# Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)

 To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Save this PDF as:

Size: px
Start display at page:

Download "Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)"

## Transcription

1 Energy Transport Focus on heat transfer Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)

2 Conduction Conduction heat transfer occurs only when there is physical contact between bodies (systems) at different temperatures by molecular motion. Heat transfer through solid bodies is by conduction alone, whereas the heat may transfer from a solid surface to a fluid partly by conduction and partly by convection.

3 Fourier s s Law of Thermal Conduction the heat flux in the y direction (W/m 2 ) q y = k thermal conductivity (W/m.K) T y temperature gradient in the y-direction (K/m)

4 The proportionality ratio, k, is called thermal conductivity of the materia

5 Thermal Conductivity (k) The thermal conductivity of a substance is defined as the heat flow per unit area per unit time when the temperature decreases by one degree in unit distance. The thermal conductivity is a material property which reflects the relative ease or difficulty of the transfer of energy through the material. It depends on the bonding and structure of the material.

6 Thermal Diffusivity (α)( The thermal diffivity is a fundamental quantity. It is analogous to momentum and mass diffusivities. α=k/ρc v where ρ and C v are the density and specific heat of the material, respectively. In mks system, the unit of thermal diffusivity is m 2.s -1, while in the cgs system it is usually cm 2.s -1.

7 Thermal Radiation Thermal radiation is the energy radiated from hot surfaces as electromagnetic waves. It does not require medium for its propagation. Heat transfer by radiation occur between solid surfaces, although radiation from gases is also possible. Solids radiate over a wide range of wavelengths, while some gases emit and absorb radiation on certain wavelengths only. The energy flux emitted by an ideal radiator is proportional to the fourth power of its absolute temperature. e b =σt 4 where e b is the emissive power and σ is the Stefan Boltzmann constant.

8 When thermal radiation strikes a body, it can be absorbed by the body, reflected from the body, or transmitted through the body. The fraction of the incident radiation which is absorbed by the body is called absorptivity ( ) Other fractions of incident radiation which are reflected and transmitted are called reflectivity (symbol ) and transmissivity, The sum of these fractions should be unity i.e.

9 Convection Convection is the heat transfer within a fluid, involving gross motion of the fluid itself. Fluid motion may be caused by differences in density as in free convection. Density differences are a direct result of temperature differences between the fluid and the solid wall surface. In forced convection, the fluid motion is produced by mechanical means, such as a domestic fan-heater in which a fan blows air across an electric element.

10 Heat Transfer Coefficient (h) When a moving fluid at one temperature is in contact with a solid at a different temperature, heat exchanges between the solid and the fluid by conduction at a rate given by Fourier s law. Under such cases the distribution of temperature within the fluid and the heat flux at the wall can be determined by using heat transfer coefficient, h, h=q 0 /(T s -T f ) =-[k(dt/dy) 0 ]/(T s -T f ) where T s, the surface temperature T f, bulk fluid temperature q 0, heat flux at the wall (dt/dy) 0, the temperature gradient in the fluid normal to the wall at the fluid-solid interface. k, the conductivity of the fluid

11 Thermal Conductivity of Gases-I Conduction of energy in a gas phase is primarily by transfer of translational energy from molecule to molecule as the faster moving (higher energy) molecules collide with the slower ones. k k = = 1 d 2 C V λ where C v, the heat capacity per unit volume, V, the average speed, λ, the mean free path. 1/ 2 v 3 κ ) B T 3 π m where m, mass of fluid molecules, K B, the Boltzmann constant, T, absolute temperature, d, the center to center distance of two molecules. The thermal conductivity of gases is independent of pressure and depends only on temperature. This conclusion is valid up to about ten atmospheres ( x 10 5 Pa) 3

12 Thermal Conductivity of Gases-II Eucken developed the following equation for the thermal conductivity of polyatomic gases at normal pressures, k = η C p R M where M, molecular weight, C p, the heat capacity at constant pressure.

13 This figure is valid up to about ten atmospheres.

14 Thermal Conductivity of Gas Mixtures The thermal conductivity of gas mixtures can be estimated within a few percent by the following equation X i k i M i i k mix = 1 / 3 X M i where X i is the mole fraction of component i having molecular weight, M i, and intrinsic thermal conductivity k i. i i 1 / 3

15 Thermal Conductivity of Solids-I Solids transmit thermal energy by two modes: elastic vibrations of the lattice moving through the crystal in the form of waves free electrons moving through the lattice also carry energy similar to the case in gases (this is observed in metals)

16 Thermal Conductivity of Solids-II Each lattice vibration (there is always a spectrum of vibrations) may be described as a traveling wave carrying energy and obeying the laws of quantum mechanics. By analogy with light theory, the waves in a crystal exhibit the characteristics of particles and are called phonons. Two types of phonon-phonon interaction are observed in solids: Normal or N-type Umklapp (U-process) collision k = η C p R M

17 Thermal Conductivity of Solids-III Since the number of phonons increases with temperature and the wavelength of phonons λ ph is proportional to 1/T. At room temperature and above, molar heat capacity Ĉ v for most materials is roughly constant the thermal conductivity of a solid which conducts energy only by phonons, decreases with increasing temperature. λ ph = 20T m d/ γ 2 T where T m, melting point, T = absolute temperature, d, crystallattice dimension, and γ, Gruneisen s constant (~2 for most solids at ordinary temperatures). THIS IS GENERALLY OBSERVED IN ELECTRICALLY INSULATING SUBSTANCES SUCH AS OXIDES (BUT NOT IN THE FORM OF POROUS, BULK MATERIALS).

18 OXIDES POROUS OXIDES

19 Thermal Conductivity of Solids-IV Phonons are also scattered by differences in isotopic masses chemical impurities dislocations second phases

20 Thermal Conductivity of Solids-V In electrical conductors, in addition to phonons, conduction electrons contribute to thermal conductivity. The electronic contribution to the thermal conductivity, k el, k el = π 2 2 n e K B T λ 3m V where n e, the number of free electrons per cm 3, λ el the mean free path of electron, V f, electron velocity at the Fermi surface and m e, electron mass. Wiedmann-Franz law and the Lorentz number, L, are utilized to determine what is the dominant mechanism for thermal conduction L = k σ el e T = e 2.45 x10 f 8 el W ohm K - 2

21

22

23

24

25

### FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions

FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or

### HEAT AND MASS TRANSFER

MEL242 HEAT AND MASS TRANSFER Prabal Talukdar Associate Professor Department of Mechanical Engineering g IIT Delhi prabal@mech.iitd.ac.in MECH/IITD Course Coordinator: Dr. Prabal Talukdar Room No: III,

### The Three Heat Transfer Modes in Reflow Soldering

Section 5: Reflow Oven Heat Transfer The Three Heat Transfer Modes in Reflow Soldering There are three different heating modes involved with most SMT reflow processes: conduction, convection, and infrared

### Heat Transfer and Energy

What is Heat? Heat Transfer and Energy Heat is Energy in Transit. Recall the First law from Thermodynamics. U = Q - W What did we mean by all the terms? What is U? What is Q? What is W? What is Heat Transfer?

### Free Electron Fermi Gas (Kittel Ch. 6)

Free Electron Fermi Gas (Kittel Ch. 6) Role of Electrons in Solids Electrons are responsible for binding of crystals -- they are the glue that hold the nuclei together Types of binding (see next slide)

### - the total energy of the system is found by summing up (integrating) over all particles n(ε) at different energies ε

Average Particle Energy in an Ideal Gas - the total energy of the system is found by summing up (integrating) over all particles n(ε) at different energies ε - with the integral - we find - note: - the

### Greenhouse Effect and the Global Energy Balance

Greenhouse Effect and the Global Energy Balance Energy transmission ( a a refresher) There are three modes of energy transmission to consider. Conduction: the transfer of energy in a substance by means

### Chemistry 13: States of Matter

Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties

### DIFFUSION IN SOLIDS. Materials often heat treated to improve properties. Atomic diffusion occurs during heat treatment

DIFFUSION IN SOLIDS WHY STUDY DIFFUSION? Materials often heat treated to improve properties Atomic diffusion occurs during heat treatment Depending on situation higher or lower diffusion rates desired

UNIVERSITY OF SURREY DEPARTMENT OF PHYSICS Level 2 Classical Laboratory Experiment THERMAL RADIATION (THERM) Objectives In this experiment you will explore the basic characteristics of thermal radiation,

### Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

.1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

### Wave Properties of Electromagnetic Radiation

Wave Properties of Electromagnetic Radiation Two options are available for analytical utility when an analyte interacts with a beam of electromagnetic radiation in an instrument 1. We can monitor the changes

### Lecture 9, Thermal Notes, 3.054

Lecture 9, Thermal Notes, 3.054 Thermal Properties of Foams Closed cell foams widely used for thermal insulation Only materials with lower conductivity are aerogels (tend to be brittle and weak) and vacuum

### HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases

UNIT HEAT. KINETIC THEORY OF GASES.. Introduction Molecules have a diameter of the order of Å and the distance between them in a gas is 0 Å while the interaction distance in solids is very small. R. Clausius

### Kinetic Theory of Gases

Kinetic Theory of Gases Important Points:. Assumptions: a) Every gas consists of extremely small particles called molecules. b) The molecules of a gas are identical, spherical, rigid and perfectly elastic

### TEACHER BACKGROUND INFORMATION THERMAL ENERGY

TEACHER BACKGROUND INFORMATION THERMAL ENERGY In general, when an object performs work on another object, it does not transfer all of its energy to that object. Some of the energy is lost as heat due to

### Vacuum Technology. Kinetic Theory of Gas. Dr. Philip D. Rack

Kinetic Theory of Gas Assistant Professor Department of Materials Science and Engineering University of Tennessee 603 Dougherty Engineering Building Knoxville, TN 3793-00 Phone: (865) 974-5344 Fax (865)

### Science Standard Articulated by Grade Level Strand 5: Physical Science

Concept 1: Properties of Objects and Materials Classify objects and materials by their observable properties. Kindergarten Grade 1 Grade 2 Grade 3 Grade 4 PO 1. Identify the following observable properties

### Physics Notes Class 11 CHAPTER 13 KINETIC THEORY

1 P a g e Physics Notes Class 11 CHAPTER 13 KINETIC THEORY Assumptions of Kinetic Theory of Gases 1. Every gas consists of extremely small particles known as molecules. The molecules of a given gas are

### Boltzmann Distribution Law

Boltzmann Distribution Law The motion of molecules is extremely chaotic Any individual molecule is colliding with others at an enormous rate Typically at a rate of a billion times per second We introduce

### phys4.17 Page 1 - under normal conditions (pressure, temperature) graphite is the stable phase of crystalline carbon

Covalent Crystals - covalent bonding by shared electrons in common orbitals (as in molecules) - covalent bonds lead to the strongest bound crystals, e.g. diamond in the tetrahedral structure determined

### 5.6 Isobaric thermal expansion and isothermal compression (Hiroshi Matsuoka)

5.6 Isobaric thermal expansion and isothermal compression Hiroshi Matsuoka 1 5.6.2 he coefficient of thermal expansion as a response function to a temperature change he coefficient of thermal expansion

### Lecture 2: Radiation/Heat in the atmosphere

Lecture 2: Radiation/Heat in the atmosphere TEMPERATURE is a measure of the internal heat energy of a substance. The molecules that make up all matter are in constant motion. By internal heat energy, we

### Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing

LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What

### 1.4.6-1.4.8 Gas Laws. Heat and Temperature

1.4.6-1.4.8 Gas Laws Heat and Temperature Often the concepts of heat and temperature are thought to be the same, but they are not. Perhaps the reason the two are incorrectly thought to be the same is because

### Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

### KINETIC THEORY OF GASES. Boyle s Law: At constant temperature volume of given mass of gas is inversely proportional to its pressure.

KINETIC THEORY OF GASES Boyle s Law: At constant temperature volume of given mass of gas is inversely proportional to its pressure. Charle s Law: At constant pressure volume of a given mass of gas is directly

### Type: Double Date: Kinetic Energy of an Ideal Gas II. Homework: Read 14.3, Do Concept Q. # (15), Do Problems # (28, 29, 31, 37)

Type: Double Date: Objective: Kinetic Energy of an Ideal Gas I Kinetic Energy of an Ideal Gas II Homework: Read 14.3, Do Concept Q. # (15), Do Problems # (8, 9, 31, 37) AP Physics Mr. Mirro Kinetic Energy

### Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows

Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows 3.- 1 Basics: equations of continuum mechanics - balance equations for mass and momentum - balance equations for the energy and the chemical

### - thus, the total number of atoms per second that absorb a photon is

Stimulated Emission of Radiation - stimulated emission is referring to the emission of radiation (a photon) from one quantum system at its transition frequency induced by the presence of other photons

### TYPES OF FLUID FLOW. Laminar or streamline flow. Turbulent flow

FLUID DYNAMICS We will deal with Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID

### Physics 53. Wave Motion 1

Physics 53 Wave Motion 1 It's just a job. Grass grows, waves pound the sand, I beat people up. Muhammad Ali Overview To transport energy, momentum or angular momentum from one place to another, one can

### A8 Thermal properties of materials

A8 Thermal properties of materials Thermal properties the melting temperature, T m, and the glass temperature (temperatura de transição vítrea), T g, relate directly to the strength of the bonds in the

### Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light

Current Staff Course Unit/ Length August August September September October Unit Objectives/ Big Ideas Basic Outline/ Structure PS4- Types of Waves Because light can travel through space, it cannot be

### KINETIC THEORY. 1.Name any one scientist who explained the behavior of gases considering it to be made up of tiny particles.

KINETIC THEORY ONE MARK OUESTION: 1.Name any one scientist who explained the behavior of gases considering it to be made up of tiny particles. 2.Based on which idea kinetic theory of gases explain the

### Interactions Between Electromagnetic Wave and Targets

Interactions Between Electromagnetic Wave and Targets Electromagnetic radiation wavelength λ, frequency ν and the velocity υ have the following relation. λ = υ/ν by: Dr. Kiyoshi Honda Space Technology

### Acoustics: the study of sound waves

Acoustics: the study of sound waves Sound is the phenomenon we experience when our ears are excited by vibrations in the gas that surrounds us. As an object vibrates, it sets the surrounding air in motion,

### Thermodynamics: Lecture 8, Kinetic Theory

Thermodynamics: Lecture 8, Kinetic Theory Chris Glosser April 15, 1 1 OUTLINE I. Assumptions of Kinetic Theory (A) Molecular Flux (B) Pressure and the Ideal Gas Law II. The Maxwell-Boltzmann Distributuion

### (b) Explain how the principle of conservation of momentum is a natural consequence of Newton s laws of motion. [3]

Physics A Unit: G484: The Newtonian World 1(a) State Newton s second law of motion. The resultant force on an object is proportional to the rate of change of momentum of the object In part (a) the candidate

### Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004

Statistical Mechanics, Kinetic Theory Ideal Gas 8.01t Nov 22, 2004 Statistical Mechanics and Thermodynamics Thermodynamics Old & Fundamental Understanding of Heat (I.e. Steam) Engines Part of Physics Einstein

### where h = 6.62 10-34 J s

Electromagnetic Spectrum: Refer to Figure 12.1 Molecular Spectroscopy: Absorption of electromagnetic radiation: The absorptions and emissions of electromagnetic radiation are related molecular-level phenomena

### Copper, Zinc and Brass (an alloy of Cu and Zn) have very similar specific heat capacities. Why should this be so?

Thermal Properties 1. Specific Heat Capacity The heat capacity or thermal capacity of a body is a measure of how much thermal energy is required to raise its temperature by 1K (1 C). This will depend on

### Forms of Energy. Freshman Seminar

Forms of Energy Freshman Seminar Energy Energy The ability & capacity to do work Energy can take many different forms Energy can be quantified Law of Conservation of energy In any change from one form

### Chapter 10 Temperature and Heat

Chapter 10 Temperature and Heat What are temperature and heat? Are they the same? What causes heat? What Is Temperature? How do we measure temperature? What are we actually measuring? Temperature and Its

### 4. Introduction to Heat & Mass Transfer

4. Introduction to Heat & Mass Transfer This section will cover the following concepts: A rudimentary introduction to mass transfer. Mass transfer from a molecular point of view. Fundamental similarity

### Gases. Gas: fluid, occupies all available volume Liquid: fluid, fixed volume Solid: fixed volume, fixed shape Others?

CHAPTER 5: Gases Chemistry of Gases Pressure and Boyle s Law Temperature and Charles Law The Ideal Gas Law Chemical Calculations of Gases Mixtures of Gases Kinetic Theory of Gases Real Gases Gases The

### AZ State Standards. Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred.

Forms of Energy AZ State Standards Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred. PO 1. Describe the following ways in which

### KINETIC MOLECULAR THEORY OF MATTER

KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,

### 4.5 Orbits, Tides, and the Acceleration of Gravity

4.5 Orbits, Tides, and the Acceleration of Gravity Our goals for learning: How do gravity and energy together allow us to understand orbits? How does gravity cause tides? Why do all objects fall at the

### THE KINETIC THEORY OF GASES

Chapter 19: THE KINETIC THEORY OF GASES 1. Evidence that a gas consists mostly of empty space is the fact that: A. the density of a gas becomes much greater when it is liquefied B. gases exert pressure

### Vacuum Evaporation Recap

Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.

### AS COMPETITION PAPER 2008

AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question

### CHAPTER 3 PROPERTIES OF NATURAL GASES

CHAPTER 3 PROPERTIES OF NATURAL GASES The behavior of natural gas, whether pure methane or a mixture of volatile hydrocarbons and the nonhydrocarbons nitrogen, carbon dioxide, and hydrogen sulfide, must

### Chapter 3 Temperature and Heat

Chapter 3 Temperature and Heat In Chapter, temperature was described as an intensive property of a system. In common parlance, we understand temperature as a property which is related to the degree of

### Energy. Mechanical Energy

Principles of Imaging Science I (RAD119) Electromagnetic Radiation Energy Definition of energy Ability to do work Physicist s definition of work Work = force x distance Force acting upon object over distance

### Chapter 16 Heat Transfer

Chapter 16 Heat Transfer Conduction Convection Radiation John Suchocki demonstrates the low conductivity of red-hot coals with his bare feet. 1 Three different ways of heat transmission Heat transfers

### Core Idea PS3. Energy. How is energy transferred and conserved?

Core Idea PS3 Energy How is energy transferred and conserved? interaction explain predict concept: the transfer of energy from one object or system of objects to another total energy defined system changes

### Kinetic Molecular Theory

Kinetic Molecular Theory Particle volume - The volume of an individual gas particle is small compaired to that of its container. Therefore, gas particles are considered to have mass, but no volume. There

### Microscale and Nanoscale Heat Transfer

Sebastian Volz (Ed.) Microscale and Nanoscale Heat Transfer With 144 Figures and 7 Tables In Collaboration with Remi Carminati, Patrice Chantrenne, Stefan Dilhaire, Severine Gomez, Nathalie Trannoy, and

### Kinetic Theory. Bellringer. Kinetic Theory, continued. Visual Concept: Kinetic Molecular Theory. States of Matter, continued.

Bellringer You are already familiar with the most common states of matter: solid, liquid, and gas. For example you can see solid ice and liquid water. You cannot see water vapor, but you can feel it in

### DEPARTMENT: SCIENCE COURSE TITLE: CHEMISTRY HONORS COURSE NUMBER: 236 GRADE(S): 10-12

DEPARTMENT: SCIENCE COURSE TITLE: CHEMISTRY HONORS COURSE NUMBER: 236 GRADE(S): 10-12 PRE-REQUISITES (IF ANY): ALGEBRA 2 (HONORS LEVEL) Matter and Measurement UNIT LENGTH CONTENT SKILLS METHODS OF ASSESSMENT

### Diffusion and Fluid Flow

Diffusion and Fluid Flow What determines the diffusion coefficient? What determines fluid flow? 1. Diffusion: Diffusion refers to the transport of substance against a concentration gradient. ΔS>0 Mass

### The rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time.

H2 PHYSICS DEFINITIONS LIST Scalar Vector Term Displacement, s Speed Velocity, v Acceleration, a Average speed/velocity Instantaneous Velocity Newton s First Law Newton s Second Law Newton s Third Law

### An increase in temperature causes an increase in pressure due to more collisions.

SESSION 7: KINETIC THEORY OF GASES Key Concepts In this session we will focus on summarising what you need to know about: Kinetic molecular theory Pressure, volume and temperature relationships Properties

### Molecular Spectroscopy

Molecular Spectroscopy UV-Vis Spectroscopy Absorption Characteristics of Some Common Chromophores UV-Vis Spectroscopy Absorption Characteristics of Aromatic Compounds UV-Vis Spectroscopy Effect of extended

### CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,

### Wed Sep 12, 2007 THE GASEOUS STATE

Chapter 5: Gases Gas Stoichiometry Partial Pressure Kinetic Theory Effusion and Diffusion Wed Sep 12, 2007 Exam #1 - Friday, Sep 14 Attendance is mandatory! Practice exam today in recitation Week 3 CHEM

Convection, Conduction & Radiation There are three basic ways in which heat is transferred: convection, conduction and radiation. In gases and liquids, heat is usually transferred by convection, in which

### For one dimensional heat transfer by conduction in the x-direction only, the heat transfer rate is given by

Chapter.3-1 Modes of Heat Transfer Conduction For one dimensional heat transfer by conduction in the -direction only, the heat transfer rate is given by Q ka d (.3-4) In this epression, k is a property

### The Nature of Electromagnetic Radiation

II The Nature of Electromagnetic Radiation The Sun s energy has traveled across space as electromagnetic radiation, and that is the form in which it arrives on Earth. It is this radiation that determines

### Basic Equations, Boundary Conditions and Dimensionless Parameters

Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

### Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.

Describe the strength of attractive forces between particles. Describe the amount of space between particles. Can the particles in this state be compressed? Do the particles in this state have a definite

### Thermodynamics AP Physics B. Multiple Choice Questions

Thermodynamics AP Physics B Name Multiple Choice Questions 1. What is the name of the following statement: When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium

### 15. The Kinetic Theory of Gases

5. The Kinetic Theory of Gases Introduction and Summary Previously the ideal gas law was discussed from an experimental point of view. The relationship between pressure, density, and temperature was later

### CHM Kinetic Theory of Gases (r14) Charles Taylor 1/6

CHM 110 - Kinetic Theory of Gases (r14) - 2014 Charles Taylor 1/6 Introduction We've talked about the gas laws and how they were derived from experiment. As scientists, we would like to figure out why

### Radiation Transfer in Environmental Science

Radiation Transfer in Environmental Science with emphasis on aquatic and vegetation canopy media Autumn 2008 Prof. Emmanuel Boss, Dr. Eyal Rotenberg Introduction Radiation in Environmental sciences Most

### Physics Notes Class 11 CHAPTER 2 UNITS AND MEASUREMENTS

1 P a g e Physics Notes Class 11 CHAPTER 2 UNITS AND MEASUREMENTS The comparison of any physical quantity with its standard unit is called measurement. Physical Quantities All the quantities in terms of

Heat Transfer: Radiation Heat transfer occurs by three mechanisms: conduction, convection, and radiation. We have discussed conduction in the past two lessons. In this lesson, we will discuss radiation.

### Mechanisms of Heat Transfer. Amin Sabzevari

Mechanisms of Heat Transfer Amin Sabzevari Outline Definition of Heat and Temperature Conduction, Convection, Radiation Demonstrations and Examples What is Heat? Heat is the spontaneous flow of energy

### 5.33 Lecture Notes: Introduction to Spectroscopy

5.33 Lecture Notes: ntroduction to Spectroscopy What is spectroscopy? Studying the properties of matter through its interaction with different frequency components of the electromagnetic spectrum. Latin:

### The Kinetic Theory of Gases Sections Covered in the Text: Chapter 18

The Kinetic Theory of Gases Sections Covered in the Text: Chapter 18 In Note 15 we reviewed macroscopic properties of matter, in particular, temperature and pressure. Here we see how the temperature and

Steady Heat Conduction In thermodynamics, we considered the amount of heat transfer as a system undergoes a process from one equilibrium state to another. hermodynamics gives no indication of how long

### The content is based on the National Science Teachers Association (NSTA) standards and is aligned with state standards.

Literacy Advantage Physical Science Physical Science Literacy Advantage offers a tightly focused curriculum designed to address fundamental concepts such as the nature and structure of matter, the characteristics

### Take away concepts. What is Energy? Solar Energy. EM Radiation. Properties of waves. Solar Radiation Emission and Absorption

Take away concepts Solar Radiation Emission and Absorption 1. 2. 3. 4. 5. 6. Conservation of energy. Black body radiation principle Emission wavelength and temperature (Wein s Law). Radiation vs. distance

### Gas - a substance that is characterized by widely separated molecules in rapid motion.

Chapter 10 - Gases Gas - a substance that is characterized by widely separated molecules in rapid motion. Mixtures of gases are uniform. Gases will expand to fill containers (compare with solids and liquids

### Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

### In today s world of wireless communications

TUTORIAL RF CERAMIC CHIP CAPACITORS IN HIGH RF POWER APPLICATIONS Reprinted with permission of MICROWAVE JOURNAL from the April 2000 issue. 2000 Horizon House Publications, Inc. In today s world of wireless

### Astronomy 114 Summary of Important Concepts #1 1

Astronomy 114 Summary of Important Concepts #1 1 1 Kepler s Third Law Kepler discovered that the size of a planet s orbit (the semi-major axis of the ellipse) is simply related to sidereal period of the

### Thermal Properties of Matter

Chapter 18 Thermal Properties of Matter PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 18 To relate the

### Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution

Chapter 5 5.6 Doped GaAs Consider the GaAs crystal at 300 K. a. Calculate the intrinsic conductivity and resistivity. Second Edition ( 2001 McGraw-Hill) b. In a sample containing only 10 15 cm -3 ionized

### Acoustic Velocity, Impedance, Reflection, Transmission, Attenuation, and Acoustic Etalons

Acoustic Velocity, Impedance, Reflection, Transmission, Attenuation, and Acoustic Etalons Acoustic Velocity The equation of motion in a solid is (1) T = ρ 2 u t 2 (1) where T is the stress tensor, ρ is

### CLASSICAL CONCEPT REVIEW 8

CLASSICAL CONCEPT REVIEW 8 Kinetic Theory Information concerning the initial motions of each of the atoms of macroscopic systems is not accessible, nor do we have the computational capability even with

### CHEM 120 Online Chapter 7

CHEM 120 Online Chapter 7 Date: 1. Which of the following statements is not a part of kinetic molecular theory? A) Matter is composed of particles that are in constant motion. B) Particle velocity increases

### Temperature and Heat

Temperature and Heat Foundation Physics Lecture 2.4 26 Jan 10 Temperature, Internal Energy and Heat What is temperature? What is heat? What is internal energy? Temperature Does a glass of water sitting

### Theory of Chromatography

Theory of Chromatography The Chromatogram A chromatogram is a graph showing the detector response as a function of elution time. The retention time, t R, for each component is the time needed after injection

### Lecture 24 - Surface tension, viscous flow, thermodynamics

Lecture 24 - Surface tension, viscous flow, thermodynamics Surface tension, surface energy The atoms at the surface of a solid or liquid are not happy. Their bonding is less ideal than the bonding of atoms

### The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD

TN-100 The Fundamentals of Infrared Spectroscopy The Principles of Infrared Spectroscopy Joe Van Gompel, PhD Spectroscopy is the study of the interaction of electromagnetic radiation with matter. The electromagnetic