Quadrilaterals Unit Review


 Rosalind Penelope Douglas
 2 years ago
 Views:
Transcription
1 Name: Class: Date: Quadrilaterals Unit Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. ( points) In which polygon does the sum of the measures of the interior angles equal the sum of the measures of the exterior angles? a. triangle b. hexagon c. octagon d. quadrilateral. ( points) In the diagram below of regular pentagon ABCDE, EB is drawn. What is the measure of AEB? a. 36º b. 54º c. 7º d. 108º 3. ( points) In the diagram below of parallelogram ABCD with diagonals AC and BD, m 1 = 45 and m DCB = 10. What is the measure of? a. 15º b. 30º c. 45º d. 60º 1
2 Name: 4. ( points) In the diagram below, parallelogram ABCD has diagonals AC and BD that intersect at point E. Which expression is not always true? a. DAE BCE b. DEC BEA c. AC DB d. DE EB 5. ( points) In rhombus ABCD, the diagonals AC and BD intersect at E. If AE = 5 and BE = 1, what is the length of AB? a. 7 b. 10 c. 13 d ( points) Lucinda wants to build a square sandbox, but has no way of measuring angles. Explain how she can make sure that the sandbox is square by only measuring length. a. Arrange four equallength sides so the diagonals bisect each other. b. Arrange four equallength sides so the diagonals are equal lengths also. c. Make each diagonal the same length as four equallength sides. d. Not possible; Lucinda has to be able to measure a right angle. 7. ( points) Isosceles trapezoid ABCD has diagonals AC and BD. If AC = 5x + 13 and BD = 11x 5, what is the value of x? a. 8 b c. 3 d. 1
3 Name: 8. ( points) In isosceles trapezoid ABCD, AB CD. If BC = 0, AD = 36, and AB = 17, what is the length of the altitude of the trapezoid? a. 10 b. 1 c. 15 d ( points) A quadrilateral whose diagonals bisect each other and are perpendicular is a a. rhombus b. rectangle c. trapezoid d. parallelogram 10. ( points) Two vertices of a parallelogram are A(, 3) and B(8, 11), and the intersection of the diagonals is X(7, 6). Find the coordinates of the other two vertices. a. (1, 9), (6, 1) Ê 9 b., 9 ˆ Ê, c. (11, 8), (5, 0) Ê 11 d., 11 ˆ Ê, 15, 17 ˆ 17, 19 ˆ Short Answer 11. ( points) Find, in degrees, the measures of both an interior angle and an exterior angle of a regular octagon. Interior Angle: Exterior Angle: 3
4 Name: 1. ( points) The diagram below shows isosceles trapezoid ABCD with AB Ä DC and AD BC. If m BAD = x and m BCD = 3x + 5, find m BAD. Answer: 13. (4 points) Given: Quadrilateral ABCD has vertices A( 5,6), B(6,6), C(8, 3), and D( 3, 3). Prove: Quadrilateral ABCD is a parallelogram but is neither a rhombus nor a rectangle. [The use of the grid below is optional.] 4
5 Quadrilaterals Unit Review Answer Section MULTIPLE CHOICE 1. ANS: D sum of interior s = sum of exterior s Ê (n )180 ˆ (n )180 = n 180 n 180n 360 = 180n 180n n = 70 n = 4 PTS: REF: ge STA: G.G.36 TOP: Interior and Exterior Angles of Polygons. ANS: A (n )180 A = = n (5 )180 5 = 108 AEB = PTS: REF: 0810ge STA: G.G.37 TOP: Interior and Exterior Angles of Polygons 3. ANS: A DCB and ADC are supplementary adjacent angles of a parallelogram = 60. = = 15. PTS: REF: ge STA: G.G.38 TOP: Parallelograms 4. ANS: C PTS: REF: ge STA: G.G.38 TOP: Parallelograms 5. ANS: C = 13 PTS: REF: ge STA: G.G.39 TOP: Special Parallelograms 6. ANS: B PTS: DIF: L3 REF: 64 Special Parallelograms OBJ: 64. Is the Parallelogram a Rhombus or a Rectangle? NAT: NAEP 005 G3f STA: NY G.G.39 NY G.G.41 TOP: 64 Example 3 KEY: square reasoning Theorem 610 Theorem 611 word problem problem solving 7. ANS: C The diagonals of an isosceles trapezoid are congruent. 5x + 3 = 11x 5. = 36 6x = 18 x = 3 PTS: REF: fall0801ge STA: G.G.40 TOP: Trapezoids 1
6 8. ANS: C 36 0 = = 15 PTS: REF: ge STA: G.G.40 TOP: Trapezoids 9. ANS: A PTS: REF: ge STA: G.G.41 TOP: Special Quadrilaterals 10. ANS: A The diagonals of a parallelogram bisect each other. If the vertex opposite A is C, and the vertex opposite B is D, then X is the midpoint of AC and BD. Use the midpoint formula to find points B and D. Step 1 Solve for point C. Step Solve for point D. X = midpoint of AC X = midpoint of BD Ê X = (7,6) = + x, 3 + y ˆ Ê X = (7,6) = 8 + x, 11 + y ˆ 7 = + x, 6 = 3 + y 7 = 8 + x, 6 = 11 + y x = 1, y = 9 x = 6, y = 1 C(1, 9) D(6, 1) A B C D Feedback Correct! Use the midpoint formula and let X be the midpoint. Use the midpoint formula and let X be the midpoint. Use the midpoint formula and let X be the midpoint. PTS: DIF: Advanced REF: 1b3d9ea df9c7d f0dea STA: NY.NYLES.MTH.05.GEO.G.G.38 NY.NYLES.MTH.05.GEO.G.G.66 NY.NYLES.MTH.05.GEO.G.G.69 LOC: MTH.C MTH.C TOP: 63 Conditions for Parallelograms KEY: conditions for parallelogram diagonals bisect DOK: DOK SHORT ANSWER 11. ANS: (8 )180 = = 135 interior = 45 exterior PTS: REF: ge STA: G.G.37 TOP: Interior and Exterior Angles of Polygons
7 1. ANS: 70. 3x x x + x = x + 10 = x = 350 x = 35 x = 70 PTS: REF: 08109ge STA: G.G.40 TOP: Trapezoids 13. ANS: ABÄ CD and ADÄCB because their slopes are equal. ABCD is a parallelogram because opposite side are parallel. AB BC. ABCD is not a rhombus because all sides are not equal. AB BC because their slopes are not opposite reciprocals. ABCD is not a rectangle because ABC is not a right angle. PTS: 4 REF: ge STA: G.G.69 TOP: Quadrilaterals in the Coordinate Plane 3
Geometry Module 4 Unit 2 Practice Exam
Name: Class: Date: ID: A Geometry Module 4 Unit 2 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which diagram shows the most useful positioning
More information1. An isosceles trapezoid does not have perpendicular diagonals, and a rectangle and a rhombus are both parallelograms.
Quadrilaterals  Answers 1. A 2. C 3. A 4. C 5. C 6. B 7. B 8. B 9. B 10. C 11. D 12. B 13. A 14. C 15. D Quadrilaterals  Explanations 1. An isosceles trapezoid does not have perpendicular diagonals,
More informationName: 22K 14A 12T /48 MPM1D Unit 7 Review True/False (4K) Indicate whether the statement is true or false. Show your work
Name: _ 22K 14A 12T /48 MPM1D Unit 7 Review True/False (4K) Indicate whether the statement is true or false. Show your work 1. An equilateral triangle always has three 60 interior angles. 2. A line segment
More information0810ge. Geometry Regents Exam 0810
0810ge 1 In the diagram below, ABC XYZ. 3 In the diagram below, the vertices of DEF are the midpoints of the sides of equilateral triangle ABC, and the perimeter of ABC is 36 cm. Which two statements identify
More informationGeometry. Unit 6. Quadrilaterals. Unit 6
Geometry Quadrilaterals Properties of Polygons Formed by three or more consecutive segments. The segments form the sides of the polygon. Each side intersects two other sides at its endpoints. The intersections
More informationGeometry Regents Review
Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest
More informationSum of the interior angles of a nsided Polygon = (n2) 180
5.1 Interior angles of a polygon Sides 3 4 5 6 n Number of Triangles 1 Sum of interiorangles 180 Sum of the interior angles of a nsided Polygon = (n2) 180 What you need to know: How to use the formula
More informationQuadrilaterals Properties of a parallelogram, a rectangle, a rhombus, a square, and a trapezoid
Quadrilaterals Properties of a parallelogram, a rectangle, a rhombus, a square, and a trapezoid Grade level: 10 Prerequisite knowledge: Students have studied triangle congruences, perpendicular lines,
More informationHonors Packet on. Polygons, Quadrilaterals, and Special Parallelograms
Honors Packet on Polygons, Quadrilaterals, and Special Parallelograms Table of Contents DAY 1: (Ch. 61) SWBAT: Find measures of interior and exterior angles of polygons Pgs: #1 6 in packet HW: Pages 386
More information8.1 Find Angle Measures in Polygons
8.1 Find Angle Measures in Polygons Obj.: To find angle measures in polygons. Key Vocabulary Diagonal  A diagonal of a polygon is a segment that joins two nonconsecutive vertices. Polygon ABCDE has two
More information/27 Intro to Geometry Review
/27 Intro to Geometry Review 1. An acute has a measure of. 2. A right has a measure of. 3. An obtuse has a measure of. 13. Two supplementary angles are in ratio 11:7. Find the measure of each. 14. In the
More informationhttp://www.castlelearning.com/review/teacher/assignmentprinting.aspx 5. 2 6. 2 1. 10 3. 70 2. 55 4. 180 7. 2 8. 4
of 9 1/28/2013 8:32 PM Teacher: Mr. Sime Name: 2 What is the slope of the graph of the equation y = 2x? 5. 2 If the ratio of the measures of corresponding sides of two similar triangles is 4:9, then the
More informationUnit 8. Quadrilaterals. Academic Geometry Spring Name Teacher Period
Unit 8 Quadrilaterals Academic Geometry Spring 2014 Name Teacher Period 1 2 3 Unit 8 at a glance Quadrilaterals This unit focuses on revisiting prior knowledge of polygons and extends to formulate, test,
More informationUnit 3: Triangle Bisectors and Quadrilaterals
Unit 3: Triangle Bisectors and Quadrilaterals Unit Objectives Identify triangle bisectors Compare measurements of a triangle Utilize the triangle inequality theorem Classify Polygons Apply the properties
More information7.3 & 7.4 Polygon Formulas completed.notebook January 10, 2014
Chapter 7 Polygons Polygon 1. Closed Figure # of Sides Polygon Name 3 Triangle 4 Quadrilateral 5 Pentagon 6 Hexagon 2. Straight sides/edges 7 Heptagon 8 Octagon 9 Nonagon 10 Decagon 12 Dodecagon 15 Pentadecagon
More informationA convex polygon is a polygon such that no line containing a side of the polygon will contain a point in the interior of the polygon.
hapter 7 Polygons A polygon can be described by two conditions: 1. No two segments with a common endpoint are collinear. 2. Each segment intersects exactly two other segments, but only on the endpoints.
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, August 18, 2010 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of
More informationPROPERTIES OF TRIANGLES AND QUADRILATERALS
Mathematics Revision Guides Properties of Triangles, Quadrilaterals and Polygons Page 1 of 21 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier PROPERTIES OF TRIANGLES AND QUADRILATERALS
More informationCHAPTER 6. Polygons, Quadrilaterals, and Special Parallelograms
CHAPTER 6 Polygons, Quadrilaterals, and Special Parallelograms Table of Contents DAY 1: (Ch. 61) SWBAT: Find measures of interior and exterior angles of polygons Pgs: 17 HW: Pgs: 810 DAY 2: (62) Pgs:
More informationPOLYGONS
POLYGONS 8.1.1 8.1.5 After studying triangles and quadrilaterals, students now extend their study to all polygons. A polygon is a closed, twodimensional figure made of three or more nonintersecting straight
More informationAlgebra III. Lesson 33. Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms  Trapezoids
Algebra III Lesson 33 Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms  Trapezoids Quadrilaterals What is a quadrilateral? Quad means? 4 Lateral means?
More informationQuadrilaterals GETTING READY FOR INSTRUCTION
Quadrilaterals / Mathematics Unit: 11 Lesson: 01 Duration: 7 days Lesson Synopsis: In this lesson students explore properties of quadrilaterals in a variety of ways including concrete modeling, patty paper
More information**The Ruler Postulate guarantees that you can measure any segment. **The Protractor Postulate guarantees that you can measure any angle.
Geometry Week 7 Sec 4.2 to 4.5 section 4.2 **The Ruler Postulate guarantees that you can measure any segment. **The Protractor Postulate guarantees that you can measure any angle. Protractor Postulate:
More information39 Symmetry of Plane Figures
39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that
More information11.3 Curves, Polygons and Symmetry
11.3 Curves, Polygons and Symmetry Polygons Simple Definition A shape is simple if it doesn t cross itself, except maybe at the endpoints. Closed Definition A shape is closed if the endpoints meet. Polygon
More informationSOLVED PROBLEMS REVIEW COORDINATE GEOMETRY. 2.1 Use the slopes, distances, line equations to verify your guesses
CHAPTER SOLVED PROBLEMS REVIEW COORDINATE GEOMETRY For the review sessions, I will try to post some of the solved homework since I find that at this age both taking notes and proofs are still a burgeoning
More informationparallel lines perpendicular lines intersecting lines vertices lines that stay same distance from each other forever and never intersect
parallel lines lines that stay same distance from each other forever and never intersect perpendicular lines lines that cross at a point and form 90 angles intersecting lines vertices lines that cross
More informationIntermediate Math Circles October 10, 2012 Geometry I: Angles
Intermediate Math Circles October 10, 2012 Geometry I: Angles Over the next four weeks, we will look at several geometry topics. Some of the topics may be familiar to you while others, for most of you,
More informationThe angle sum property of triangles can help determine the sum of the measures of interior angles of other polygons.
Interior Angles of Polygons The angle sum property of triangles can help determine the sum of the measures of interior angles of other polygons. The sum of the measures of the interior angles of a triangle
More informationPolygons are figures created from segments that do not intersect at any points other than their endpoints.
Unit #5 Lesson #1: Polygons and Their Angles. Polygons are figures created from segments that do not intersect at any points other than their endpoints. A polygon is convex if all of the interior angles
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
More informationGeometry EOC Practice Test #2
Class: Date: Geometry EOC Practice Test #2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Rebecca is loading medical supply boxes into a crate. Each supply
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2009 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2009 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your
More informationDEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.
DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent
More informationGeometry 81 Angles of Polygons
. Sum of Measures of Interior ngles Geometry 81 ngles of Polygons 1. Interior angles  The sum of the measures of the angles of each polygon can be found by adding the measures of the angles of a triangle.
More informationThe Parallelogram REMEMBER A parallelogram is a quadrilateral with opposite sides parallel. It has many special properties.
ame: Date: The Parallelogram REMEMBER A parallelogram is a quadrilateral with opposite sides parallel. It has many special properties. If you are given parallelogram ABCD then: Property Meaning (1) opposite
More informationParallelogram Bisectors Geometry Final Part B Problem 7
Parallelogram Bisectors Geometry Final Part B Problem 7 By: Douglas A. Ruby Date: 11/10/2002 Class: Geometry Grades: 11/12 Problem 7: When the bisectors of two consecutive angles of a parallelogram intersect
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, June 20, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name
More information4.3 Congruent Triangles Quiz
Name: Class: Date: ID: A 4.3 Congruent Triangles Quiz Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Given: ABC MNO Identify all pairs of congruent corresponding
More informationGEOMETRY 101* EVERYTHING YOU NEED TO KNOW ABOUT GEOMETRY TO PASS THE GHSGT!
GEOMETRY 101* EVERYTHING YOU NEED TO KNOW ABOUT GEOMETRY TO PASS THE GHSGT! FINDING THE DISTANCE BETWEEN TWO POINTS DISTANCE FORMULA (x₂x₁)²+(y₂y₁)² Find the distance between the points ( 3,2) and
More informationChapters 4 and 5 Notes: Quadrilaterals and Similar Triangles
Chapters 4 and 5 Notes: Quadrilaterals and Similar Triangles IMPORTANT TERMS AND DEFINITIONS parallelogram rectangle square rhombus A quadrilateral is a polygon that has four sides. A parallelogram is
More informationWinter 2016 Math 213 Final Exam. Points Possible. Subtotal 100. Total 100
Winter 2016 Math 213 Final Exam Name Instructions: Show ALL work. Simplify wherever possible. Clearly indicate your final answer. Problem Number Points Possible Score 1 25 2 25 3 25 4 25 Subtotal 100 Extra
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications
More informationLEVEL G, SKILL 1. Answers Be sure to show all work.. Leave answers in terms of ϖ where applicable.
Name LEVEL G, SKILL 1 Class Be sure to show all work.. Leave answers in terms of ϖ where applicable. 1. What is the area of a triangle with a base of 4 cm and a height of 6 cm? 2. What is the sum of the
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, 2012 8:30 to 11:30 a.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 16, 2012 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your
More informationTarget To know the properties of a rectangle
Target To know the properties of a rectangle (1) A rectangle is a 3D shape. (2) A rectangle is the same as an oblong. (3) A rectangle is a quadrilateral. (4) Rectangles have four equal sides. (5) Rectangles
More informationYear 10 Term 1 Homework
Yimin Math Centre Year 10 Term 1 Homework Student Name: Grade: Date: Score: Table of contents 10 Year 10 Term 1 Week 10 Homework 1 10.1 Deductive geometry.................................... 1 10.1.1 Basic
More informationA. 3y = 2x + 1. y = x + 3. y = x  3. D. 2y = 3x + 3
Name: Geometry Regents Prep Spring 2010 Assignment 1. Which is an equation of the line that passes through the point (1, 4) and has a slope of 3? A. y = 3x + 4 B. y = x + 4 C. y = 3x  1 D. y = 3x + 1
More informationGeometry EOC Practice Test #3
Class: Date: Geometry EOC Practice Test #3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which regular polyhedron has 12 petagonal faces? a. dodecahedron
More information(a) 5 square units. (b) 12 square units. (c) 5 3 square units. 3 square units. (d) 6. (e) 16 square units
1. Find the area of parallelogram ACD shown below if the measures of segments A, C, and DE are 6 units, 2 units, and 1 unit respectively and AED is a right angle. (a) 5 square units (b) 12 square units
More information3. If AC = 12, CD = 9 and BE = 3, find the area of trapezoid BCDE. (Mathcounts Handbooks)
EXERCISES: Triangles 1 1. The perimeter of an equilateral triangle is units. How many units are in the length 27 of one side? (Mathcounts Competitions) 2. In the figure shown, AC = 4, CE = 5, DE = 3, and
More informationBASIC GEOMETRY GLOSSARY
BASIC GEOMETRY GLOSSARY Acute angle An angle that measures between 0 and 90. Examples: Acute triangle A triangle in which each angle is an acute angle. Adjacent angles Two angles next to each other that
More informationDefinitions, Postulates and Theorems
Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven
More informationLesson 28: Properties of Parallelograms
Student Outcomes Students complete proofs that incorporate properties of parallelograms. Lesson Notes Throughout this module, we have seen the theme of building new facts with the use of established ones.
More informationGeometry Handout 2 ~ Page 1
1. Given: a b, b c a c Guidance: Draw a line which intersects with all three lines. 2. Given: a b, c a a. c b b. Given: d b d c 3. Given: a c, b d a. α = β b. Given: e and f bisect angles α and β respectively.
More informationSituation: Proving Quadrilaterals in the Coordinate Plane
Situation: Proving Quadrilaterals in the Coordinate Plane 1 Prepared at the University of Georgia EMAT 6500 Date Last Revised: 07/31/013 Michael Ferra Prompt A teacher in a high school Coordinate Algebra
More informationQuadrilateral Geometry. Varignon s Theorem I. Proof 10/21/2011 S C. MA 341 Topics in Geometry Lecture 19
Quadrilateral Geometry MA 341 Topics in Geometry Lecture 19 Varignon s Theorem I The quadrilateral formed by joining the midpoints of consecutive sides of any quadrilateral is a parallelogram. PQRS is
More informationABC is the triangle with vertices at points A, B and C
Euclidean Geometry Review This is a brief review of Plane Euclidean Geometry  symbols, definitions, and theorems. Part I: The following are symbols commonly used in geometry: AB is the segment from the
More information1. A person has 78 feet of fencing to make a rectangular garden. What dimensions will use all the fencing with the greatest area?
1. A person has 78 feet of fencing to make a rectangular garden. What dimensions will use all the fencing with the greatest area? (a) 20 ft x 19 ft (b) 21 ft x 18 ft (c) 22 ft x 17 ft 2. Which conditional
More informationBlue Pelican Geometry Theorem Proofs
Blue Pelican Geometry Theorem Proofs Copyright 2013 by Charles E. Cook; Refugio, Tx (All rights reserved) Table of contents Geometry Theorem Proofs The theorems listed here are but a few of the total in
More informationGeometry Sample Problems
Geometry Sample Problems Sample Proofs Below are examples of some typical proofs covered in Jesuit Geometry classes. Shown first are blank proofs that can be used as sample problems, with the solutions
More information65 Rhombi and Squares. ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure.
ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure. 1. If, find. A rhombus is a parallelogram with all four sides congruent. So, Then, is an isosceles triangle. Therefore, If a parallelogram
More informationM 1312 Section Trapezoids
M 1312 Section 4.4 1 Trapezoids Definition: trapezoid is a quadrilateral with exactly two parallel sides. Parts of a trapezoid: Base Leg Leg Leg Base Base Base Leg Isosceles Trapezoid: Every trapezoid
More informationMath 531, Exam 1 Information.
Math 531, Exam 1 Information. 9/21/11, LC 310, 9:059:55. Exam 1 will be based on: Sections 1A  1F. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/531fa11/531.html)
More informationMost popular response to
Class #33 Most popular response to What did the students want to prove? The angle bisectors of a square meet at a point. A square is a convex quadrilateral in which all sides are congruent and all angles
More informationYou can use the postulates below to prove several theorems.
Using Area Formulas You can use the postulates below to prove several theorems. AREA POSTULATES Postulate Area of a Square Postulate The area of a square is the square of the length of its side, or s.
More informationUNCORRECTED PROOF. Unit objectives. Website links Opener Online angle puzzles 2.5 Geometry resources, including interactive explanations
21.1 Sequences Get in line Unit objectives Understand a proof that the angle sum of a triangle is 180 and of a quadrilateral is 360 ; and the exterior angle of a triangle is equal to the sum of the two
More information1 of 69 Boardworks Ltd 2004
1 of 69 2 of 69 Intersecting lines 3 of 69 Vertically opposite angles When two lines intersect, two pairs of vertically opposite angles are formed. a d b c a = c and b = d Vertically opposite angles are
More informationPage How many sides does an octagon have? a) 4 b) 5 c) 6 d) 8 e) A regular hexagon has lines of symmetry. a) 2 b) 3 c) 4 d) 5 e) 6 1 9
Acc. Geometery Name Polygon Review Per/Sec. Date Determine whether each of the following statements is always, sometimes, or never true. 1. A regular polygon is convex. 2. Two sides of a polygon are noncollinear.
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, June 19, :15 a.m. to 12:15 p.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, June 19, 2013 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
More informationGeo  CH6 Practice Test
Geo  H6 Practice Test Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Find the measure of each exterior angle of a regular decagon. a. 45 c. 18 b. 22.5
More informationLine. A straight path that continues forever in both directions.
Geometry Vocabulary Line A straight path that continues forever in both directions. Endpoint A point that STOPS a line from continuing forever, it is a point at the end of a line segment or ray. Ray A
More informationChapter 11 Area of Quadrilateral
75 Chapter 11 11.1 Quadrilateral A plane figure bounded by four sides is known as a quadrilateral. The straight line joining the opposite corners is called its diagonal. The diagonal divides the quadrilateral
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, June 17, 2010 1:15 to 4:15 p.m., only Student Name: School Name: Print your name and the name of your
More information5.1 Midsegment Theorem and Coordinate Proof
5.1 Midsegment Theorem and Coordinate Proof Obj.: Use properties of midsegments and write coordinate proofs. Key Vocabulary Midsegment of a triangle  A midsegment of a triangle is a segment that connects
More informationAngles that are between parallel lines, but on opposite sides of a transversal.
GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,
More information2. If C is the midpoint of AB and B is the midpoint of AE, can you say that the measure of AC is 1/4 the measure of AE?
MATH 206  Midterm Exam 2 Practice Exam Solutions 1. Show two rays in the same plane that intersect at more than one point. Rays AB and BA intersect at all points from A to B. 2. If C is the midpoint of
More information3 rd Six Weeks
Geometry 3 rd Six Weeks 014015 MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY Nov 9 10 11 1 13 61 Angle Measures in Polygons Class: Wksht #1 6 Properties of Parallelograms Class: Wksht # 63 Proving Parallelograms
More informationTopics Covered on Geometry Placement Exam
Topics Covered on Geometry Placement Exam  Use segments and congruence  Use midpoint and distance formulas  Measure and classify angles  Describe angle pair relationships  Use parallel lines and transversals
More informationConjectures. Chapter 2. Chapter 3
Conjectures Chapter 2 C1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C2 Vertical Angles Conjecture If two angles are vertical
More informationFinal Review Problems Geometry AC Name
Final Review Problems Geometry Name SI GEOMETRY N TRINGLES 1. The measure of the angles of a triangle are x, 2x+6 and 3x6. Find the measure of the angles. State the theorem(s) that support your equation.
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2015 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2015 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
More information65 Rhombi and Squares. ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure.
ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure. 3. PROOF Write a twocolumn proof to prove that if ABCD is a rhombus with diagonal. 1. If, find. A rhombus is a parallelogram with all
More information63 Tests for Parallelograms. Determine whether each quadrilateral is a parallelogram. Justify your answer.
1. Determine whether each quadrilateral is a Justify your answer. 3. KITES Charmaine is building the kite shown below. She wants to be sure that the string around her frame forms a parallelogram before
More information116 Chapter 6 Transformations and the Coordinate Plane
116 Chapter 6 Transformations and the Coordinate Plane Chapter 61 The Coordinates of a Point in a Plane Section Quiz [20 points] PART I Answer all questions in this part. Each correct answer will receive
More information4.1 Euclidean Parallelism, Existence of Rectangles
Chapter 4 Euclidean Geometry Based on previous 15 axioms, The parallel postulate for Euclidean geometry is added in this chapter. 4.1 Euclidean Parallelism, Existence of Rectangles Definition 4.1 Two distinct
More informationUNIT H1 Angles and Symmetry Activities
UNIT H1 Angles and Symmetry Activities Activities H1.1 Lines of Symmetry H1.2 Rotational and Line Symmetry H1.3 Symmetry of Regular Polygons H1.4 Interior Angles in Polygons Notes and Solutions (1 page)
More informationSelected practice exam solutions (part 5, item 2) (MAT 360)
Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On
More information*1. Derive formulas for the area of right triangles and parallelograms by comparing with the area of rectangles.
Students: 1. Students understand and compute volumes and areas of simple objects. *1. Derive formulas for the area of right triangles and parallelograms by comparing with the area of rectangles. Review
More informationArea of triangles and parallelograms: [Short Answer Questions] Important Questions for SLC Examination
# Section I a) Find the area of the triangle given below. Area of triangles and parallelograms: [Short Answer Questions] Important Questions for SLC Examination b) Find the area of an equilateral triangle
More information2 feet Opposite sides of a rectangle are equal. All sides of a square are equal. 2 X 3 = 6 meters = 18 meters
GEOMETRY Vocabulary 1. Adjacent: Next to each other. Side by side. 2. Angle: A figure formed by two straight line sides that have a common end point. A. Acute angle: Angle that is less than 90 degree.
More informationCoordinate Coplanar Distance Formula Midpoint Formula
G.(2) Coordinate and transformational geometry. The student uses the process skills to understand the connections between algebra and geometry and uses the oneand twodimensional coordinate systems to
More informationUnit 8 Geometry QUADRILATERALS. NAME Period
Unit 8 Geometry QUADRILATERALS NAME Period 1 A little background Polygon is the generic term for a closed figure with any number of sides. Depending on the number, the first part of the word Poly is replaced
More information114 Areas of Regular Polygons and Composite Figures
1. In the figure, square ABDC is inscribed in F. Identify the center, a radius, an apothem, and a central angle of the polygon. Then find the measure of a central angle. Center: point F, radius:, apothem:,
More information104 Inscribed Angles. Find each measure. 1.
Find each measure. 1. 3. 2. intercepted arc. 30 Here, is a semicircle. So, intercepted arc. So, 66 4. SCIENCE The diagram shows how light bends in a raindrop to make the colors of the rainbow. If, what
More informationChapter Three. Parallel Lines and Planes
Chapter Three Parallel Lines and Planes Objectives A. Use the terms defined in the chapter correctly. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately
More informationhttp://jsuniltutorial.weebly.com/ Page 1
Parallelogram solved Worksheet/ Questions Paper 1.Q. Name each of the following parallelograms. (i) The diagonals are equal and the adjacent sides are unequal. (ii) The diagonals are equal and the adjacent
More informationChapter 6 Notes: Circles
Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment
More information