# 6.3 Applications of Normal Distributions

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 6.3 Applications of Normal Distributions Objectives: 1. Find probabilities and percentages from known values. 2. Find values from known areas. Overview: This section presents methods for working with normal distributions that are not standard. That is, the mean is not 0 or the standard deviation is not 1, or both. The key concept is that we can use a simple conversion that allows us to standardie any normal distribution so that the methods of the previous lesson can be used. Conversion Formula: In a previous lesson, we learned how to convert data values into -scores. We will once again use this formula to work with non-standard normal distributions. = x µ σ Converting to a Standard Normal Distribution: By converting selected data values to -scores, we may use the procedures learned for determining probabilities using the standard normal distribution. = x µ σ When finding areas with a nonstandard normal distribution, use this procedure: 1. Sketch a normal curve, label the mean and specific x values, and then shade the region representing the desired probability. 2. For each relevant value x that is a boundary for the shaded region, convert that value to the equivalent -score. 3. Use table A-2 or Excel to find the area of the shaded region. This area is the desired probability.

2 Example: The safe load for a water taxi is determined to be 3500 pounds and the mean weight of a passenger is 140 pounds. Assume that all passengers are men. Assume also that the weights of the men are normally distributed with a mean of 172 pounds and standard deviation of 29 pounds. If one man is randomly selected, what is the probability that he weighs less than 174 pounds? Step 2: Convert 174 pounds to a -score. x µ = = σ 29 = Step 3: Using the -score = and table A-2, we determine the area to the left of this score to be Therefore, the probability that a male passenger weighs less than 174 pounds is Example: The mean is µ = 60.0 and the standard deviation is σ = 4.0. Find the probability that X is less than Step 2: Convert 53 to a -score. x µ = = σ = Step 3: Using the -score = and table A-2, we determine the area to the left of this score to be Therefore, the probability that x is less than 53 is

3 Example: IQ scores of adults are normally distributed with a mean of 100 and a standard deviation of 15 (as on the Wechsler test). Find the probability that a randomly selected adult will have an IQ between 85 and 125. Step 2: Convert 85 and 125 to -scores. x µ x µ = = = 1.00 = = = σ 15 σ 15 Step 3: Using the -scores = -1.00, = and table A-2, we determine the area of the shaded region to be Area = = Therefore, the probability that a randomly selected adult has an IQ between 85 and 110 is Example: The volumes of soda in quart soda bottles are normally distributed with a mean of 32.3 o and a standard deviation of 1.2 o. What is the probability that the volume of soda in a randomly selected bottle will be less than 32 o? Step 2: Convert 32 to a -score. x µ = = σ = Step 3: Using the -score = and table A-2, we determine the area to the left of this score to be Therefore, the probability that the volume of soda in a randomly selected bottle will be less than 32 o is

4 Example: The weekly salaries of teachers in one state are normally distributed with a mean of \$490 and a standard deviation of \$45. What is the probability that a randomly selected teacher earns more than \$525 a week? Step 2: Convert 525 to a -score. x µ = = σ = Step 3: Using the -score = and table A-2, we determine the area to the left of this score to be Because the desired area is to the right, we will subtract 1 to obtain Therefore, the probability the probability that a randomly selected teacher earns more than \$525 a week is Example: A bank's loan officer rates applicants for credit. The ratings are normally distributed with a mean of 200 and a standard deviation of 50. If an applicant is randomly selected, find the probability of a rating that is between 170 and 220. Step 2: Convert 170 and 220 to -scores. x µ x µ = = = = = = σ 50 σ 50 Step 3: Using the -scores = , = and table A-2, we determine the area of the shaded region to be Area = = Therefore, the probability that a rating is between 170 and 220 is

5 Finding Values from Known Areas: In addition to finding areas or probabilities given a value, we can also find a value from a given probability or area. Procedure for Finding Values Using Table A-2 and the Formula: 1. Sketch a normal distribution curve, enter the given probability or percentage in the appropriate region of the graph, and identify the x value(s) being sought. 2. Use Table A-2 to find the score corresponding to the cumulative left area bounded by x. Refer to the body of Table A-2 to find the closest area, then identify the corresponding score. 3. Using Formula 6-2, enter the values for µ, s, and the score found in step 2, then solve for x. x = µ + ( s) If is located to the left of the mean, be sure that it is a negative number. 4. Refer to the sketch of the curve to verify that the solution makes sense in the context of the graph and the context of the problem. Example: The safe load for a water taxi is determined to be 3500 pounds. Assume also that the weights of the all passengers are normally distributed with a mean of 172 pounds and standard deviation of 29 pounds. Determine what weight separates the lightest 99.5% from the heaviest 0.5%? Solution: Sketch a normal distribution curve and identify the x value(s) being sought. From table A-2 the -score corresponding to an area of is Solving the formula for x. x = µ + ( s) x = ( ) x = x = x 247 The weight of 247 pounds separates the lightest 99.5% from the heaviest 0.5%

6 Example: The graph depicts IQ scores of adults, and those scores are normally distributed with a mean of 100 and a standard deviation of 15 (as on the Wechsler test). The shaded area under the curve is Find the corresponding IQ score. Solution: From table A-2 the -score corresponding to an area of is Solving the formula for x. x = µ + ( s) x = ( ) x = x = x 103 The IQ score corresponding to an area of is 103. Example: The serum cholesterol levels for men in one age group are normally distributed with a mean of and a standard deviation of All units are in mg/100 ml. Find the two levels that separate the top 9% and the bottom 9%. Solution: From table A-2 the -scores are as follows: Bottom 9% -score = (area = 0.09) and Top 9% -score = 1.34 (area = 0.91) Solving the formula for x. x = µ + ( s) x = ( ) x = x = x 124 x = µ + ( s) x = ( ) x = x = x 232 The two levels are 124 mg/100ml and 232mg/100mL

7 Example: In one region, the September energy consumption levels for single-family homes are found to be normally distributed with a mean of 1050 kwh and a standard deviation of 218 kwh. Find P 45, which is the consumption level separating the bottom 45% from the top 55%. Solution: From table A-2 the -score corresponding to an area of is Solving the formula for x. x = µ + ( s) x = ( ) x = x = x 1022 The IQ score corresponding to an area of is 1022 Helpful Hints for Finding Values: 1. Don t confuse scores and areas. Z-scores are distances along the horiontal scale, but areas are regions under the normal curve. 2. Table A-2 lists scores in the left column and across the top row, but areas are found in the body of the table. 3. Choose the correct (right/left) side of the graph. 4. A score must be negative whenever it is located in the left half of the normal distribution. 5. Areas (or probabilities) are positive or ero values, but they are never negative.

8

### February 23, S6.3_3 Applications of Normal Distribution. Chapter 6 Normal Probability Distributions

MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 6 Normal Probability Distributions 6 1 Review and Preview 6 2 The Standard Normal Distribution 6 3 Applications of Normal

### Density Curve. A density curve is the graph of a continuous probability distribution. It must satisfy the following properties:

Density Curve A density curve is the graph of a continuous probability distribution. It must satisfy the following properties: 1. The total area under the curve must equal 1. 2. Every point on the curve

### Lesson 7 Z-Scores and Probability

Lesson 7 Z-Scores and Probability Outline Introduction Areas Under the Normal Curve Using the Z-table Converting Z-score to area -area less than z/area greater than z/area between two z-values Converting

### Unit 16 Normal Distributions

Unit 16 Normal Distributions Objectives: To obtain relative frequencies (probabilities) and percentiles with a population having a normal distribution While there are many different types of distributions

### Key Concept. Density Curve

MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 6 Normal Probability Distributions 6 1 Review and Preview 6 2 The Standard Normal Distribution 6 3 Applications of Normal

### 6-2 The Standard Normal Distribution. Uniform Distribution. Density Curve. Area and Probability. Using Area to Find Probability

6-2 The Standard Normal Distribution This section presents the standard normal distribution which has three properties: 1. Its graph is bell-shaped. 2. Its mean is equal to 0 (μ = 0). 3. Its standard deviation

### The Normal Distribution

Chapter 6 The Normal Distribution 6.1 The Normal Distribution 1 6.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Recognize the normal probability distribution

### 1) What is the probability that the random variable has a value greater than 2? A) 0.750 B) 0.625 C) 0.875 D) 0.700

Practice for Chapter 6 & 7 Math 227 This is merely an aid to help you study. The actual exam is not multiple choice nor is it limited to these types of questions. Using the following uniform density curve,

### Introduction to the Practice of Statistics Fifth Edition Moore, McCabe

Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 1.3 Homework Answers 1.80 If you ask a computer to generate "random numbers between 0 and 1, you uniform will get observations

### 6.2 Normal distribution. Standard Normal Distribution:

6.2 Normal distribution Slide Heights of Adult Men and Women Slide 2 Area= Mean = µ Standard Deviation = σ Donation: X ~ N(µ,σ 2 ) Standard Normal Distribution: Slide 3 Slide 4 a normal probability distribution

### Section 1.3 Exercises (Solutions)

Section 1.3 Exercises (s) 1.109, 1.110, 1.111, 1.114*, 1.115, 1.119*, 1.122, 1.125, 1.127*, 1.128*, 1.131*, 1.133*, 1.135*, 1.137*, 1.139*, 1.145*, 1.146-148. 1.109 Sketch some normal curves. (a) Sketch

### Unit 8: Normal Calculations

Unit 8: Normal Calculations Summary of Video In this video, we continue the discussion of normal curves that was begun in Unit 7. Recall that a normal curve is bell-shaped and completely characterized

### TImath.com. Statistics. Areas in Intervals

Areas in Intervals ID: 9472 TImath.com Time required 30 minutes Activity Overview In this activity, students use several methods to determine the probability of a given normally distributed value being

### STAT 200 QUIZ 2 Solutions Section 6380 Fall 2013

STAT 200 QUIZ 2 Solutions Section 6380 Fall 2013 The quiz covers Chapters 4, 5 and 6. 1. (8 points) If the IQ scores are normally distributed with a mean of 100 and a standard deviation of 15. (a) (3 pts)

### Using Your TI-NSpire Calculator: Normal Distributions Dr. Laura Schultz Statistics I

Using Your TI-NSpire Calculator: Normal Distributions Dr. Laura Schultz Statistics I Always start by drawing a sketch of the normal distribution that you are working with. Shade in the relevant area (probability),

### 8.8 APPLICATIONS OF THE NORMAL CURVE

8.8 APPLICATIONS OF THE NORMAL CURVE If a set of real data, such as test scores or weights of persons or things, can be assumed to be generated by a normal probability model, the table of standard normal-curve

### Chapter 5: Normal Probability Distributions - Solutions

Chapter 5: Normal Probability Distributions - Solutions Note: All areas and z-scores are approximate. Your answers may vary slightly. 5.2 Normal Distributions: Finding Probabilities If you are given that

### The Normal Distribution

The Normal Distribution Cal State Northridge Ψ320 Andrew Ainsworth PhD The standard deviation Benefits: Uses measure of central tendency (i.e. mean) Uses all of the data points Has a special relationship

### 4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) (a) 2 (b) 1

Unit 2 Review Name Use the given frequency distribution to find the (a) class width. (b) class midpoints of the first class. (c) class boundaries of the first class. 1) Miles (per day) 1-2 9 3-4 22 5-6

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

STATISTICS/GRACEY PRACTICE TEST/EXAM 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Identify the given random variable as being discrete or continuous.

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) 0.4987 B) 0.9987 C) 0.0010 D) 0.

Ch. 5 Normal Probability Distributions 5.1 Introduction to Normal Distributions and the Standard Normal Distribution 1 Find Areas Under the Standard Normal Curve 1) Find the area under the standard normal

### AP Statistics Solutions to Packet 2

AP Statistics Solutions to Packet 2 The Normal Distributions Density Curves and the Normal Distribution Standard Normal Calculations HW #9 1, 2, 4, 6-8 2.1 DENSITY CURVES (a) Sketch a density curve that

### BUS/ST 350 Exam 3 Spring 2012

BUS/ST 350 Exam 3 Spring 2012 Name Lab Section ID # INSTRUCTIONS: Write your name, lab section #, and ID# above. Note the statement at the bottom of this page that you must sign when you are finished with

### z-scores AND THE NORMAL CURVE MODEL

z-scores AND THE NORMAL CURVE MODEL 1 Understanding z-scores 2 z-scores A z-score is a location on the distribution. A z- score also automatically communicates the raw score s distance from the mean A

### Rescaling and shifting

Rescaling and shifting A fancy way of changing one variable to another Main concepts involve: Adding or subtracting a number (shifting) Multiplying or dividing by a number (rescaling) Where have you seen

### MEASURES OF VARIATION

NORMAL DISTRIBTIONS MEASURES OF VARIATION In statistics, it is important to measure the spread of data. A simple way to measure spread is to find the range. But statisticians want to know if the data are

### Data Collection. Page 1 of 9

Page 1 of 9 Data Collection All of the data elements needed for Earned Value Management come together in the control account. The control account manager analyzes data, trends and variances, and takes

### Normal and Binomial. Distributions

Normal and Binomial Distributions Library, Teaching and Learning 14 By now, you know about averages means in particular and are familiar with words like data, standard deviation, variance, probability,

### Lesson 9 Hypothesis Testing

Lesson 9 Hypothesis Testing Outline Logic for Hypothesis Testing Critical Value Alpha (α) -level.05 -level.01 One-Tail versus Two-Tail Tests -critical values for both alpha levels Logic for Hypothesis

### Key Concept. February 25, 2011. 155S6.5_3 The Central Limit Theorem. Chapter 6 Normal Probability Distributions. Central Limit Theorem

MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 6 Normal Probability Distributions 6 1 Review and Preview 6 2 The Standard Normal Distribution 6 3 Applications of Normal

### EXAM #1 (Example) Instructor: Ela Jackiewicz. Relax and good luck!

STP 231 EXAM #1 (Example) Instructor: Ela Jackiewicz Honor Statement: I have neither given nor received information regarding this exam, and I will not do so until all exams have been graded and returned.

### STATISTICS GUIDED NOTEBOOK/FOR USE WITH MARIO TRIOLA S TEXTBOOK ESSENTIALS OF STATISTICS, 4TH ED.

CHAPTER PROBLEM How do we design airplanes, boats, cars, and homes for safety and comfort? Ergonomics involves the study of people fitting into their environments. Ergonomics is used in a wide variety

### FINAL EXAM REVIEW - Fa 13

FINAL EXAM REVIEW - Fa 13 Determine which of the four levels of measurement (nominal, ordinal, interval, ratio) is most appropriate. 1) The temperatures of eight different plastic spheres. 2) The sample

### Def: The standard normal distribution is a normal probability distribution that has a mean of 0 and a standard deviation of 1.

Lecture 6: Chapter 6: Normal Probability Distributions A normal distribution is a continuous probability distribution for a random variable x. The graph of a normal distribution is called the normal curve.

### The Dummy s Guide to Data Analysis Using SPSS

The Dummy s Guide to Data Analysis Using SPSS Mathematics 57 Scripps College Amy Gamble April, 2001 Amy Gamble 4/30/01 All Rights Rerserved TABLE OF CONTENTS PAGE Helpful Hints for All Tests...1 Tests

### University of California, Los Angeles Department of Statistics. Normal distribution

University of California, Los Angeles Department of Statistics Statistics 100A Instructor: Nicolas Christou Normal distribution The normal distribution is the most important distribution. It describes

### Probability. Distribution. Outline

7 The Normal Probability Distribution Outline 7.1 Properties of the Normal Distribution 7.2 The Standard Normal Distribution 7.3 Applications of the Normal Distribution 7.4 Assessing Normality 7.5 The

### Preparing a budget template and presenting financial graphs using Excel

Preparing a budget template and presenting financial graphs using Excel KLA: STAGE: UNIT: Topic: HSIE Stage 5 Commerce Personal Finance Budgeting, loans and insurance Outcomes: 5.1 Applies consumer, financial,

### ( ) ( ) Central Tendency. Central Tendency

1 Central Tendency CENTRAL TENDENCY: A statistical measure that identifies a single score that is most typical or representative of the entire group Usually, a value that reflects the middle of the distribution

### Variance and Standard Deviation. Variance = ( X X mean ) 2. Symbols. Created 2007 By Michael Worthington Elizabeth City State University

Variance and Standard Deviation Created 2 By Michael Worthington Elizabeth City State University Variance = ( mean ) 2 The mean ( average) is between the largest and the least observations Subtracting

### Two Related Samples t Test

Two Related Samples t Test In this example 1 students saw five pictures of attractive people and five pictures of unattractive people. For each picture, the students rated the friendliness of the person

### The Normal Distribution

The Normal Distribution Continuous Distributions A continuous random variable is a variable whose possible values form some interval of numbers. Typically, a continuous variable involves a measurement

### You flip a fair coin four times, what is the probability that you obtain three heads.

Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.

### Week 3&4: Z tables and the Sampling Distribution of X

Week 3&4: Z tables and the Sampling Distribution of X 2 / 36 The Standard Normal Distribution, or Z Distribution, is the distribution of a random variable, Z N(0, 1 2 ). The distribution of any other normal

### 4.3 Areas under a Normal Curve

4.3 Areas under a Normal Curve Like the density curve in Section 3.4, we can use the normal curve to approximate areas (probabilities) between different values of Y that follow a normal distribution Y

### Probability Distributions

Learning Objectives Probability Distributions Section 1: How Can We Summarize Possible Outcomes and Their Probabilities? 1. Random variable 2. Probability distributions for discrete random variables 3.

### Normal Distribution as an Approximation to the Binomial Distribution

Chapter 1 Student Lecture Notes 1-1 Normal Distribution as an Approximation to the Binomial Distribution : Goals ONE TWO THREE 2 Review Binomial Probability Distribution applies to a discrete random variable

### Unit 29 Chi-Square Goodness-of-Fit Test

Unit 29 Chi-Square Goodness-of-Fit Test Objectives: To perform the chi-square hypothesis test concerning proportions corresponding to more than two categories of a qualitative variable To perform the Bonferroni

### 5/31/2013. 6.1 Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives.

The Normal Distribution C H 6A P T E R The Normal Distribution Outline 6 1 6 2 Applications of the Normal Distribution 6 3 The Central Limit Theorem 6 4 The Normal Approximation to the Binomial Distribution

### 6.4 Normal Distribution

Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under

### College of the Canyons Math 140 Exam 1 Amy Morrow. Name:

Name: Answer the following questions NEATLY. Show all necessary work directly on the exam. Scratch paper will be discarded unread. One point each part unless otherwise marked. 1. Owners of an exercise

### 3.1/3.2: Solving Inequalities and Their Graphs

3.1/3.2: Solving Inequalities and Their Graphs - Same as solving equations - adding or subtracting a number will NOT change the inequality symbol. - Always go back and check your solution - Solutions are

### 13.2 Measures of Central Tendency

13.2 Measures of Central Tendency Measures of Central Tendency For a given set of numbers, it may be desirable to have a single number to serve as a kind of representative value around which all the numbers

### 6 3 The Standard Normal Distribution

290 Chapter 6 The Normal Distribution Figure 6 5 Areas Under a Normal Distribution Curve 34.13% 34.13% 2.28% 13.59% 13.59% 2.28% 3 2 1 + 1 + 2 + 3 About 68% About 95% About 99.7% 6 3 The Distribution Since

### Normal Distribution Example 1

PubH 6414 Worksheet 6a: Normal Distribution 1 of 6 Normal Distribution Example 1 Assume that cholesterol levels for women ages 20-34 are approximately normally distributed with µ = 185 and σ = 39. Cholesterol

### The right edge of the box is the third quartile, Q 3, which is the median of the data values above the median. Maximum Median

CONDENSED LESSON 2.1 Box Plots In this lesson you will create and interpret box plots for sets of data use the interquartile range (IQR) to identify potential outliers and graph them on a modified box

### !.!. = 10!"! 1!!!!!!!!!

ALBERTA WEIGHTLIFTING ASSOCIATION The Sinclair Coefficients for the Olympiad January 1, 2013 to December 31, 2016 For Men's and Women's Olympic Weightlifting The Sinclair coefficients, derived statistically,

### STATISTICS FOR PSYCH MATH REVIEW GUIDE

STATISTICS FOR PSYCH MATH REVIEW GUIDE ORDER OF OPERATIONS Although remembering the order of operations as BEDMAS may seem simple, it is definitely worth reviewing in a new context such as statistics formulae.

### CHAPTER 7: THE CENTRAL LIMIT THEOREM

CHAPTER 7: THE CENTRAL LIMIT THEOREM Exercise 1. Yoonie is a personnel manager in a large corporation. Each month she must review 16 of the employees. From past experience, she has found that the reviews

### Chapter 2. The Normal Distribution

Chapter 2 The Normal Distribution Lesson 2-1 Density Curve Review Graph the data Calculate a numerical summary of the data Describe the shape, center, spread and outliers of the data Histogram with Curve

### MCQ S OF MEASURES OF CENTRAL TENDENCY

MCQ S OF MEASURES OF CENTRAL TENDENCY MCQ No 3.1 Any measure indicating the centre of a set of data, arranged in an increasing or decreasing order of magnitude, is called a measure of: (a) Skewness (b)

### Hypothesis Testing. Bluman Chapter 8

CHAPTER 8 Learning Objectives C H A P T E R E I G H T Hypothesis Testing 1 Outline 8-1 Steps in Traditional Method 8-2 z Test for a Mean 8-3 t Test for a Mean 8-4 z Test for a Proportion 8-5 2 Test for

### Lesson 20. Probability and Cumulative Distribution Functions

Lesson 20 Probability and Cumulative Distribution Functions Recall If p(x) is a density function for some characteristic of a population, then Recall If p(x) is a density function for some characteristic

### AP Statistics Chapter 1 Test - Multiple Choice

AP Statistics Chapter 1 Test - Multiple Choice Name: 1. The following bar graph gives the percent of owners of three brands of trucks who are satisfied with their truck. From this graph, we may conclude

### Unit 21 Student s t Distribution in Hypotheses Testing

Unit 21 Student s t Distribution in Hypotheses Testing Objectives: To understand the difference between the standard normal distribution and the Student's t distributions To understand the difference between

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) (a) 3 (b) 51

Chapter 2- Problems to look at Use the given frequency distribution to find the (a) class width. (b) class midpoints of the first class. (c) class boundaries of the first class. 1) Height (in inches) 1)

### Hypothesis Testing: Two Means, Paired Data, Two Proportions

Chapter 10 Hypothesis Testing: Two Means, Paired Data, Two Proportions 10.1 Hypothesis Testing: Two Population Means and Two Population Proportions 1 10.1.1 Student Learning Objectives By the end of this

### First Midterm Exam (MATH1070 Spring 2012)

First Midterm Exam (MATH1070 Spring 2012) Instructions: This is a one hour exam. You can use a notecard. Calculators are allowed, but other electronics are prohibited. 1. [40pts] Multiple Choice Problems

### CALCULATIONS & STATISTICS

CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents

### Florida Child Support Worksheet and Guidelines

Florida Child Support Worksheet and Guidelines Florida Statute (s. 61.30, F.S.) requires guidelines to be used in establishing new child support obligations or modifying child support in a Florida court.

### given that among year old boys, carbohydrate intake is normally distributed, with a mean of 124 and a standard deviation of 20...

Probability - Chapter 5 given that among 12-14 year old boys, carbohydrate intake is normally distributed, with a mean of 124 and a standard deviation of 20... 5.6 What percentage of boys in this age range

### 3.4 The Normal Distribution

3.4 The Normal Distribution All of the probability distributions we have found so far have been for finite random variables. (We could use rectangles in a histogram.) A probability distribution for a continuous

### Graphing the Standard Curve

Graphing the Standard Curve Lesson # 8 Objectives: The learner will demonstrate analysis of colorimetric assay results by analyzing them using a computer graphing program. The learner will demonstrate

### AP STATISTICS 2009 SCORING GUIDELINES

2009 SCORING GUIDELINES Question 2 Intent of Question The primary goals of this question were to assess a student s ability to (1) calculate a percentile value from a normal probability distribution; (2)

### Calculating P-Values. Parkland College. Isela Guerra Parkland College. Recommended Citation

Parkland College A with Honors Projects Honors Program 2014 Calculating P-Values Isela Guerra Parkland College Recommended Citation Guerra, Isela, "Calculating P-Values" (2014). A with Honors Projects.

### 32 Measures of Central Tendency and Dispersion

32 Measures of Central Tendency and Dispersion In this section we discuss two important aspects of data which are its center and its spread. The mean, median, and the mode are measures of central tendency

### AP STATISTICS 2010 SCORING GUIDELINES

2010 SCORING GUIDELINES Question 4 Intent of Question The primary goals of this question were to (1) assess students ability to calculate an expected value and a standard deviation; (2) recognize the applicability

### MATHEMATICS FOR ENGINEERS STATISTICS TUTORIAL 4 PROBABILITY DISTRIBUTIONS

MATHEMATICS FOR ENGINEERS STATISTICS TUTORIAL 4 PROBABILITY DISTRIBUTIONS CONTENTS Sample Space Accumulative Probability Probability Distributions Binomial Distribution Normal Distribution Poisson Distribution

### Coins, Presidents, and Justices: Normal Distributions and z-scores

activity 17.1 Coins, Presidents, and Justices: Normal Distributions and z-scores In the first part of this activity, you will generate some data that should have an approximately normal (or bell-shaped)

### Introduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses

Introduction to Hypothesis Testing 1 Hypothesis Testing A hypothesis test is a statistical procedure that uses sample data to evaluate a hypothesis about a population Hypothesis is stated in terms of the

### Mathematics Practice for Nursing and Midwifery Ratio Percentage. 3:2 means that for every 3 items of the first type we have 2 items of the second.

Study Advice Service Student Support Services Author: Lynn Ireland, revised by Dave Longstaff Mathematics Practice for Nursing and Midwifery Ratio Percentage Ratio Ratio describes the relationship between

### The Circumference Function

2 Geometry You have permission to make copies of this document for your classroom use only. You may not distribute, copy or otherwise reproduce any part of this document or the lessons contained herein

### Exam Style Questions. Revision for this topic. Name: Ensure you have: Pencil, pen, ruler, protractor, pair of compasses and eraser

Name: Exam Style Questions Ensure you have: Pencil, pen, ruler, protractor, pair of compasses and eraser You may use tracing paper if needed Guidance 1. Read each question carefully before you begin answering

### Characteristics of Binomial Distributions

Lesson2 Characteristics of Binomial Distributions In the last lesson, you constructed several binomial distributions, observed their shapes, and estimated their means and standard deviations. In Investigation

### Review #2. Statistics

Review #2 Statistics Find the mean of the given probability distribution. 1) x P(x) 0 0.19 1 0.37 2 0.16 3 0.26 4 0.02 A) 1.64 B) 1.45 C) 1.55 D) 1.74 2) The number of golf balls ordered by customers of

### Ch. 6.1 #7-49 odd. The area is found by looking up z= 0.75 in Table E and subtracting 0.5. Area = 0.7734-0.5= 0.2734

Ch. 6.1 #7-49 odd The area is found by looking up z= 0.75 in Table E and subtracting 0.5. Area = 0.7734-0.5= 0.2734 The area is found by looking up z= 2.07 in Table E and subtracting from 0.5. Area = 0.5-0.0192

### Study 6.3, #87(83) 93(89),97(93)

GOALS: 1. Understand that area under a normal curve represents probabilities and percentages. 2. Find probabilities (percentages) associated with a normally distributed variable using SNC. 3. Find probabilities

### Creating a Gradebook in Excel

T92 Mathematics Success Grade 8 [OBJECTIVE] The student will create rational approximations of irrational numbers in order to compare and order them on a number line. [PREREQUISITE SKILLS] rational numbers,

### C. The null hypothesis is not rejected when the alternative hypothesis is true. A. population parameters.

Sample Multiple Choice Questions for the material since Midterm 2. Sample questions from Midterms and 2 are also representative of questions that may appear on the final exam.. A randomly selected sample

### Descriptive Statistics

Y520 Robert S Michael Goal: Learn to calculate indicators and construct graphs that summarize and describe a large quantity of values. Using the textbook readings and other resources listed on the web

### THINGS TO REMEMBER CONSUMER MATHEMATICS

PREMIER CURRICULUM SERIES Based on the Sunshine State Standards for Secondary Education, established by the State of Florida, Department of Education THINGS TO REMEMBER CONSUMER MATHEMATICS Copyright 2009

### In this lesson you will learn to find zeros of polynomial functions that are not factorable.

2.6. Rational zeros of polynomial functions. In this lesson you will learn to find zeros of polynomial functions that are not factorable. REVIEW OF PREREQUISITE CONCEPTS: A polynomial of n th degree has

### 6.1 Graphs of Normal Probability Distributions. Normal Curve aka Probability Density Function

Normal Distributions (Page 1 of 23) 6.1 Graphs of Normal Probability Distributions Normal Curve aka Probability Density Function Normal Probability Distribution TP TP µ! " µ µ +! x x-axis Important Properties

### Chapter 6: Probability

Chapter 6: Probability In a more mathematically oriented statistics course, you would spend a lot of time talking about colored balls in urns. We will skip over such detailed examinations of probability,

### STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random