# Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)

Size: px
Start display at page:

Download "Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)"

Transcription

1 Energy Transport Focus on heat transfer Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)

2 Conduction Conduction heat transfer occurs only when there is physical contact between bodies (systems) at different temperatures by molecular motion. Heat transfer through solid bodies is by conduction alone, whereas the heat may transfer from a solid surface to a fluid partly by conduction and partly by convection.

3 Fourier s s Law of Thermal Conduction the heat flux in the y direction (W/m 2 ) q y = k thermal conductivity (W/m.K) T y temperature gradient in the y-direction (K/m)

4 The proportionality ratio, k, is called thermal conductivity of the materia

5 Thermal Conductivity (k) The thermal conductivity of a substance is defined as the heat flow per unit area per unit time when the temperature decreases by one degree in unit distance. The thermal conductivity is a material property which reflects the relative ease or difficulty of the transfer of energy through the material. It depends on the bonding and structure of the material.

6 Thermal Diffusivity (α)( The thermal diffivity is a fundamental quantity. It is analogous to momentum and mass diffusivities. α=k/ρc v where ρ and C v are the density and specific heat of the material, respectively. In mks system, the unit of thermal diffusivity is m 2.s -1, while in the cgs system it is usually cm 2.s -1.

7 Thermal Radiation Thermal radiation is the energy radiated from hot surfaces as electromagnetic waves. It does not require medium for its propagation. Heat transfer by radiation occur between solid surfaces, although radiation from gases is also possible. Solids radiate over a wide range of wavelengths, while some gases emit and absorb radiation on certain wavelengths only. The energy flux emitted by an ideal radiator is proportional to the fourth power of its absolute temperature. e b =σt 4 where e b is the emissive power and σ is the Stefan Boltzmann constant.

8 When thermal radiation strikes a body, it can be absorbed by the body, reflected from the body, or transmitted through the body. The fraction of the incident radiation which is absorbed by the body is called absorptivity ( ) Other fractions of incident radiation which are reflected and transmitted are called reflectivity (symbol ) and transmissivity, The sum of these fractions should be unity i.e.

9 Convection Convection is the heat transfer within a fluid, involving gross motion of the fluid itself. Fluid motion may be caused by differences in density as in free convection. Density differences are a direct result of temperature differences between the fluid and the solid wall surface. In forced convection, the fluid motion is produced by mechanical means, such as a domestic fan-heater in which a fan blows air across an electric element.

10 Heat Transfer Coefficient (h) When a moving fluid at one temperature is in contact with a solid at a different temperature, heat exchanges between the solid and the fluid by conduction at a rate given by Fourier s law. Under such cases the distribution of temperature within the fluid and the heat flux at the wall can be determined by using heat transfer coefficient, h, h=q 0 /(T s -T f ) =-[k(dt/dy) 0 ]/(T s -T f ) where T s, the surface temperature T f, bulk fluid temperature q 0, heat flux at the wall (dt/dy) 0, the temperature gradient in the fluid normal to the wall at the fluid-solid interface. k, the conductivity of the fluid

11 Thermal Conductivity of Gases-I Conduction of energy in a gas phase is primarily by transfer of translational energy from molecule to molecule as the faster moving (higher energy) molecules collide with the slower ones. k k = = 1 d 2 C V λ where C v, the heat capacity per unit volume, V, the average speed, λ, the mean free path. 1/ 2 v 3 κ ) B T 3 π m where m, mass of fluid molecules, K B, the Boltzmann constant, T, absolute temperature, d, the center to center distance of two molecules. The thermal conductivity of gases is independent of pressure and depends only on temperature. This conclusion is valid up to about ten atmospheres ( x 10 5 Pa) 3

12 Thermal Conductivity of Gases-II Eucken developed the following equation for the thermal conductivity of polyatomic gases at normal pressures, k = η C p R M where M, molecular weight, C p, the heat capacity at constant pressure.

13 This figure is valid up to about ten atmospheres.

14 Thermal Conductivity of Gas Mixtures The thermal conductivity of gas mixtures can be estimated within a few percent by the following equation X i k i M i i k mix = 1 / 3 X M i where X i is the mole fraction of component i having molecular weight, M i, and intrinsic thermal conductivity k i. i i 1 / 3

15 Thermal Conductivity of Solids-I Solids transmit thermal energy by two modes: elastic vibrations of the lattice moving through the crystal in the form of waves free electrons moving through the lattice also carry energy similar to the case in gases (this is observed in metals)

16 Thermal Conductivity of Solids-II Each lattice vibration (there is always a spectrum of vibrations) may be described as a traveling wave carrying energy and obeying the laws of quantum mechanics. By analogy with light theory, the waves in a crystal exhibit the characteristics of particles and are called phonons. Two types of phonon-phonon interaction are observed in solids: Normal or N-type Umklapp (U-process) collision k = η C p R M

17 Thermal Conductivity of Solids-III Since the number of phonons increases with temperature and the wavelength of phonons λ ph is proportional to 1/T. At room temperature and above, molar heat capacity Ĉ v for most materials is roughly constant the thermal conductivity of a solid which conducts energy only by phonons, decreases with increasing temperature. λ ph = 20T m d/ γ 2 T where T m, melting point, T = absolute temperature, d, crystallattice dimension, and γ, Gruneisen s constant (~2 for most solids at ordinary temperatures). THIS IS GENERALLY OBSERVED IN ELECTRICALLY INSULATING SUBSTANCES SUCH AS OXIDES (BUT NOT IN THE FORM OF POROUS, BULK MATERIALS).

18 OXIDES POROUS OXIDES

19 Thermal Conductivity of Solids-IV Phonons are also scattered by differences in isotopic masses chemical impurities dislocations second phases

20 Thermal Conductivity of Solids-V In electrical conductors, in addition to phonons, conduction electrons contribute to thermal conductivity. The electronic contribution to the thermal conductivity, k el, k el = π 2 2 n e K B T λ 3m V where n e, the number of free electrons per cm 3, λ el the mean free path of electron, V f, electron velocity at the Fermi surface and m e, electron mass. Wiedmann-Franz law and the Lorentz number, L, are utilized to determine what is the dominant mechanism for thermal conduction L = k σ el e T = e 2.45 x10 f 8 el W ohm K - 2

21

22

23

24

25

### FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions

FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or

### HEAT AND MASS TRANSFER

MEL242 HEAT AND MASS TRANSFER Prabal Talukdar Associate Professor Department of Mechanical Engineering g IIT Delhi prabal@mech.iitd.ac.in MECH/IITD Course Coordinator: Dr. Prabal Talukdar Room No: III,

### Chemistry 13: States of Matter

Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties

### The Three Heat Transfer Modes in Reflow Soldering

Section 5: Reflow Oven Heat Transfer The Three Heat Transfer Modes in Reflow Soldering There are three different heating modes involved with most SMT reflow processes: conduction, convection, and infrared

### Heat Transfer and Energy

What is Heat? Heat Transfer and Energy Heat is Energy in Transit. Recall the First law from Thermodynamics. U = Q - W What did we mean by all the terms? What is U? What is Q? What is W? What is Heat Transfer?

### Free Electron Fermi Gas (Kittel Ch. 6)

Free Electron Fermi Gas (Kittel Ch. 6) Role of Electrons in Solids Electrons are responsible for binding of crystals -- they are the glue that hold the nuclei together Types of binding (see next slide)

### Lecture 9, Thermal Notes, 3.054

Lecture 9, Thermal Notes, 3.054 Thermal Properties of Foams Closed cell foams widely used for thermal insulation Only materials with lower conductivity are aerogels (tend to be brittle and weak) and vacuum

### Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

### TEACHER BACKGROUND INFORMATION THERMAL ENERGY

TEACHER BACKGROUND INFORMATION THERMAL ENERGY In general, when an object performs work on another object, it does not transfer all of its energy to that object. Some of the energy is lost as heat due to

UNIVERSITY OF SURREY DEPARTMENT OF PHYSICS Level 2 Classical Laboratory Experiment THERMAL RADIATION (THERM) Objectives In this experiment you will explore the basic characteristics of thermal radiation,

### Vacuum Technology. Kinetic Theory of Gas. Dr. Philip D. Rack

Kinetic Theory of Gas Assistant Professor Department of Materials Science and Engineering University of Tennessee 603 Dougherty Engineering Building Knoxville, TN 3793-00 Phone: (865) 974-5344 Fax (865)

### DIFFUSION IN SOLIDS. Materials often heat treated to improve properties. Atomic diffusion occurs during heat treatment

DIFFUSION IN SOLIDS WHY STUDY DIFFUSION? Materials often heat treated to improve properties Atomic diffusion occurs during heat treatment Depending on situation higher or lower diffusion rates desired

### HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases

UNIT HEAT. KINETIC THEORY OF GASES.. Introduction Molecules have a diameter of the order of Å and the distance between them in a gas is 0 Å while the interaction distance in solids is very small. R. Clausius

### Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing

LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What

### Science Standard Articulated by Grade Level Strand 5: Physical Science

Concept 1: Properties of Objects and Materials Classify objects and materials by their observable properties. Kindergarten Grade 1 Grade 2 Grade 3 Grade 4 PO 1. Identify the following observable properties

### KINETIC MOLECULAR THEORY OF MATTER

KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,

### Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

.1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

### 1.4.6-1.4.8 Gas Laws. Heat and Temperature

1.4.6-1.4.8 Gas Laws Heat and Temperature Often the concepts of heat and temperature are thought to be the same, but they are not. Perhaps the reason the two are incorrectly thought to be the same is because

### Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows

Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows 3.- 1 Basics: equations of continuum mechanics - balance equations for mass and momentum - balance equations for the energy and the chemical

### Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light

Current Staff Course Unit/ Length August August September September October Unit Objectives/ Big Ideas Basic Outline/ Structure PS4- Types of Waves Because light can travel through space, it cannot be

### - thus, the total number of atoms per second that absorb a photon is

Stimulated Emission of Radiation - stimulated emission is referring to the emission of radiation (a photon) from one quantum system at its transition frequency induced by the presence of other photons

### Vacuum Evaporation Recap

Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.

### Acoustics: the study of sound waves

Acoustics: the study of sound waves Sound is the phenomenon we experience when our ears are excited by vibrations in the gas that surrounds us. As an object vibrates, it sets the surrounding air in motion,

### Forms of Energy. Freshman Seminar

Forms of Energy Freshman Seminar Energy Energy The ability & capacity to do work Energy can take many different forms Energy can be quantified Law of Conservation of energy In any change from one form

### AZ State Standards. Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred.

Forms of Energy AZ State Standards Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred. PO 1. Describe the following ways in which

### THE KINETIC THEORY OF GASES

Chapter 19: THE KINETIC THEORY OF GASES 1. Evidence that a gas consists mostly of empty space is the fact that: A. the density of a gas becomes much greater when it is liquefied B. gases exert pressure

### AS COMPETITION PAPER 2008

AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question

### Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004

Statistical Mechanics, Kinetic Theory Ideal Gas 8.01t Nov 22, 2004 Statistical Mechanics and Thermodynamics Thermodynamics Old & Fundamental Understanding of Heat (I.e. Steam) Engines Part of Physics Einstein

### Chapter 10 Temperature and Heat

Chapter 10 Temperature and Heat What are temperature and heat? Are they the same? What causes heat? What Is Temperature? How do we measure temperature? What are we actually measuring? Temperature and Its

### Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.

Describe the strength of attractive forces between particles. Describe the amount of space between particles. Can the particles in this state be compressed? Do the particles in this state have a definite

### 4. Introduction to Heat & Mass Transfer

4. Introduction to Heat & Mass Transfer This section will cover the following concepts: A rudimentary introduction to mass transfer. Mass transfer from a molecular point of view. Fundamental similarity

### Thermodynamics: Lecture 8, Kinetic Theory

Thermodynamics: Lecture 8, Kinetic Theory Chris Glosser April 15, 1 1 OUTLINE I. Assumptions of Kinetic Theory (A) Molecular Flux (B) Pressure and the Ideal Gas Law II. The Maxwell-Boltzmann Distributuion

### where h = 6.62 10-34 J s

Electromagnetic Spectrum: Refer to Figure 12.1 Molecular Spectroscopy: Absorption of electromagnetic radiation: The absorptions and emissions of electromagnetic radiation are related molecular-level phenomena

### Energy. Mechanical Energy

Principles of Imaging Science I (RAD119) Electromagnetic Radiation Energy Definition of energy Ability to do work Physicist s definition of work Work = force x distance Force acting upon object over distance

### CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,

### Basic Equations, Boundary Conditions and Dimensionless Parameters

Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

### Physics Notes Class 11 CHAPTER 2 UNITS AND MEASUREMENTS

1 P a g e Physics Notes Class 11 CHAPTER 2 UNITS AND MEASUREMENTS The comparison of any physical quantity with its standard unit is called measurement. Physical Quantities All the quantities in terms of

### 1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

### CHEM 120 Online Chapter 7

CHEM 120 Online Chapter 7 Date: 1. Which of the following statements is not a part of kinetic molecular theory? A) Matter is composed of particles that are in constant motion. B) Particle velocity increases

### Diffusion and Fluid Flow

Diffusion and Fluid Flow What determines the diffusion coefficient? What determines fluid flow? 1. Diffusion: Diffusion refers to the transport of substance against a concentration gradient. ΔS>0 Mass

### The rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time.

H2 PHYSICS DEFINITIONS LIST Scalar Vector Term Displacement, s Speed Velocity, v Acceleration, a Average speed/velocity Instantaneous Velocity Newton s First Law Newton s Second Law Newton s Third Law

### Lecture 30 - Chapter 6 Thermal & Energy Systems (Examples) 1

Potential Energy ME 101: Thermal and Energy Systems Chapter 7 - Examples Gravitational Potential Energy U = mgδh Relative to a reference height Increase in elevation increases U Decrease in elevation decreases

### Molecular Spectroscopy

Molecular Spectroscopy UV-Vis Spectroscopy Absorption Characteristics of Some Common Chromophores UV-Vis Spectroscopy Absorption Characteristics of Aromatic Compounds UV-Vis Spectroscopy Effect of extended

### Take away concepts. What is Energy? Solar Energy. EM Radiation. Properties of waves. Solar Radiation Emission and Absorption

Take away concepts Solar Radiation Emission and Absorption 1. 2. 3. 4. 5. 6. Conservation of energy. Black body radiation principle Emission wavelength and temperature (Wein s Law). Radiation vs. distance

### Gases. States of Matter. Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large Chaotic (random)

Gases States of Matter States of Matter Kinetic E (motion) Potential E(interaction) Distance Between (size) Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large

### Thermodynamics AP Physics B. Multiple Choice Questions

Thermodynamics AP Physics B Name Multiple Choice Questions 1. What is the name of the following statement: When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium

### Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

### 13.1 The Nature of Gases. What is Kinetic Theory? Kinetic Theory and a Model for Gases. Chapter 13: States of Matter. Principles of Kinetic Theory

Chapter 13: States of Matter The Nature of Gases The Nature of Gases kinetic molecular theory (KMT), gas pressure (pascal, atmosphere, mm Hg), kinetic energy The Nature of Liquids vaporization, evaporation,

### Radiation Transfer in Environmental Science

Radiation Transfer in Environmental Science with emphasis on aquatic and vegetation canopy media Autumn 2008 Prof. Emmanuel Boss, Dr. Eyal Rotenberg Introduction Radiation in Environmental sciences Most

### CHAPTER 2 Energy and Earth

CHAPTER 2 Energy and Earth This chapter is concerned with the nature of energy and how it interacts with Earth. At this stage we are looking at energy in an abstract form though relate it to how it affect

### In today s world of wireless communications

TUTORIAL RF CERAMIC CHIP CAPACITORS IN HIGH RF POWER APPLICATIONS Reprinted with permission of MICROWAVE JOURNAL from the April 2000 issue. 2000 Horizon House Publications, Inc. In today s world of wireless

### POROUS BURNER - A New Approach to Infrared

Page: 1 POROUS BURNER - A New Approach to Infrared 1. Preface There are several possibilities to produce infrared radiation in the technical sense. Regarding the source of energy you can distinguish between

### Energy and Energy Transformations Test Review

Energy and Energy Transformations Test Review Completion: 1. Mass 13. Kinetic 2. Four 14. thermal 3. Kinetic 15. Thermal energy (heat) 4. Electromagnetic/Radiant 16. Thermal energy (heat) 5. Thermal 17.

### 1. At which temperature would a source radiate the least amount of electromagnetic energy? 1) 273 K 3) 32 K 2) 212 K 4) 5 K

1. At which temperature would a source radiate the least amount of electromagnetic energy? 1) 273 K 3) 32 K 2) 212 K 4) 5 K 2. How does the amount of heat energy reflected by a smooth, dark-colored concrete

### Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution

Chapter 5 5.6 Doped GaAs Consider the GaAs crystal at 300 K. a. Calculate the intrinsic conductivity and resistivity. Second Edition ( 2001 McGraw-Hill) b. In a sample containing only 10 15 cm -3 ionized

### The content is based on the National Science Teachers Association (NSTA) standards and is aligned with state standards.

Literacy Advantage Physical Science Physical Science Literacy Advantage offers a tightly focused curriculum designed to address fundamental concepts such as the nature and structure of matter, the characteristics

### Name: Class: Date: 10. Some substances, when exposed to visible light, absorb more energy as heat than other substances absorb.

Name: Class: Date: ID: A PS Chapter 13 Review Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. In all cooling

### CLASSICAL CONCEPT REVIEW 8

CLASSICAL CONCEPT REVIEW 8 Kinetic Theory Information concerning the initial motions of each of the atoms of macroscopic systems is not accessible, nor do we have the computational capability even with

### CHAPTER 12. Gases and the Kinetic-Molecular Theory

CHAPTER 12 Gases and the Kinetic-Molecular Theory 1 Gases vs. Liquids & Solids Gases Weak interactions between molecules Molecules move rapidly Fast diffusion rates Low densities Easy to compress Liquids

### Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity

Steady Heat Conduction In thermodynamics, we considered the amount of heat transfer as a system undergoes a process from one equilibrium state to another. hermodynamics gives no indication of how long

### Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation

Outline MAE 493R/593V- Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics

### A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences.

I. MOLECULES IN MOTION: A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences. 1) theory developed in the late 19 th century to

### 1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

### 5.33 Lecture Notes: Introduction to Spectroscopy

5.33 Lecture Notes: ntroduction to Spectroscopy What is spectroscopy? Studying the properties of matter through its interaction with different frequency components of the electromagnetic spectrum. Latin:

### Corso di Fisica Te T cnica Ambientale Solar Radiation

Solar Radiation Solar radiation i The Sun The Sun is the primary natural energy source for our planet. It has a diameter D = 1.39x10 6 km and a mass M = 1.989x10 30 kg and it is constituted by 1/3 of He

Convection, Conduction & Radiation There are three basic ways in which heat is transferred: convection, conduction and radiation. In gases and liquids, heat is usually transferred by convection, in which

### Gases and Kinetic-Molecular Theory: Chapter 12. Chapter Outline. Chapter Outline

Gases and Kinetic-Molecular heory: Chapter Chapter Outline Comparison of Solids, Liquids, and Gases Composition of the Atmosphere and Some Common Properties of Gases Pressure Boyle s Law: he Volume-Pressure

### (1) The size of a gas particle is negligible as compared to the volume of the container in which the gas is placed.

Gas Laws and Kinetic Molecular Theory The Gas Laws are based on experiments, and they describe how a gas behaves under certain conditions. However, Gas Laws do not attempt to explain the behavior of gases.

### momentum change per impact The average rate of change of momentum = Time interval between successive impacts 2m x 2l / x m x m x 2 / l P = l 2 P = l 3

Kinetic Molecular Theory This explains the Ideal Gas Pressure olume and Temperature behavior It s based on following ideas:. Any ordinary sized or macroscopic sample of gas contains large number of molecules.

### Lecture 24 - Surface tension, viscous flow, thermodynamics

Lecture 24 - Surface tension, viscous flow, thermodynamics Surface tension, surface energy The atoms at the surface of a solid or liquid are not happy. Their bonding is less ideal than the bonding of atoms

### Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature

OpenStax-CNX module: m42217 1 Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons

### Resistivity. V A = R = L ρ (1)

Resistivity Electric resistance R of a conductor depends on its size and shape as well as on the conducting material. The size- and shape-dependence was discovered by Georg Simon Ohm and is often treated

### Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.

Name Period Gas Laws Kinetic energy is the energy of motion of molecules. Gas state of matter made up of tiny particles (atoms or molecules). Each atom or molecule is very far from other atoms or molecules.

### Introduction To Materials Science FOR ENGINEERS, Ch. 5. Diffusion. MSE 201 Callister Chapter 5

Diffusion MSE 21 Callister Chapter 5 1 Goals: Diffusion - how do atoms move through solids? Fundamental concepts and language Diffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities Diffusion

### HEAT TRANSFER IM0245 3 LECTURE HOURS PER WEEK THERMODYNAMICS - IM0237 2014_1

COURSE CODE INTENSITY PRE-REQUISITE CO-REQUISITE CREDITS ACTUALIZATION DATE HEAT TRANSFER IM05 LECTURE HOURS PER WEEK 8 HOURS CLASSROOM ON 6 WEEKS, HOURS LABORATORY, HOURS OF INDEPENDENT WORK THERMODYNAMICS

### Kinetic Molecular Theory of Matter

Kinetic Molecular Theor of Matter Heat capacit of gases and metals Pressure of gas Average speed of electrons in semiconductors Electron noise in resistors Positive metal ion cores Free valence electrons

### The Ideal Gas Law. Gas Constant. Applications of the Gas law. P = ρ R T. Lecture 2: Atmospheric Thermodynamics

Lecture 2: Atmospheric Thermodynamics Ideal Gas Law (Equation of State) Hydrostatic Balance Heat and Temperature Conduction, Convection, Radiation Latent Heating Adiabatic Process Lapse Rate and Stability

### The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD

TN-100 The Fundamentals of Infrared Spectroscopy The Principles of Infrared Spectroscopy Joe Van Gompel, PhD Spectroscopy is the study of the interaction of electromagnetic radiation with matter. The electromagnetic

### University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory

University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory Lab 8: Optical Absorption Spring 2002 Yan Zhang and Ali Shakouri, 05/22/2002 (Based

### Treasure Hunt. Lecture 2 How does Light Interact with the Environment? EMR Principles and Properties. EMR and Remote Sensing

Lecture 2 How does Light Interact with the Environment? Treasure Hunt Find and scan all 11 QR codes Choose one to watch / read in detail Post the key points as a reaction to http://www.scoop.it/t/env202-502-w2

### Science Standard 3 Energy and Its Effects Grade Level Expectations

Science Standard 3 Energy and Its Effects Grade Level Expectations Science Standard 3 Energy and Its Effects The flow of energy drives processes of change in all biological, chemical, physical, and geological

### PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

### 10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory

The first scheduled quiz will be given next Tuesday during Lecture. It will last 5 minutes. Bring pencil, calculator, and your book. The coverage will be pp 364-44, i.e. Sections 0.0 through.4. 0.7 Theory

### MAKING SENSE OF ENERGY Electromagnetic Waves

Adapted from State of Delaware TOE Unit MAKING SENSE OF ENERGY Electromagnetic Waves GOALS: In this Part of the unit you will Learn about electromagnetic waves, how they are grouped, and how each group

### CPI Links Content Guide & Five Items Resource

CPI Links Content Guide & Five Items Resource Introduction The following information should be used as a companion to the CPI Links. It provides clarifications concerning the content and skills contained

### Boyles Law. At constant temperature the volume occupied by a fixed amount of gas is inversely proportional to the pressure on the gas 1 P = P

Boyles Law At constant temperature the volume occupied by a fixed amount of gas is inversely proportional to the pressure on the gas 1 or k 1 Boyles Law Example ressure olume Initial 2.00 atm 100 cm 3

### Forensic Science Standards and Benchmarks

Forensic Science Standards and Standard 1: Understands and applies principles of scientific inquiry Power : Identifies questions and concepts that guide science investigations Uses technology and mathematics

### How To Calculate Thermal Resistance On A Pb (Plastipo)

VISHAY BEYSCHLAG Resistive Products 1. INTRODUCTION Thermal management is becoming more important as the density of electronic components in modern printed circuit boards (PCBs), as well as the applied

### Electromagnetic Radiation (EMR) and Remote Sensing

Electromagnetic Radiation (EMR) and Remote Sensing 1 Atmosphere Anything missing in between? Electromagnetic Radiation (EMR) is radiated by atomic particles at the source (the Sun), propagates through

### Carbon Cable. Sergio Rubio Carles Paul Albert Monte

Carbon Cable Sergio Rubio Carles Paul Albert Monte Carbon, Copper and Manganine PhYsical PropERTieS CARBON PROPERTIES Carbon physical Properties Temperature Coefficient α -0,0005 ºC-1 Density D 2260 kg/m3

### Module 2.2. Heat transfer mechanisms

Module 2.2 Heat transfer mechanisms Learning Outcomes On successful completion of this module learners will be able to - Describe the 1 st and 2 nd laws of thermodynamics. - Describe heat transfer mechanisms.

### Conductive and Radiative Heat Transfer in Insulators

Conductive and Radiative Heat Transfer in Insulators Akhan Tleoubaev, Ph.D. LaserComp, Inc., December 1998 Heat transfer for most thermal insulation materials occurs via both conduction and radiation.

### Effects of Temperature, Pressure and Water Vapor on Gas Phase Infrared Absorption by CO 2

Effects of Temperature, Pressure and Water Vapor on Gas Phase Infrared Absorption by CO 2 D. K. McDermitt, J. M. Welles, and R. D. Eckles - LI-COR, inc. Lincoln, NE 68504 USA Introduction Infrared analysis

### Chapter 5: Diffusion. 5.1 Steady-State Diffusion

: Diffusion Diffusion: the movement of particles in a solid from an area of high concentration to an area of low concentration, resulting in the uniform distribution of the substance Diffusion is process

### Chapter 4: Transfer of Thermal Energy

Chapter 4: Transfer of Thermal Energy Goals of Period 4 Section 4.1: To define temperature and thermal energy Section 4.2: To discuss three methods of thermal energy transfer. Section 4.3: To describe

### Chemistry. The student will be able to identify and apply basic safety procedures and identify basic equipment.

Chemistry UNIT I: Introduction to Chemistry The student will be able to describe what chemistry is and its scope. a. Define chemistry. b. Explain that chemistry overlaps many other areas of science. The