Lecture#20 Ion Implant for ULSI

Size: px
Start display at page:

Download "Lecture#20 Ion Implant for ULSI"

Transcription

1 EMCR632/702 - Silicon Processes Catalog: EMCR632 Silicon Processes EMCR702 Microelectronics II Lecture#20 Ion Imlant for ULSI Prof. K.D. Hirschman 1/30/02 K.D. Hirschman Silicon Processes: Ion Imlantation 1 Ion Imlant - Lecture#20 Toics: Motivation: Advanced CMOS device structure Ion imlant Pearson distribution Ion Channeling Imlant Damage 1/30/02 HW#4 due Friday K.D. Hirschman Silicon Processes: Ion Imlantation 2

2 Advanced CMOS Technology Side wall Sacer Silicide Gate Low Doed Drain (LDD) Source Drain Sto STI STI Punch Through Imlant Retrograde Well K.D. Hirschman Silicon Processes: Ion Imlantation 3 EMCR632/702 Silicon Processes Ion Imlant Ref: Cambell chater 5 Wolf & Tauber Vol I - chater 9 K.D. Hirschman Silicon Processes: Ion Imlantation 4

3 Random interactions with target atoms Ion, dose, energy R R K.D. Hirschman Silicon Processes: Ion Imlantation 5 Pearson-IV Distribution If an analytical solution is used, a higher-moment distribution is needed which can more accurately describe the imlanted imurity rofile Parameters adjusted to fit Monte Carlo simulations (using ion stoing theory) or actual measured rofiles (SIMS). Gaussian skewness Kurtosis Pearson-IV Distribution I. Mean (R) II. St.Dev. ( R) III. Skewness (γ) - asymmetry of the dist. IV. Kurtosis (β) - distortion of eak - larger value if flatter to K.D. Hirschman Silicon Processes: Ion Imlantation 6

4 4-Moment Distribution 1) Projected Range (mean) 2) Straggle (standard deviation) 3) skewness 4) kurtosis R R γ = β = 1 = Φ = 1 Φ ( x R ( x R xn( x) dx ( x R ) ) 3 Φ R 4 Φ R K.D. Hirschman Silicon Processes: Ion Imlantation ) 2 N ( x) dx N( x) dx N( x) dx Ion Channeling Pearson-IV distribution works well for imlants into amorhous silicon, or if ion channeling is suressed. Otherwise an adjustment must be made to correct for tilt/rotation deendence. Fig from W & T K.D. Hirschman Silicon Processes: Ion Imlantation 8

5 Channeling Effects K.D. Hirschman Silicon Processes: Ion Imlantation 9 Channeling Effects normalized rofiles low-dose high-dose self-amorhization K.D. Hirschman Silicon Processes: Ion Imlantation 10

6 Methods to avoid channeling Tilt & Twist Screen Oxide - amorhous surface layer Å is thick enough Pre-amorhization imlant - silicon imlant to re-amorhize lattice - 2-stage BF 2 & B 11 imlant Self-amorhization - arsenic (heavy ions), high dose K.D. Hirschman Silicon Processes: Ion Imlantation 11 BF 2+ molecular ion imlants Used for shallow + junctions Used for re-amorhization for boron (B11) imlants to reduce channeling effects and avoid buried amorhous regions Some issues with excess fluorine at high doses BF 2 molecule dissociates uon imact some electrical activity defect cluster formation BF 2 + F B F Si Kinetic Energy associated with boron atom: KE = ½(m)v 2 E B = E BF2 (M B /M BF2 ) = E BF2 (11/49) ex: BF 100KeV ~ B 20KeV K.D. Hirschman Silicon Processes: Ion Imlantation 12

7 LSS Theory of Ion Stoing LSS: Linhard, Scharff & Schiott R Nuclear Stoing: Coulombic Scattering Electronic Stoing m1 v 1 m1 m1 v m2 0 + m2 v 2 K.D. Hirschman Silicon Processes: Ion Imlantation 13 Nuclear Stoing Energy loss er distance traveled as a function of energy: deends on incident ion and target atom nuclear charge (Z = # rotons) and atomic masses (M) S n ( E) de = dx Energy loss due to interactions with atomic nuclei is basically a decreasing function of energy. At high kinetic energy (ion velocity) there is a very short interaction time for any absortion of energy by target atoms. S n (E) S n E Aroximate nuclear stoing near max of S n (E): 2 de π 2 Z1Z2M1 = Sn = N e a dx( n) 2 M + M where N is the atomic density (atoms/volume) -2 a ~1.4x10 nm, subscrits1and 2 refer to ion and target resectively, Z is atomic number and M is mass number 1 K.D. Hirschman Silicon Processes: Ion Imlantation 14 2 n

8 Electronic Stoing Due to interactions with electrons in the target material - like a drag force that is roortional to the ion velocity Ion velocity α (Energy) 1/2 S de ( k E 1/ 2 e E) = E = dx e e 1/ 2 where k e is relatively indeendent of the incident ion For silicon: k e ~ 10 7 (ev) 1/2 /cm Total rate of energy loss = de/dx = S n (E) + S e (E) K.D. Hirschman Silicon Processes: Ion Imlantation 15 LSS Calculations ε & ρ are dimensionless arameters ε α energy ρ α range (R) (distance variable) like de/dx K.D. Hirschman Silicon Processes: Ion Imlantation 16

9 Range & Straggle From LSS Theory: R R M 1 + T 3M i R 2R Mi M 3 M + M i T T K.D. Hirschman Silicon Processes: Ion Imlantation 17 Nuclear & Electronic Stoing Electronic stoing dominates: Light ions and high energies Nuclear stoing dominates: Heavy ions and low energies Imlant damage occurs due to nuclear interactions. The extent of damage deends on S n (E). * K.D. Hirschman Silicon Processes: Ion Imlantation 18

How To Implant Anneal Ion Beam

How To Implant Anneal Ion Beam ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING MEMS Ion Implant Dr. Lynn Fuller webpage: http://people.rit.edu/lffeee Electrical and Microelectronic Engineering Rochester Institute of Technology

More information

INTRODUCTION TO ION IMPLANTATION Dr. Lynn Fuller, Dr. Renan Turkman Dr Robert Pearson

INTRODUCTION TO ION IMPLANTATION Dr. Lynn Fuller, Dr. Renan Turkman Dr Robert Pearson Ion Implantation ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING INTRODUCTION TO ION IMPLANTATION Dr. Lynn Fuller, Dr. Renan Turkman Dr Robert Pearson Webpage: http://people.rit.edu/lffeee

More information

ENERGY LOSS OF ALPHA PARTICLES IN GASES

ENERGY LOSS OF ALPHA PARTICLES IN GASES Vilnius University Faculty of Physics Department of Solid State Electronics Laboratory of Applied Nuclear Physics Experiment No. ENERGY LOSS OF ALPHA PARTICLES IN GASES by Andrius Poškus (e-mail: andrius.poskus@ff.vu.lt)

More information

Principles of Ion Implant

Principles of Ion Implant Principles of Ion Implant Generation of ions dopant gas containing desired species BF 3, B 2 H 6, PH 3, AsH 3, AsF 5 plasma provides positive ions (B 11 ) +, BF 2+, (P 31 ) +, (P 31 ) ++ Ion Extraction

More information

Graduate Student Presentations

Graduate Student Presentations Graduate Student Presentations Dang, Huong Chip packaging March 27 Call, Nathan Thin film transistors/ liquid crystal displays April 4 Feldman, Ari Optical computing April 11 Guerassio, Ian Self-assembly

More information

Advanced VLSI Design CMOS Processing Technology

Advanced VLSI Design CMOS Processing Technology Isolation of transistors, i.e., their source and drains, from other transistors is needed to reduce electrical interactions between them. For technologies

More information

2 ATOMIC SYSTEMATICS AND NUCLEAR STRUCTURE

2 ATOMIC SYSTEMATICS AND NUCLEAR STRUCTURE 2 ATOMIC SYSTEMATICS AND NUCLEAR STRUCTURE In this chapter the principles and systematics of atomic and nuclear physics are summarised briefly, in order to introduce the existence and characteristics of

More information

SEMICONDUCTOR I: Doping, semiconductor statistics (REF: Sze, McKelvey, and Kittel)

SEMICONDUCTOR I: Doping, semiconductor statistics (REF: Sze, McKelvey, and Kittel) SEMICONDUCTOR I: Doping, semiconductor statistics (REF: Sze, McKelvey, and Kittel) Introduction Based on known band structures of Si, Ge, and GaAs, we will begin to focus on specific properties of semiconductors,

More information

Free Electron Fermi Gas (Kittel Ch. 6)

Free Electron Fermi Gas (Kittel Ch. 6) Free Electron Fermi Gas (Kittel Ch. 6) Role of Electrons in Solids Electrons are responsible for binding of crystals -- they are the glue that hold the nuclei together Types of binding (see next slide)

More information

Lecture 2 Macroscopic Interactions. 22.106 Neutron Interactions and Applications Spring 2010

Lecture 2 Macroscopic Interactions. 22.106 Neutron Interactions and Applications Spring 2010 Lecture 2 Macroscopic Interactions 22.106 Neutron Interactions and Applications Spring 2010 Objectives Macroscopic Interactions Atom Density Mean Free Path Moderation in Bulk Matter Neutron Shielding Effective

More information

X-ray diffraction techniques for thin films

X-ray diffraction techniques for thin films X-ray diffraction techniques for thin films Rigaku Corporation Application Laboratory Takayuki Konya 1 Today s contents (PM) Introduction X-ray diffraction method Out-of-Plane In-Plane Pole figure Reciprocal

More information

Basic Nuclear Concepts

Basic Nuclear Concepts Section 7: In this section, we present a basic description of atomic nuclei, the stored energy contained within them, their occurrence and stability Basic Nuclear Concepts EARLY DISCOVERIES [see also Section

More information

Vacuum Evaporation Recap

Vacuum Evaporation Recap Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.

More information

ACCELERATORS AND MEDICAL PHYSICS 2

ACCELERATORS AND MEDICAL PHYSICS 2 ACCELERATORS AND MEDICAL PHYSICS 2 Ugo Amaldi University of Milano Bicocca and TERA Foundation EPFL 2-28.10.10 - U. Amaldi 1 The icone of radiation therapy Radiation beam in matter EPFL 2-28.10.10 - U.

More information

The MOS Transistor in Weak Inversion

The MOS Transistor in Weak Inversion MOFE Operation in eak and Moderate nversion he MO ransistor in eak nversion n this section we will lore the behavior of the MO transistor in the subthreshold regime where the channel is weakly inverted.

More information

10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory

10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory The first scheduled quiz will be given next Tuesday during Lecture. It will last 5 minutes. Bring pencil, calculator, and your book. The coverage will be pp 364-44, i.e. Sections 0.0 through.4. 0.7 Theory

More information

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Energy Transport Focus on heat transfer Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Conduction Conduction heat transfer occurs only when there is physical contact

More information

Chemical Sputtering. von Kohlenstoff durch Wasserstoff. W. Jacob

Chemical Sputtering. von Kohlenstoff durch Wasserstoff. W. Jacob Chemical Sputtering von Kohlenstoff durch Wasserstoff W. Jacob Centre for Interdisciplinary Plasma Science Max-Planck-Institut für Plasmaphysik, 85748 Garching Content: Definitions: Chemical erosion, physical

More information

Detectors in Nuclear and Particle Physics

Detectors in Nuclear and Particle Physics Detectors in Nuclear and Particle Physics Prof. Dr. Johanna Stachel Deartment of Physics und Astronomy University of Heidelberg June 17, 2015 J. Stachel (Physics University Heidelberg) Detectorhysics June

More information

EE-612: Nanoscale Transistors (Advanced VLSI Devices) Spring 2005

EE-612: Nanoscale Transistors (Advanced VLSI Devices) Spring 2005 EE-612: Nanoscale Transistors (Advanced VLSI Devices) Spring 2005 Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA 765-494-3515 lundstro@purdue.edu 1 evolution

More information

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier Tunnel Effect: - particle with kinetic energy E strikes a barrier with height U 0 > E and width L - classically the particle cannot overcome the barrier - quantum mechanically the particle can penetrated

More information

[Image removed due to copyright concerns]

[Image removed due to copyright concerns] Radiation Chemistry Ionizing radiation produces abundant secondary electrons that rapidly slow down (thermalize) to energies below 7.4 ev, the threshold to produce electronic transitions in liquid water.

More information

1 Introduction. B9.2 C. Meyer

1 Introduction. B9.2 C. Meyer B 9 Ion beam techniques C. Meyer Institut für Festkörperforschung Forschungszentrum Jülich GmbH Contents 1 Introduction 2 2 Rutherford backscattering 4 3 Focused ion beam (FIB) 12 4 Helium microscopy 15

More information

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS Chapter NP-5 Nuclear Physics Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 2.0 NEUTRON INTERACTIONS 2.1 ELASTIC SCATTERING 2.2 INELASTIC SCATTERING 2.3 RADIATIVE CAPTURE 2.4 PARTICLE

More information

Neutron Detection Setups proposed for

Neutron Detection Setups proposed for Neutron Detection Setups proposed for DESPEC D. Cano-Ott on behalf of the WG members CIEMAT, IFIC, LNL, FYL, UPC, UU, UW Motivation GOAL: to measure neutron emission probabilities and energies for neutron

More information

Introduction to the Monte Carlo method

Introduction to the Monte Carlo method Some history Simple applications Radiation transport modelling Flux and Dose calculations Variance reduction Easy Monte Carlo Pioneers of the Monte Carlo Simulation Method: Stanisław Ulam (1909 1984) Stanislaw

More information

Sputtering. Ion-Solid Interactions

Sputtering. Ion-Solid Interactions ssistant Professor Department of Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (716) 475-2923 Fax (716) 475-5041 PDRDV@RIT.EDU Page 1

More information

Process simulation. Maria Concetta Allia

Process simulation. Maria Concetta Allia simulation Athena overview Athena is a process simulator that provides general capabilities for numerical, physically-based, two-dimensional simulation of processes used in semiconductor industry (ion

More information

1. Degenerate Pressure

1. Degenerate Pressure . Degenerate Pressure We next consider a Fermion gas in quite a different context: the interior of a white dwarf star. Like other stars, white dwarfs have fully ionized plasma interiors. The positively

More information

KE A = PE MAX 1/2M v 2 = k q1 q2 /R

KE A = PE MAX 1/2M v 2 = k q1 q2 /R CHAPTER 13 NUCLEAR STRUCTURE NUCLEAR FORCE The nucleus is help firmly together by the nuclear or strong force, We can estimate the nuclear force by observing that protons residing about 1fm = 10-15m apart

More information

Hydrogen Bonds The electrostatic nature of hydrogen bonds

Hydrogen Bonds The electrostatic nature of hydrogen bonds Hydrogen Bonds Hydrogen bonds have played an incredibly important role in the history of structural biology. Both the structure of DNA and of protein a-helices and b-sheets were predicted based largely

More information

Lecture 24 - Surface tension, viscous flow, thermodynamics

Lecture 24 - Surface tension, viscous flow, thermodynamics Lecture 24 - Surface tension, viscous flow, thermodynamics Surface tension, surface energy The atoms at the surface of a solid or liquid are not happy. Their bonding is less ideal than the bonding of atoms

More information

Sheet Resistance = R (L/W) = R N ------------------ L

Sheet Resistance = R (L/W) = R N ------------------ L Sheet Resistance Rewrite the resistance equation to separate (L / W), the length-to-width ratio... which is the number of squares N from R, the sheet resistance = (σ n t) - R L = -----------------------

More information

Physical Quantities, Symbols and Units

Physical Quantities, Symbols and Units Table 1 below indicates the physical quantities required for numerical calculations that are included in the Access 3 Physics units and the Intermediate 1 Physics units and course together with the SI

More information

Chapter 5: Diffusion. 5.1 Steady-State Diffusion

Chapter 5: Diffusion. 5.1 Steady-State Diffusion : Diffusion Diffusion: the movement of particles in a solid from an area of high concentration to an area of low concentration, resulting in the uniform distribution of the substance Diffusion is process

More information

Monday 11 June 2012 Afternoon

Monday 11 June 2012 Afternoon Monday 11 June 2012 Afternoon A2 GCE PHYSICS B (ADVANCING PHYSICS) G495 Field and Particle Pictures *G412090612* Candidates answer on the Question Paper. OCR supplied materials: Data, Formulae and Relationships

More information

Secondary Ion Mass Spectrometry

Secondary Ion Mass Spectrometry Secondary Ion Mass Spectrometry A PRACTICAL HANDBOOK FOR DEPTH PROFILING AND BULK IMPURITY ANALYSIS R. G. Wilson Hughes Research Laboratories Malibu, California F. A. Stevie AT&T Bell Laboratories Allentown,

More information

. Tutorial #3 Building Complex Targets

. Tutorial #3 Building Complex Targets . Tutorial #3 Building Complex Targets. Mixed Gas/Solid Targets Gas Ionization Chamber Previous Tutorials have covered how to setup TRIM, determine which ion and energy to specify for a semiconductor n-well

More information

Section 3: Crystal Binding

Section 3: Crystal Binding Physics 97 Interatomic forces Section 3: rystal Binding Solids are stable structures, and therefore there exist interactions holding atoms in a crystal together. For example a crystal of sodium chloride

More information

HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases

HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases UNIT HEAT. KINETIC THEORY OF GASES.. Introduction Molecules have a diameter of the order of Å and the distance between them in a gas is 0 Å while the interaction distance in solids is very small. R. Clausius

More information

The Physics of Energy sources Renewable sources of energy. Solar Energy

The Physics of Energy sources Renewable sources of energy. Solar Energy The Physics of Energy sources Renewable sources of energy Solar Energy B. Maffei Bruno.maffei@manchester.ac.uk Renewable sources 1 Solar power! There are basically two ways of using directly the radiative

More information

Defects Introduction. Bonding + Structure + Defects. Properties

Defects Introduction. Bonding + Structure + Defects. Properties Defects Introduction Bonding + Structure + Defects Properties The processing determines the defects Composition Bonding type Structure of Crystalline Processing factors Defects Microstructure Types of

More information

Atomic and Nuclear Physics Laboratory (Physics 4780)

Atomic and Nuclear Physics Laboratory (Physics 4780) Gamma Ray Spectroscopy Week of September 27, 2010 Atomic and Nuclear Physics Laboratory (Physics 4780) The University of Toledo Instructor: Randy Ellingson Gamma Ray Production: Co 60 60 60 27Co28Ni *

More information

Electron spectroscopy Lecture 1-21. Kai M. Siegbahn (1918 - ) Nobel Price 1981 High resolution Electron Spectroscopy

Electron spectroscopy Lecture 1-21. Kai M. Siegbahn (1918 - ) Nobel Price 1981 High resolution Electron Spectroscopy Electron spectroscopy Lecture 1-21 Kai M. Siegbahn (1918 - ) Nobel Price 1981 High resolution Electron Spectroscopy 653: Electron Spectroscopy urse structure cture 1. Introduction to electron spectroscopies

More information

CHEM6085: Density Functional Theory Lecture 2. Hamiltonian operators for molecules

CHEM6085: Density Functional Theory Lecture 2. Hamiltonian operators for molecules CHEM6085: Density Functional Theory Lecture 2 Hamiltonian operators for molecules C.-K. Skylaris 1 The (time-independent) Schrödinger equation is an eigenvalue equation operator for property A eigenfunction

More information

Dependence of the thickness and composition of the HfO 2 /Si interface layer on annealing

Dependence of the thickness and composition of the HfO 2 /Si interface layer on annealing Dependence of the thickness and composition of the HfO 2 /Si interface layer on annealing CINVESTAV-UNIDAD QUERETARO P.G. Mani-González and A. Herrera-Gomez gmani@qro.cinvestav.mx CINVESTAV 1 background

More information

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal 1. The elements on the Periodic Table are arranged in order of increasing A) atomic mass B) atomic number C) molar mass D) oxidation number 2. Which list of elements consists of a metal, a metalloid, and

More information

Diffusion and Fluid Flow

Diffusion and Fluid Flow Diffusion and Fluid Flow What determines the diffusion coefficient? What determines fluid flow? 1. Diffusion: Diffusion refers to the transport of substance against a concentration gradient. ΔS>0 Mass

More information

Basic Equations, Boundary Conditions and Dimensionless Parameters

Basic Equations, Boundary Conditions and Dimensionless Parameters Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

More information

Basic Principles in Microfluidics

Basic Principles in Microfluidics Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces

More information

Proton tracking for medical imaging and dosimetry

Proton tracking for medical imaging and dosimetry Proton tracking for medical imaging and dosimetry J.Taylor, P.Allport, G.Casse For the PRaVDA Consortium 1 Background and motivation - What is the PRaVDA experiment? - Why are we using Monte Carlo? GEANT4

More information

Potential Energy and Equilibrium in 1D

Potential Energy and Equilibrium in 1D Potential Energy and Equilibrium in 1D Figures 6-27, 6-28 and 6-29 of Tipler-Mosca. du = F x dx A particle is in equilibrium if the net force acting on it is zero: F x = du dx = 0. In stable equilibrium

More information

HW7 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.

HW7 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. HW7 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 24.P.021 (a) Find the energy stored in a 20.00 nf capacitor

More information

Computational study of wave propagation through a dielectric thin film medium using WKB approximation

Computational study of wave propagation through a dielectric thin film medium using WKB approximation AMERICAN JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH 0, Science Huβ, htt://www.scihub.org/ajsir ISSN: 53-649X doi:0.55/ajsir.0..4.547.55 Comutational study of wave roagation through a dielectric thin

More information

Digital Integrated Circuit (IC) Layout and Design - Week 3, Lecture 5

Digital Integrated Circuit (IC) Layout and Design - Week 3, Lecture 5 igital Integrated Circuit (IC) Layout and esign - Week 3, Lecture 5! http://www.ee.ucr.edu/~rlake/ee134.html EE134 1 Reading and Prelab " Week 1 - Read Chapter 1 of text. " Week - Read Chapter of text.

More information

90 degrees Bremsstrahlung Source Term Produced in Thick Targets by 50 MeV to 10 GeV Electrons

90 degrees Bremsstrahlung Source Term Produced in Thick Targets by 50 MeV to 10 GeV Electrons SLAC-PUB-7722 January 9 degrees Bremsstrahlung Source Term Produced in Thick Targets by 5 MeV to GeV Electrons X. S. Mao et al. Presented at the Ninth International Conference on Radiation Shielding, Tsukuba,

More information

THE BAROMETRIC FALLACY

THE BAROMETRIC FALLACY THE BAROMETRIC FALLACY It is often assumed that the atmosheric ressure at the surface is related to the atmosheric ressure at elevation by a recise mathematical relationshi. This relationshi is that given

More information

Introduction to VLSI Fabrication Technologies. Emanuele Baravelli

Introduction to VLSI Fabrication Technologies. Emanuele Baravelli Introduction to VLSI Fabrication Technologies Emanuele Baravelli 27/09/2005 Organization Materials Used in VLSI Fabrication VLSI Fabrication Technologies Overview of Fabrication Methods Device simulation

More information

Basic Concepts in Nuclear Physics

Basic Concepts in Nuclear Physics Basic Concepts in Nuclear Physics Paolo Finelli Corso di Teoria delle Forze Nucleari 2011 Literature/Bibliography Some useful texts are available at the Library: Wong, Nuclear Physics Krane, Introductory

More information

Chapter 8 Concepts of Chemical Bonding

Chapter 8 Concepts of Chemical Bonding Chapter 8 Concepts of Chemical Bonding Chemical Bonds Three types: Ionic Electrostatic attraction between ions Covalent Sharing of electrons Metallic Metal atoms bonded to several other atoms Ionic Bonding

More information

Dose enhancement near metal electrodes in diamond X- ray detectors. A. Lohstroh*, and D. Alamoudi

Dose enhancement near metal electrodes in diamond X- ray detectors. A. Lohstroh*, and D. Alamoudi Dose enhancement near metal electrodes in diamond X- ray detectors Acknowledgements Surrey University: P.J. Sellin M. Abd-El Rahman P. Veeramani H. Al-Barakaty F. Schirru Mechanical Workshop A. Lohstroh*,

More information

Calculating particle properties of a wave

Calculating particle properties of a wave Calculating particle properties of a wave A light wave consists of particles (photons): The energy E of the particle is calculated from the frequency f of the wave via Planck: E = h f (1) A particle can

More information

Vacuum Technology. Kinetic Theory of Gas. Dr. Philip D. Rack

Vacuum Technology. Kinetic Theory of Gas. Dr. Philip D. Rack Kinetic Theory of Gas Assistant Professor Department of Materials Science and Engineering University of Tennessee 603 Dougherty Engineering Building Knoxville, TN 3793-00 Phone: (865) 974-5344 Fax (865)

More information

Solid State Detectors = Semi-Conductor based Detectors

Solid State Detectors = Semi-Conductor based Detectors Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection

More information

2 Absorbing Solar Energy

2 Absorbing Solar Energy 2 Absorbing Solar Energy 2.1 Air Mass and the Solar Spectrum Now that we have introduced the solar cell, it is time to introduce the source of the energy the sun. The sun has many properties that could

More information

Joint Application of Perl Scripts and MCNPX in Solving the Dynamic-Geometry Related Problems in Proton Beam Radiotherapy

Joint Application of Perl Scripts and MCNPX in Solving the Dynamic-Geometry Related Problems in Proton Beam Radiotherapy Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.176-180 (2011) ARTICLE Joint Application of Perl Scripts and MCNPX in Solving the Dynamic-Geometry Related Problems in Proton Beam Radiotherapy Fada

More information

Semiconductor doping. Si solar Cell

Semiconductor doping. Si solar Cell Semiconductor doping Si solar Cell Two Levels of Masks - photoresist, alignment Etch and oxidation to isolate thermal oxide, deposited oxide, wet etching, dry etching, isolation schemes Doping - diffusion/ion

More information

5.33 Lecture Notes: Introduction to Spectroscopy

5.33 Lecture Notes: Introduction to Spectroscopy 5.33 Lecture Notes: ntroduction to Spectroscopy What is spectroscopy? Studying the properties of matter through its interaction with different frequency components of the electromagnetic spectrum. Latin:

More information

Activitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies

Activitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies Activitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies (Ci), where 1 Ci = 3.7x10 10 disintegrations per second.

More information

Chapter 8. Low energy ion scattering study of Fe 4 N on Cu(100)

Chapter 8. Low energy ion scattering study of Fe 4 N on Cu(100) Low energy ion scattering study of 4 on Cu(1) Chapter 8. Low energy ion scattering study of 4 on Cu(1) 8.1. Introduction For a better understanding of the reconstructed 4 surfaces one would like to know

More information

Geostatistics Exploratory Analysis

Geostatistics Exploratory Analysis Instituto Superior de Estatística e Gestão de Informação Universidade Nova de Lisboa Master of Science in Geospatial Technologies Geostatistics Exploratory Analysis Carlos Alberto Felgueiras cfelgueiras@isegi.unl.pt

More information

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano. 5 nm Lecture 3: Optical Properties of Bulk and Nano 5 nm First H/W#1 is due Sept. 10 Course Info The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model)

More information

A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences.

A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences. I. MOLECULES IN MOTION: A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences. 1) theory developed in the late 19 th century to

More information

Temperature Measure of KE At the same temperature, heavier molecules have less speed Absolute Zero -273 o C 0 K

Temperature Measure of KE At the same temperature, heavier molecules have less speed Absolute Zero -273 o C 0 K Temperature Measure of KE At the same temperature, heavier molecules have less speed Absolute Zero -273 o C 0 K Kinetic Molecular Theory of Gases 1. Large number of atoms/molecules in random motion 2.

More information

nization 1 Ionization

nization 1 Ionization nization 1 Ionization nization 2 Ionization The basic mechanism is an inelastic collision of the moving charged particle with the atomic electrons of the material, ejecting off an electron from the atom

More information

Characterization of surfaces by AFM topographical, mechanical and chemical properties

Characterization of surfaces by AFM topographical, mechanical and chemical properties Characterization of surfaces by AFM topographical, mechanical and chemical properties Jouko Peltonen Department of physical chemistry Åbo Akademi University Atomic Force Microscopy (AFM) Contact mode AFM

More information

Sample Exercise 12.1 Calculating Packing Efficiency

Sample Exercise 12.1 Calculating Packing Efficiency Sample Exercise 12.1 Calculating Packing Efficiency It is not possible to pack spheres together without leaving some void spaces between the spheres. Packing efficiency is the fraction of space in a crystal

More information

Calculation of Source-detector Solid Angle, Using Monte Carlo Method, for Radioactive Sources with Various Geometries and Cylindrical Detector

Calculation of Source-detector Solid Angle, Using Monte Carlo Method, for Radioactive Sources with Various Geometries and Cylindrical Detector International Journal of Pure and Applied Physics ISSN 0973-1776 Volume 3, Number 2 (2007), pp. 201 208 Research India Publications http://www.ripublication.com/ijpap.htm Calculation of Source-detector

More information

CHI-SQUARE: TESTING FOR GOODNESS OF FIT

CHI-SQUARE: TESTING FOR GOODNESS OF FIT CHI-SQUARE: TESTING FOR GOODNESS OF FIT In the previous chapter we discussed procedures for fitting a hypothesized function to a set of experimental data points. Such procedures involve minimizing a quantity

More information

The content is based on the National Science Teachers Association (NSTA) standards and is aligned with state standards.

The content is based on the National Science Teachers Association (NSTA) standards and is aligned with state standards. Literacy Advantage Physical Science Physical Science Literacy Advantage offers a tightly focused curriculum designed to address fundamental concepts such as the nature and structure of matter, the characteristics

More information

1 Wetting your feet. 2 Scaling. 8.298 Lies / Check your understanding: Solutions

1 Wetting your feet. 2 Scaling. 8.298 Lies / Check your understanding: Solutions 1 Wetting your feet 1.1 Estimate how many liters are in a barrel of oil and how many barrels of oil the United States imports every year. A: A barrel may be a few feet high, so h 1m, and have a diameter

More information

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano. 5 nm Lecture 3: Optical Properties of Bulk and Nano 5 nm The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model) 0 e - n( ) n' n '' n ' = 1 + Nucleus

More information

Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Static s Kinematics Dynamics Fluid Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

More information

Chemistry 1000 Lecture 2: Nuclear reactions and radiation. Marc R. Roussel

Chemistry 1000 Lecture 2: Nuclear reactions and radiation. Marc R. Roussel Chemistry 1000 Lecture 2: Nuclear reactions and radiation Marc R. Roussel Nuclear reactions Ordinary chemical reactions do not involve the nuclei, so we can balance these reactions by making sure that

More information

The Application of Density Functional Theory in Materials Science

The Application of Density Functional Theory in Materials Science The Application of Density Functional Theory in Materials Science Slide 1 Outline Atomistic Modelling Group at MUL Density Functional Theory Numerical Details HPC Cluster at the MU Leoben Applications

More information

Nuclear ZPE Tapping. Horace Heffner May 2007

Nuclear ZPE Tapping. Horace Heffner May 2007 ENERGY FROM UNCERTAINTY The uncertainty of momentum for a particle constrained by distance Δx is given, according to Heisenberg, by: Δmv = h/(2 π Δx) but since KE = (1/2) m v 2 = (1/(2 m) ) (Δmv) 2 ΔKE

More information

Thomas Grehl. Improvement in TOF-SIMS Instrumentation for Analytical Application and Fundamental Research

Thomas Grehl. Improvement in TOF-SIMS Instrumentation for Analytical Application and Fundamental Research Thomas Grehl Improvement in TOF-SIMS Instrumentation for Analytical Application and Fundamental Research 2003 Experimentelle Physik Improvements in TOF-SIMS Instrumentation for Analytical Application

More information

Study of a Hall effect thruster working with ambient atmospheric gas as propellant for low earth orbit missions

Study of a Hall effect thruster working with ambient atmospheric gas as propellant for low earth orbit missions Study of a Hall effect thruster working with ambient atmospheric gas as propellant for low earth orbit missions IEPC-2011-142 Presented at the 32nd International Electric Propulsion Conference, Wiesbaden

More information

ELEC 3908, Physical Electronics, Lecture 15. BJT Structure and Fabrication

ELEC 3908, Physical Electronics, Lecture 15. BJT Structure and Fabrication ELEC 3908, Physical Electronics, Lecture 15 Lecture Outline Now move on to bipolar junction transistor (BJT) Strategy for next few lectures similar to diode: structure and processing, basic operation,

More information

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation Outline MAE 493R/593V- Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics

More information

Name period AP chemistry Unit 2 worksheet Practice problems

Name period AP chemistry Unit 2 worksheet Practice problems Name period AP chemistry Unit 2 worksheet Practice problems 1. What are the SI units for a. Wavelength of light b. frequency of light c. speed of light Meter hertz (s -1 ) m s -1 (m/s) 2. T/F (correct

More information

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,

More information

Review of the isotope effect in the hydrogen spectrum

Review of the isotope effect in the hydrogen spectrum Review of the isotope effect in the hydrogen spectrum 1 Balmer and Rydberg Formulas By the middle of the 19th century it was well established that atoms emitted light at discrete wavelengths. This is in

More information

Summary of single and double electron capture cross sections for ion-atom collisions at low and intermediate energy

Summary of single and double electron capture cross sections for ion-atom collisions at low and intermediate energy Summary of single and double electron capture cross sections for ion-atom collisions at low and intermediate energy Anna Simon Institute of Physics, Jagiellonian University, Cracow Abstract: As the low

More information

Electric Fields in Dielectrics

Electric Fields in Dielectrics Electric Fields in Dielectrics Any kind of matter is full of positive and negative electric charges. In a dielectric, these charges cannot move separately from each other through any macroscopic distance,

More information

Generating Random Numbers Variance Reduction Quasi-Monte Carlo. Simulation Methods. Leonid Kogan. MIT, Sloan. 15.450, Fall 2010

Generating Random Numbers Variance Reduction Quasi-Monte Carlo. Simulation Methods. Leonid Kogan. MIT, Sloan. 15.450, Fall 2010 Simulation Methods Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Simulation Methods 15.450, Fall 2010 1 / 35 Outline 1 Generating Random Numbers 2 Variance Reduction 3 Quasi-Monte

More information

Kinetic Theory of Gases

Kinetic Theory of Gases Kinetic Theory of Gases Physics 1425 Lecture 31 Michael Fowler, UVa Bernoulli s Picture Daniel Bernoulli, in 1738, was the first to understand air pressure in terms of molecules he visualized them shooting

More information

CHAPTER 26 ELECTROSTATIC ENERGY AND CAPACITORS

CHAPTER 26 ELECTROSTATIC ENERGY AND CAPACITORS CHAPTER 6 ELECTROSTATIC ENERGY AND CAPACITORS. Three point charges, each of +q, are moved from infinity to the vertices of an equilateral triangle of side l. How much work is required? The sentence preceding

More information

Thermodynamics: Lecture 8, Kinetic Theory

Thermodynamics: Lecture 8, Kinetic Theory Thermodynamics: Lecture 8, Kinetic Theory Chris Glosser April 15, 1 1 OUTLINE I. Assumptions of Kinetic Theory (A) Molecular Flux (B) Pressure and the Ideal Gas Law II. The Maxwell-Boltzmann Distributuion

More information

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE 6450 - Dr. Alan Doolittle

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE 6450 - Dr. Alan Doolittle Lecture 12 Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12 Evaporation and Sputtering (Metalization) Evaporation For all devices, there is a need to go from semiconductor to metal.

More information