the theorems o algebra says that every polynomial can be actored in such a way that the only actors are : a a number the leading coeicient b r n, where r is a zero with multiplicity n c +b +c m, where + b + c is prime
4 Remark: This theorem says that such actorization is possible, but it does not say how to obtain such actorization. End behavior o a polynomial unction When is large is large positive or large negative, then the graph o = a n n + a n1 n a 1 + a 0 behaves like the graph o y = a n n, where a n is the leading coeicient and n is the degree o. n odd a n positive a n negative n even a n positive a n negative Eample: Determine the degree and the leading coeicient o the polynomial unction = Give the equation o the power unction that the unction behaves like or with large absolute value. = This polynomial is already actored. The leading coeicient is 3. The degree can be obtained by adding the highest eponents o rom each actor actor degree Degree = = 9 Thereore, or large, behaves like y = 3 9.
5 Sketching the graph o a polynomial unction I use transormations, when possible II I the transormations cannot be perormed, use the inormation above to sketch the graph Eample: Graph = We can graph this unction using transormations The order o transormations is as ollows 1 graph basic unction y = 5 Shit the graph one unit to the right to obtain y = Stretch the graph by a actor o, to obtain y = 1 5 Shit the graph up by 3 units to obtain y = Eample: Graph = Transormations cannot be used i Determine the zeros, i any, o, their multiplicity and the behavior o graph near each zero = zeros 1  multiplicity 3 behavior o graph touches ais at 1 ii Determine the end behavior o Crosses ais at  like a cubic unction We need the leading coeicient and the degree o = Leading coeicient =
6 Degree: actor degree 0 3 Degree o = 0++3 = 5 behaves as y = 5 or large iii Use the inormation rom i and ii to draw the graph. The graph will start in the third quadrant green piece. It will continue to the irst zero  at which it will cross the ais like a cubic unction red piece. The graph will increase or a while, but then it will have to turn to reach the second zero 1, at which it will touch the ais red piece. Since there are no more zeros, the graph will continue, eventually to reach green piece that depicts its behavior or the large positive. Eample: Graph = +1+ Note that + 1 is always positive, so can be zero only when = 0 or =  zeros 0  multiplicity behavior o graph touches ais at 1 Touches ais at  End behavior: Leading coeicient = 1 actor degree
7 Degree o = + + = 6 and behaves like y = 6 or large, that is, it looks as below The graph o the unction is below Remarks:  We don t have enough inormation to know at what points eactly the graph will change the direction these points are called turning points. You can learn this in Calculus. But, we know that there are at most n1 turning points n is the degree o the polynomial  Though we know how the graph o a polynomial unction behaves or large positive and negative values and close to its zeros, we need Calculus to determine its behavior in between. In this course however, we ll assume that nothing etraordinary takes place.
8 5. Properties o Rational unctions A rational unction is a unction o the orm n n1 polynomial p an an 1 a1 a0 k k1 polynomial q bk bk 1 b1 b0 Eample The domain o a rational unction is the set o all real numbers ecept those, or which q = 0 To ind the domain: i solve q = 0 ii Write D = { q 0} 3 5 Eample: Find the domain o 1 i Solve: denominator = ii D = { 5 } =, 5 5, 5 5, A rational unction oten has asymptotes: vertical and/or horizontal/oblique. Inormally speaking, an asymptote is a straight line vertical, horizontal or slanted toward which the graph comes near. 5 Vertical and horizontal asymptotes vertical and oblique asymptotes vertical and horizontal asymptotes How to ind asymptotes Vertical: 1. Reduce to the lowest terms: i actor completely the numerator and the denominator; ii cancel common actors. Solve the equation: denominator = 0 3. I = r is a solution ound in, then the line = r is a vertical asymptote Horizontal: a i the degree o the numerator < the degree o the denominator, then the line y = 0 is the horizontal asymptote
9 a b i the degree o the numerator = the degree o the denominator, then the line y = b the horizontal asymptote n k is c i the degree o the numerator > the degree o the denominator, then the graph does not have a horizontal asymptote, however, i Oblique: d the degree o the numerator = 1 + the degree o the denominator, then the line y = quotient obtained by dividing the numerator by the denominator is an obliqueslanted asymptote. Remarks: 1. A rational unction can have only one horizontal/oblique asymptote, but many vertical asymptotes.. I a rational unction has a horizontal asymptote, then it does not have an oblique one. 3. The graph o a rational unction can cross a horizontal/oblique asymptote, but does not cross a vertical asymptote. Horizontal/oblique asymptotes describe the behavior o unction or with large absolute value; vertical asymptotes describe the behavior o unction near a point Eample: Find the asymptotes or the ollowing unctions 3 5 a 6 Vertical asymptote: 1 is in lowest terms 6 = 0 = 6 = 3 3 vertical asymptote: = 3 Horizontal/oblique asymptote: 3 degree o numerator 1 = degree o the denominator1, y is the horizontal asymptote 5 1 b Vertical asymptote: is in lowest terms numerator can t be actored = = 0 = 0 or  = 0 = 0 or = 3 vertical asymptotes : = 0, = Horizontal/oblique asymptote:
10 degree o numerator < degree o the denominator3, y = 0 is the horizontal asymptote c Vertical asymptote: 1 is in lowest terms the denominator cannot be actored + = 0 =  not possible no solution 3 vertical asymptotes : none Horizontal/oblique asymptote: degree o numerator 5 > degree o the denominator, there is no horizontal asymptote degree o numerator degree o the denominator, there is no oblique asymptote d Vertical asymptote: 1 is in lowest terms  = 0 = = 3 vertical asymptotes : = , = Horizontal/oblique asymptote: degree o numerator 3 > degree o the denominator, there is no horizontal asymptote degree o numerator 3 = 1 + degree o the denominator, there is an oblique asymptote Oblique asymptote: y = 3 
11 5.3 Sketching the graph o a rational unction 1. Find the domain: i solve q = 0 ii D = { q 0} p q. Find  and yintercepts: yintercept: y = 0  intercepts: numerator = 0 3. Find vertical asymptotes, i any Remark: I = r is ecluded rom the domain and = r is not a vertical asymptote, then the graph o will pass through the point r, reduced r but the point itsel will not be included. We put an open circle around that point The graph o has a hole at = r. Find the horizontal/oblique asymptote, i any. 5. Find the points where the graph crosses the horizontal/oblique asymptote y = m +b i solve the equation = m + b 6. Check or symmetries i I  =, then the graph is symmetric about y ais; ii I  = , then the graph is symmetric about the origin Remark: I the graph is symmetric then only graph unction or >0 and use symmetry to graph the corresponding part or <0 7. Make the sign chart or the reduced i plot intercepts and points ecluded rom the domain on the number line; these points divide the number line into a inite number o test intervals ii choose a point in each test interval and compute the value o at the test point iii based on the sign o at the test point, assign the sign to each test interval Remark: When > 0, then the graph o is above the ais. When < 0, then the graph is below the ais 8. Sketch the graph o using 17: i Draw coordinate system and draw all asymptotes using a dashed line ii plot the intercepts, points where the graph crosses the horizontal/oblique asymptote and the points rom the table in step 7. iii join the points with a continuous curve taking into consideration position o the graph relative to the ais step 7 and behavior near asymptotes.
12 Eample: Graph 1 1 Domain: = 0 = =, =  D = { , } y intercept: y = 0 = 1/= 3  intercepts: + 1 = = 0 =  or = 3 3 Vertical asymptotes = 0 = =  vertical asymptotes: = , = Horizontal/oblique asymptotes Degree o numerator = degree o the denominator, y = 1/1= 1 is the horizontal asymptote 5 Intersection with asymptote: = The graph crosses the horizontal asymptote at = 8, that is at the point 8,1 6 Symmetries: is not the same as , so is not even and thereore not symmetric about yais and are not the same so, is not odd and thereore not symmetric about the origin 7
13 15 positive negative positive.5 negative positive 3 1 8
Math Rational Functions
Rational Functions Math 3 Rational Functions A rational function is the algebraic equivalent of a rational number. Recall that a rational number is one that can be epressed as a ratio of integers: p/q.
More informationRational functions are defined for all values of x except those for which the denominator hx ( ) is equal to zero. 1 Function 5 Function
Section 4.6 Rational Functions and Their Graphs Definition Rational Function A rational function is a function of the form that h 0. f g h where g and h are polynomial functions such Objective : Finding
More informationSection 4.4 Rational Functions and Their Graphs
Section 4.4 Rational Functions and Their Graphs p( ) A rational function can be epressed as where p() and q() are q( ) 3 polynomial functions and q() is not equal to 0. For eample, is a 16 rational function.
More informationChapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs
Chapter 4. Polynomial and Rational Functions 4.1 Polynomial Functions and Their Graphs A polynomial function of degree n is a function of the form P = a n n + a n 1 n 1 + + a 2 2 + a 1 + a 0 Where a s
More information9.3 Graphing Functions by Plotting Points, The Domain and Range of Functions
9. Graphing Functions by Plotting Points, The Domain and Range o Functions Now that we have a basic idea o what unctions are and how to deal with them, we would like to start talking about the graph o
More information3.5 Summary of Curve Sketching
3.5 Summary of Curve Sketching Follow these steps to sketch the curve. 1. Domain of f() 2. and y intercepts (a) intercepts occur when f() = 0 (b) yintercept occurs when = 0 3. Symmetry: Is it even or
More informationRational Functions 5.2 & 5.3
Math Precalculus Algebra Name Date Rational Function Rational Functions 5. & 5.3 g( ) A function is a rational function if f ( ), where g( ) and h( ) are polynomials. h( ) Vertical asymptotes occur at
More informationExponential Functions. This information was covered in a previous section of the workbook, but it won t hurt to go over it again.
Eponential Functions This inormation was covered in a previous section o the workbook, but it won t hurt to go over it again. Standard eponential unction = ca + k The c term is a constant that can make
More informationYou are correct. The rational function becomes undefined when the denominator equals zero.
3.4. RATIONAL FUNCTIONS. A rational function is a function of the form where P() and Q() are polynomial functions and Q(). It is important be able identify the domain of rational functions. The domain
More informationNotes on Curve Sketching. B. Intercepts: Find the yintercept (f(0)) and any xintercepts. Skip finding xintercepts if f(x) is very complicated.
Notes on Curve Sketching The following checklist is a guide to sketching the curve y = f(). A. Domain: Find the domain of f. B. Intercepts: Find the yintercept (f(0)) and any intercepts. Skip finding
More informationSection P.9 Notes Page 1 P.9 Linear Inequalities and Absolute Value Inequalities
Section P.9 Notes Page P.9 Linear Inequalities and Absolute Value Inequalities Sometimes the answer to certain math problems is not just a single answer. Sometimes a range of answers might be the answer.
More informationRational Functions ( )
Rational Functions A rational function is a function of the form r P Q where P and Q are polynomials. We assume that P() and Q() have no factors in common, and Q() is not the zero polynomial. The domain
More information3.3. GRAPHS OF RATIONAL FUNCTIONS. Some of those sketching aids include: New sketching aids include:
3.3. GRAPHS OF RATIONAL FUNCTIONS In a previous lesson you learned to sketch graphs by understanding what controls their behavior. Some of those sketching aids include: yintercept (if any) xintercept(s)
More informationAPPLICATIONS OF DIFFERENTIATION
4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION So far, we have been concerned with some particular aspects of curve sketching: Domain, range, and symmetry (Chapter 1) Limits, continuity,
More informationChapter 8. Examining Rational Functions. You see rational functions written, in general, in the form of a fraction: , where f and g are polynomials
Chapter 8 Being Respectful of Rational Functions In This Chapter Investigating domains and related vertical asymptotes Looking at limits and horizontal asymptotes Removing discontinuities of rational functions
More informationPolynomial and Rational Functions
Chapter 5 Polnomial and Rational Functions Section 5.1 Polnomial Functions Section summaries The general form of a polnomial function is f() = a n n + a n 1 n 1 + +a 1 + a 0. The degree of f() is the largest
More informationThe degree of the polynomial function is n. We call the term the leading term, and is called the leading coefficient. 0 =
Math 1310 Section 4.1: Polynomial Functions and Their Graphs A polynomial function is a function of the form = + + +...+ + where 0,,,, are real numbers and n is a whole number. The degree of the polynomial
More informationDivision of Polynomials and Slant Asymptotes
Division o Polynomials and Slant Asymptotes Here is more detail about lon run behavior o rational unctions when the deree o the numerator is reater than the deree o the denominator. As the book points
More informationObjectives: To graph exponential functions and to analyze these graphs. None. The number A can be any real constant. ( A R)
CHAPTER 2 LESSON 2 Teacher s Guide Graphing the Eponential Function AW 2.6 MP 2.1 (p. 76) Objectives: To graph eponential functions and to analyze these graphs. Definition An eponential function is a function
More information55x 3 + 23, f(x) = x2 3. x x 2x + 3 = lim (1 x 4 )/x x (2x + 3)/x = lim
Slant Asymptotes If lim x [f(x) (ax + b)] = 0 or lim x [f(x) (ax + b)] = 0, then the line y = ax + b is a slant asymptote to the graph y = f(x). If lim x f(x) (ax + b) = 0, this means that the graph of
More informationMA107 Precalculus Algebra Exam 2 Review Solutions
MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write
More information6.1 Exponential and Logarithmic Functions
Section 6.1 Eponential and Logarithmic Functions 1 6.1 Eponential and Logarithmic Functions We start our review o eponential and logarithmic unctions with the deinition o an eponential unction. Deinition
More informationPrecalculus A 2016 Graphs of Rational Functions
37 Precalculus A 2016 Graphs of Rational Functions Determine the equations of the vertical and horizontal asymptotes, if any, of each function. Graph each function with the asymptotes labeled. 1. ƒ(x)
More informationSymmetry. A graph is symmetric with respect to the yaxis if, for every point (x, y) on the graph, the point (x, y) is also on the graph.
Symmetry When we graphed y =, y = 2, y =, y = 3 3, y =, and y =, we mentioned some of the features of these members of the Library of Functions, the building blocks for much of the study of algebraic functions.
More informationPolynomial and Rational Functions
Polynomial and Rational Functions Quadratic Functions Overview of Objectives, students should be able to: 1. Recognize the characteristics of parabolas. 2. Find the intercepts a. x intercepts by solving
More informationFunctions: Piecewise, Even and Odd.
Functions: Piecewise, Even and Odd. MA161/MA1161: Semester 1 Calculus. Prof. Götz Pfeiffer School of Mathematics, Statistics and Applied Mathematics NUI Galway September 2122, 2015 Tutorials, Online Homework.
More informationRational Functions and Their Graphs
Objectives Rational Functions and Their Graphs Section.6 Find domain of rational functions. Use transformations to graph rational functions. Use arrow notation. Identify vertical asymptotes. Identify horizontal
More informationMcMurry University Pretest Practice Exam. 1. Simplify each expression, and eliminate any negative exponent(s).
1. Simplify each expression, and eliminate any negative exponent(s). a. b. c. 2. Simplify the expression. Assume that a and b denote any real numbers. (Assume that a denotes a positive number.) 3. Find
More informationCurve Sketching. MATH 1310 Lecture 26 1 of 14 Ronald Brent 2016 All rights reserved.
Curve Sketching 1. Domain. Intercepts. Symmetry. Asymptotes 5. Intervals of Increase or Decrease 6. Local Maimum and Minimum Values 7. Concavity and Points of Inflection 8. Sketch the curve MATH 110 Lecture
More informationDefinition 2.1 The line x = a is a vertical asymptote of the function y = f(x) if y approaches ± as x approaches a from the right or left.
Vertical and Horizontal Asymptotes Definition 2.1 The line x = a is a vertical asymptote of the function y = f(x) if y approaches ± as x approaches a from the right or left. This graph has a vertical asymptote
More informationExponential Functions
Eponential Functions In this chapter we will study the eponential function and its inverse the logarithmic function. These important functions are indispensable in working with problems that involve population
More informationContents. 6 Graph Sketching 87. 6.1 Increasing Functions and Decreasing Functions... 87. 6.2 Intervals Monotonically Increasing or Decreasing...
Contents 6 Graph Sketching 87 6.1 Increasing Functions and Decreasing Functions.......................... 87 6.2 Intervals Monotonically Increasing or Decreasing....................... 88 6.3 Etrema Maima
More informationMSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions
MSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions The goal of this workshop is to familiarize you with similarities and differences in both the graphing and expression of polynomial
More informationLIMITS AND CONTINUITY
LIMITS AND CONTINUITY 1 The concept of it Eample 11 Let f() = 2 4 Eamine the behavior of f() as approaches 2 2 Solution Let us compute some values of f() for close to 2, as in the tables below We see from
More informationPOLYNOMIAL FUNCTIONS
POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a
More informationPolynomial and Rational Functions
Chapter Section.1 Quadratic Functions Polnomial and Rational Functions Objective: In this lesson ou learned how to sketch and analze graphs of quadratic functions. Course Number Instructor Date Important
More informationMTH 3005  Calculus I Week 8: Limits at Infinity and Curve Sketching
MTH 35  Calculus I Week 8: Limits at Infinity and Curve Sketching Adam Gilbert Northeastern University January 2, 24 Objectives. After reviewing these notes the successful student will be prepared to
More informationSection 1.8 Coordinate Geometry
Section 1.8 Coordinate Geometry The Coordinate Plane Just as points on a line can be identified with real numbers to form the coordinate line, points in a plane can be identified with ordered pairs of
More informationMath 2250 Exam #1 Practice Problem Solutions. g(x) = x., h(x) =
Math 50 Eam # Practice Problem Solutions. Find the vertical asymptotes (if any) of the functions g() = + 4, h() = 4. Answer: The only number not in the domain of g is = 0, so the only place where g could
More informationCurve Sketching GUIDELINES FOR SKETCHING A CURVE: A. Domain. B. Intercepts: x and yintercepts.
Curve Sketching GUIDELINES FOR SKETCHING A CURVE: A. Domain. B. Intercepts: x and yintercepts. C. Symmetry: even (f( x) = f(x)) or odd (f( x) = f(x)) function or neither, periodic function. ( ) ( ) D.
More information25 Rational Functions
5 Rational Functions Find the domain of each function and the equations of the vertical or horizontal asymptotes, if any 1 f () = The function is undefined at the real zeros of the denominator b() = 4
More informationGraphing Rational Functions
Graphing Rational Functions A rational function is defined here as a function that is equal to a ratio of two polynomials p(x)/q(x) such that the degree of q(x) is at least 1. Examples: is a rational function
More informationPreCalculus Notes Vertical, Horizontal, and Slant Asymptotes of Rational Functions
PreCalculus Notes Vertical, Horizontal, and Slant Asymptotes of Rational Functions A) Vertical Asymptotes A rational function, in lowest terms, will have vertical asymptotes at the real zeros of the denominator
More informationReview for Calculus Rational Functions, Logarithms & Exponentials
Definition and Domain of Rational Functions A rational function is defined as the quotient of two polynomial functions. F(x) = P(x) / Q(x) The domain of F is the set of all real numbers except those for
More informationMain page. Given f ( x, y) = c we differentiate with respect to x so that
Further Calculus Implicit differentiation Parametric differentiation Related rates of change Small variations and linear approximations Stationary points Curve sketching  asymptotes Curve sketching the
More informationSolutions to SelfTest for Chapter 4 c4sts  p1
Solutions to SelfTest for Chapter 4 c4sts  p1 1. Graph a polynomial function. Label all intercepts and describe the end behavior. a. P(x) = x 4 2x 3 15x 2. (1) Domain = R, of course (since this is a
More informationSection 3.7 Rational Functions
Section 3.7 Rational Functions A rational function is a function of the form where P and Q are polynomials. r(x) = P(x) Q(x) Rational Functions and Asymptotes The domain of a rational function consists
More informationRational Polynomial Functions
Rational Polynomial Functions Rational Polynomial Functions and Their Domains Today we discuss rational polynomial functions. A function f(x) is a rational polynomial function if it is the quotient of
More informationLesson 6: Linear Functions and their Slope
Lesson 6: Linear Functions and their Slope A linear function is represented b a line when graph, and represented in an where the variables have no whole number eponent higher than. Forms of a Linear Equation
More informationMidterm 1. Solutions
Stony Brook University Introduction to Calculus Mathematics Department MAT 13, Fall 01 J. Viro October 17th, 01 Midterm 1. Solutions 1 (6pt). Under each picture state whether it is the graph of a function
More information4.4 Concavity and Curve Sketching
Concavity and Curve Sketching Section Notes Page We can use the second derivative to tell us if a graph is concave up or concave down To see if something is concave down or concave up we need to look at
More informationf is a parabola whose vertex is the point (h,k). The parabola is symmetric with
Math 1014: Precalculus with Transcendentals Ch. 3: Polynomials and Rational Functions Sec. 3.1 Quadratic Functions I. Quadratic Functions A. Definition 1. A quadratic function is a function of the form
More informationPolynomial & Rational Functions
4 Polynomial & Rational Functions 45 Rational Functions A function f is a rational function if there exist polynomial functions p and q, with q not the zero function, such that p(x) q(x) for all x for
More informationM 1310 4.1 Polynomial Functions 1
M 1310 4.1 Polynomial Functions 1 Polynomial Functions and Their Graphs Definition of a Polynomial Function Let n be a nonnegative integer and let a, a,..., a, a, a n n1 2 1 0, be real numbers, with a
More informationf (x) has an absolute minimum value f (c) at the point x = c in its domain if
Definitions  Absolute maximum and minimum values f (x) has an absolute maximum value f (c) at the point x = c in its domain if f (x) f (c) holds for every x in the domain of f (x). f (x) has an absolute
More information2.5 Transformations of Functions
2.5 Transformations of Functions Section 2.5 Notes Page 1 We will first look at the major graphs you should know how to sketch: Square Root Function Absolute Value Function Identity Function Domain: [
More informationLesson 5.4 Exercises, pages
Lesson 5.4 Eercises, pages 8 85 A 4. Evaluate each logarithm. a) log 4 6 b) log 00 000 4 log 0 0 5 5 c) log 6 6 d) log log 6 6 4 4 5. Write each eponential epression as a logarithmic epression. a) 6 64
More information3.4 Limits at Infinity  Asymptotes
3.4 Limits at Infinity  Asymptotes Definition 3.3. If f is a function defined on some interval (a, ), then f(x) = L means that values of f(x) are very close to L (keep getting closer to L) as x. The line
More informationCalculus Card Matching
Card Matching Card Matching A Game of Matching Functions Description Give each group of students a packet of cards. Students work as a group to match the cards, by thinking about their card and what information
More information3.5 Rational Functions and Asymptotes
7_00.qp 98 /7/06 :0 PM Chapter Page 98 Polynomial and Rational Functions. Rational Functions and Asymptotes What you should learn Introduction to Rational Functions 䊏 A rational function can be written
More informationCurve Sketching (I) (x + 3)(x + 1)(x 3) 4. 9. Sketch the grapf of the following polynomial function: f(x) = (x + 3)(x 1)(x 2) 4. (x + 1)(x 0)(x 2) 4
1. Sketch the grapf of the following polynomial function: f. Sketch the grapf of the following polynomial function: f. Sketch the grapf of the following polynomial function: f 4. Sketch the grapf of the
More informationGraphing Quadratic Equations
.4 Graphing Quadratic Equations.4 OBJECTIVE. Graph a quadratic equation b plotting points In Section 6.3 ou learned to graph firstdegree equations. Similar methods will allow ou to graph quadratic equations
More informationTesting Center Student Success Center x x 18 12x I. Factoring and expanding polynomials
Testing Center Student Success Center Accuplacer Study Guide The following sample questions are similar to the format and content of questions on the Accuplacer College Level Math test. Reviewing these
More informationx 2. 4x x 4x 1 x² = 0 x = 0 There is only one xintercept. (There can never be more than one yintercept; do you know why?)
Math Learning Centre Curve Sketching A good graphing calculator can show ou the shape of a graph, but it doesn t alwas give ou all the useful information about a function, such as its critical points and
More informationExponential and Logarithmic Functions
Chapter 6 Eponential and Logarithmic Functions Section summaries Section 6.1 Composite Functions Some functions are constructed in several steps, where each of the individual steps is a function. For eample,
More informationSec36NotesDone.notebook April 19, Sec. 3.6 Rational Functions and their Graphs. A rational function is of the form:
Sec. 3.6 Rational Functions and their Graphs A rational function is of the form: where P(x) and Q(x) are Polynomials The Domain of r(x) is all values of x where Q(x) is not equal to zero. The simplest
More informationClass Notes for MATH 2 Precalculus. Fall Prepared by. Stephanie Sorenson
Class Notes for MATH 2 Precalculus Fall 2012 Prepared by Stephanie Sorenson Table of Contents 1.2 Graphs of Equations... 1 1.4 Functions... 9 1.5 Analyzing Graphs of Functions... 14 1.6 A Library of Parent
More informationCHAPTER 2: POLYNOMIAL AND RATIONAL FUNCTIONS
CHAPTER 2: POLYNOMIAL AND RATIONAL FUNCTIONS 2.01 SECTION 2.1: QUADRATIC FUNCTIONS (AND PARABOLAS) PART A: BASICS If a, b, and c are real numbers, then the graph of f x = ax2 + bx + c is a parabola, provided
More informationName: where Nx ( ) and Dx ( ) are the numerator and
Oblique and Nonlinear Asymptote Activity Name: Prior Learning Reminder: Rational Functions In the past we discussed vertical and horizontal asymptotes of the graph of a rational function of the form m
More informationSection 5.0A Factoring Part 1
Section 5.0A Factoring Part 1 I. Work Together A. Multiply the following binomials into trinomials. (Write the final result in descending order, i.e., a + b + c ). ( 7)( + 5) ( + 7)( + ) ( + 7)( + 5) (
More informationLecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20
Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding
More informationAn inequality is a mathematical statement containing one of the symbols <, >, or.
Further Concepts for Advanced Mathematics  FP1 Unit 3 Graphs & Inequalities Section3c Inequalities Types of Inequality An inequality is a mathematical statement containing one of the symbols , or.
More informationThe degree of a polynomial function is equal to the highest exponent found on the independent variables.
DETAILED SOLUTIONS AND CONCEPTS  POLYNOMIAL FUNCTIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE
More informationPractice Problems for Exam 1 Math 140A, Summer 2014, July 2
Practice Problems for Exam 1 Math 140A, Summer 2014, July 2 Name: INSTRUCTIONS: These problems are for PRACTICE. For the practice exam, you may use your book, consult your classmates, and use any other
More informationA polynomial of degree n is a function of the form. f(x) = 3x 22x 4. Also, identify domain & range.
f(x) = 3x 22x 4. Also, identify domain & range. Identify polynomial functions. Recognize characteristics of graphs of polynomials. Determine end behavior. Use factoring to find zeros of polynomials.
More informationAnalyzing Polynomial and Rational Functions
Analyzing Polynomial and Rational Functions Raja Almukahhal, (RajaA) Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as
More informationAlgebra II Notes Rational Functions Unit Rational Functions. Math Background
Algebra II Notes Rational Functions Unit 6. 6.6 Rational Functions Math Background Previously, you Simplified linear, quadratic, radical and polynomial functions Performed arithmetic operations with linear,
More informationProcedure for Graphing Polynomial Functions
Procedure for Graphing Polynomial Functions P(x) = a n x n + a n1 x n1 + + a 1 x + a 0 To graph P(x): As an example, we will examine the following polynomial function: P(x) = 2x 3 3x 2 23x + 12 1. Determine
More informationCurving sketching using calculus. Jackie Nicholas
Mathematics Learning Centre Curving sketching using calculus Jackie Nicholas c 2004 University of Sydney Mathematics Learning Centre, University of Sydney 1 1 Curve sketching using calculus 1.1 Some General
More information10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED
CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations
More informationSection 3.2 Polynomial Functions and Their Graphs
Section 3.2 Polynomial Functions and Their Graphs EXAMPLES: P(x) = 3, Q(x) = 4x 7, R(x) = x 2 +x, S(x) = 2x 3 6x 2 10 QUESTION: Which of the following are polynomial functions? (a) f(x) = x 3 +2x+4 (b)
More informationMethods to Solve Quadratic Equations
Methods to Solve Quadratic Equations We have been learning how to factor epressions. Now we will apply factoring to another skill you must learn solving quadratic equations. a b c 0 is a seconddegree
More informationMath 181 Spring 2007 HW 1 Corrected
Math 181 Spring 2007 HW 1 Corrected February 1, 2007 Sec. 1.1 # 2 The graphs of f and g are given (see the graph in the book). (a) State the values of f( 4) and g(3). Find 4 on the xaxis (horizontal axis)
More informationPrompt Students are studying multiplying binomials (factoring and roots) ax + b and cx + d. A student asks What if we divide instead of multiply?
Prompt Students are studying multiplying binomials (factoring and roots) ax + b and cx + d. A student asks What if we divide instead of multiply? Commentary In our foci, we are assuming that we have a
More informationReview of Intermediate Algebra Content
Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6
More informationSection 2.1 Rectangular Coordinate Systems
P a g e 1 Section 2.1 Rectangular Coordinate Systems 1. Pythagorean Theorem In a right triangle, the lengths of the sides are related by the equation where a and b are the lengths of the legs and c is
More informationEquations. #110 Solve for the variable. Inequalities. 1. Solve the inequality: 2 5 7. 2. Solve the inequality: 4 0
College Algebra Review Problems for Final Exam Equations #110 Solve for the variable 1. 2 1 4 = 0 6. 2 8 7 2. 2 5 3 7. = 3. 3 9 4 21 8. 3 6 9 18 4. 6 27 0 9. 1 + log 3 4 5. 10. 19 0 Inequalities 1. Solve
More information4.3 The Graph of a Rational Function
4.3 The Graph of a Rational Function Section 4.3 Notes Page EXAMPLE: Find the intercepts, asyptotes, and graph of + y =. 9 First we will find the intercept by setting the top equal to zero: + = 0 so =
More informationSECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS
SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS Assume f ( x) is a nonconstant polynomial with real coefficients written in standard form. PART A: TECHNIQUES WE HAVE ALREADY SEEN Refer to: Notes 1.31
More informationa. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F
FINAL REVIEW WORKSHEET COLLEGE ALGEBRA Chapter 1. 1. Given the following equations, which are functions? (A) y 2 = 1 x 2 (B) y = 9 (C) y = x 3 5x (D) 5x + 2y = 10 (E) y = ± 1 2x (F) y = 3 x + 5 a. all
More informationGraphing Quadratic Functions
Graphing Quadratic Functions In our consideration of polynomial functions, we first studied linear functions. Now we will consider polynomial functions of order or degree (i.e., the highest power of x
More informationAs evident above, you will need strong factoring skills to find the domain of many rational expressions.
You may write in this packet, but answer all questions on separate sheets of paper. A "rational epression" is a polynomial fraction. In general, what holds true for simple fractions is true for rational
More informationAlgebra 2 Notes AII.7 Functions: Review, Domain/Range. Function: Domain: Range:
Name: Date: Block: Functions: Review What is a.? Relation: Function: Domain: Range: Draw a graph of a : a) relation that is a function b) relation that is NOT a function Function Notation f(x): Names the
More informationCourse Name: Course Code: ALEKS Course: Instructor: Course Dates: Course Content: Textbook: Dates Objective Prerequisite Topics
Course Name: MATH 1204 Fall 2015 Course Code: N/A ALEKS Course: College Algebra Instructor: Master Templates Course Dates: Begin: 08/22/2015 End: 12/19/2015 Course Content: 271 Topics (261 goal + 10 prerequisite)
More informationConcavity and Overview of Curve Sketching. Calculus. Applications of Differentiations (III)
Calculus Applications of Differentiations (III) Outline 1 Concavity and Overview of Curve Sketching Concavity Curve Sketching 2 Outline 1 Concavity and Overview of Curve Sketching Concavity Curve Sketching
More informationSituation: Dividing Linear Expressions
Situation: Dividing Linear Expressions Date last revised: June 4, 203 Michael Ferra, Nicolina Scarpelli, Mary Ellen Graves, and Sydney Roberts Prompt: An Algebra II class has been examining the product
More informationTo Be or Not To Be a Linear Equation: That Is the Question
To Be or Not To Be a Linear Equation: That Is the Question Linear Equation in Two Variables A linear equation in two variables is an equation that can be written in the form A + B C where A and B are not
More informationZero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.
MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called
More informationCHAPTER 4. Test Bank Exercises in. Exercise Set 4.1
Test Bank Exercises in CHAPTER 4 Exercise Set 4.1 1. Graph the quadratic function f(x) = x 2 2x 3. Indicate the vertex, axis of symmetry, minimum 2. Graph the quadratic function f(x) = x 2 2x. Indicate
More informationFunctions and their Graphs
Functions and their Graphs Functions All of the functions you will see in this course will be realvalued functions in a single variable. A function is realvalued if the input and output are real numbers
More information