Constructing and Interpreting Confidence Intervals

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Constructing and Interpreting Confidence Intervals"

Transcription

1 Constructing and Interpreting Confidence Intervals

2 Confidence Intervals In this power point, you will learn: Why confidence intervals are important in evaluation research How to interpret a confidence interval How to construct a confidence interval yourself

3 Confidence Intervals Purpose The purpose of a confidence interval is to estimate a population mean or proportion based on a sample mean or proportion. Relationship with Margin of Error When estimating the population mean or proportion, we do not try to estimate the exact value. We construct an interval within which we are 95% sure the population means or proportion lies. The width of the interval on each side of the mean or proportion is referred to as the margin of error. Example.If you estimate that the percent of farmers who will increase crop yield using the new fertilizer is 75% and the margin of error is 5%, more technically you are stating that you are 95% sure the population percent is somewhere between 70% and 80%. Example using a Mean..If you estimate the mean number of bushels of corn to be 400 for farmers who used the new fertilizer and our margin of error is 10, then you are stating you are 95% sure the mean is somewhere between 390 to 410.

4 Constructing a Confidence Interval Constructing a confidence interval by hand Before you can construct a confidence interval by hand, you must have data from a random sample. You need: The sample size The proportion or mean you want to estimate The standard deviation of the mean you want to estimate A critical value associated with the probability For a proportion this is a Z value The value associated with a 95% confidence interval is 1.96 Other values can be found in a Z table For a mean this is a T value The value associated with a 95% confidence interval is 1.98 Other values can be found in a T table

5 Constructing a Confidence Interval It is relatively easy to construct a confidence interval. The following slides tell you how to: Construct a confidence interval using a proportion or percent Statistical formula (most precise) Formula used by Opinion-Polls (most commonly used) Simplified formula used by Opinion-Polls (easiest and most conservative) Construct a confidence interval using a mean

6

7

8 EXAMPLE of Confidence Interval for a Proportion 50% of our sample of 36 individuals indicated they would vote for Obama in this election. Research Question: What percent of population will vote for Obama? Relevant Information p =.50 n = 36 z = 1.96 for 95% confidence interval Simple Instructions 1.96 times the square root of.50 (1 -.50) divided by 36 (number of class members who voted) Take this number and add it to.50 and then subtract it from.50 (proportion who voted for Obama in sample) Or Step by Step 34 to 66% of the population will vote Step =.50 for Obama. NOTE, Step 2.50 times.50 =.25 our confidence Step 3.25 divided by 36 (n) = interval is so wide primarily because Step 4 Square root of = our sample is so Step times = small. Step 6.50 plus = Step 7.50 minus = Step 8 Confidence interval is to.66333

9 We are 95% sure that the mean score is between 73.1 and 78.5.

10 Example of Confidence Interval for a Mean Research Question What is the mean GPA of participants after participating in our tutoring program? Relevant Information Sample GPA = Sample Size = 40 T Value = 1.98 (value for a 95% confidence interval.) Standard Deviation of sample =.1864 Step by Step Instructions Step times.1864=.3691 Step 2 Square root of 40 = Step /6.3246=.0584 Step plus.0584= Step minus.0584= Conclusion: We are 95% sure that the mean GPA for our entire group is between

11 Width of Confidence Intervals Factors that influence the width of the interval: Standard Error Standard error estimates the dispersion of the data in the population. The more dispersed your data the wider is your confidence interval.* Sample Size The smaller the sample size that you used to construct a confidence interval then the wider the confidence interval. In layman s terms, you can estimate a population mean or proportion more accurately if you have a larger sample size. Probability The greater the probability, the wider will be your confidence interval.** Thus a 99% confidence interval is wider than a 95% confidence interval. In layman s terms, the more certain you want to be that the proportion or mean actually does lie within the interval the wider the interval must be. Proportion as a Special Case When estimating a proportion then the closer to the middle (.5) the proportion is the wider will be your confidence interval. *The margin of error is directly related to the width of the confidence interval. The wider the interval, the greater the margin of error. **Rule of thumb is to use a 95% confidence interval, but you can construct an interval with any degree of certainty.

12 Contact Information Dr. Carol Albrecht USU Extension Assessment Specialist

Statistical Inference

Statistical Inference Statistical Inference Idea: Estimate parameters of the population distribution using data. How: Use the sampling distribution of sample statistics and methods based on what would happen if we used this

More information

Graphing Data Presentation of Data in Visual Forms

Graphing Data Presentation of Data in Visual Forms Graphing Data Presentation of Data in Visual Forms Purpose of Graphing Data Audience Appeal Provides a visually appealing and succinct representation of data and summary statistics Provides a visually

More information

Inferential Statistics. What are they? When would you use them?

Inferential Statistics. What are they? When would you use them? Inferential Statistics What are they? When would you use them? What are inferential statistics? Why learn about inferential statistics? Why use inferential statistics? When are inferential statistics utilized?

More information

Research Methods 1 Handouts, Graham Hole,COGS - version 1.0, September 2000: Page 1:

Research Methods 1 Handouts, Graham Hole,COGS - version 1.0, September 2000: Page 1: Research Methods 1 Handouts, Graham Hole,COGS - version 1.0, September 2000: Page 1: THE NORMAL CURVE AND "Z" SCORES: The Normal Curve: The "Normal" curve is a mathematical abstraction which conveniently

More information

Week 4: Standard Error and Confidence Intervals

Week 4: Standard Error and Confidence Intervals Health Sciences M.Sc. Programme Applied Biostatistics Week 4: Standard Error and Confidence Intervals Sampling Most research data come from subjects we think of as samples drawn from a larger population.

More information

CALCULATIONS & STATISTICS

CALCULATIONS & STATISTICS CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents

More information

AP * Statistics Review

AP * Statistics Review AP * Statistics Review Confidence Intervals Teacher Packet AP* is a trademark of the College Entrance Examination Board. The College Entrance Examination Board was not involved in the production of this

More information

USING SAMPLING TO ASSESS LIBRARY COLLECTIONS

USING SAMPLING TO ASSESS LIBRARY COLLECTIONS USING SAMPLING TO ASSESS LIBRARY COLLECTIONS by Jim Self Director, Management Information Services University of Virginia Library December 2001 self@virginia.edu This document is designed to demonstrate

More information

Inferential Statistics

Inferential Statistics Inferential Statistics Sampling and the normal distribution Z-scores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are

More information

Prob & Stats. Chapter 9 Review

Prob & Stats. Chapter 9 Review Chapter 9 Review Construct the indicated confidence interval for the difference between the two population means. Assume that the two samples are independent simple random samples selected from normally

More information

Name: Date: Use the following to answer questions 3-4:

Name: Date: Use the following to answer questions 3-4: Name: Date: 1. Determine whether each of the following statements is true or false. A) The margin of error for a 95% confidence interval for the mean increases as the sample size increases. B) The margin

More information

10-3 Measures of Central Tendency and Variation

10-3 Measures of Central Tendency and Variation 10-3 Measures of Central Tendency and Variation So far, we have discussed some graphical methods of data description. Now, we will investigate how statements of central tendency and variation can be used.

More information

Statistical Intervals. Chapter 7 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage

Statistical Intervals. Chapter 7 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage 7 Statistical Intervals Chapter 7 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage Confidence Intervals The CLT tells us that as the sample size n increases, the sample mean X is close to

More information

Sampling (cont d) and Confidence Intervals Lecture 9 8 March 2006 R. Ryznar

Sampling (cont d) and Confidence Intervals Lecture 9 8 March 2006 R. Ryznar Sampling (cont d) and Confidence Intervals 11.220 Lecture 9 8 March 2006 R. Ryznar Census Surveys Decennial Census Every (over 11 million) household gets the short form and 17% or 1/6 get the long form

More information

CONFIDENCE INTERVALS I

CONFIDENCE INTERVALS I CONFIDENCE INTERVALS I ESTIMATION: the sample mean Gx is an estimate of the population mean µ point of sampling is to obtain estimates of population values Example: for 55 students in Section 105, 45 of

More information

Simple Regression Theory II 2010 Samuel L. Baker

Simple Regression Theory II 2010 Samuel L. Baker SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the

More information

AP STATISTICS 2011 SCORING GUIDELINES (Form B)

AP STATISTICS 2011 SCORING GUIDELINES (Form B) AP STATISTICS 2011 SCORING GUIDELINES (Form B) Question 5 Intent of Question The primary goals of this question were to assess students ability to (1) identify and check appropriate conditions for inference;

More information

Sample Size Determination

Sample Size Determination Sample Size Determination Population A: 10,000 Population B: 5,000 Sample 10% Sample 15% Sample size 1000 Sample size 750 The process of obtaining information from a subset (sample) of a larger group (population)

More information

Less Stress More Success Maths Leaving Cert Higher Level Paper 2

Less Stress More Success Maths Leaving Cert Higher Level Paper 2 Less Stress More Success Maths Leaving Cert Higher Level Paper 2 Revised pages for Chapter 13 Statistics IV: The Normal Curve, z -Scores, Hypothesis Testing and Simulation 228 LESS STRESS MORE SUCCESS

More information

BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394

BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394 BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394 1. Does vigorous exercise affect concentration? In general, the time needed for people to complete

More information

6.4 Normal Distribution

6.4 Normal Distribution Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under

More information

Confidence Intervals for One Standard Deviation Using Standard Deviation

Confidence Intervals for One Standard Deviation Using Standard Deviation Chapter 640 Confidence Intervals for One Standard Deviation Using Standard Deviation Introduction This routine calculates the sample size necessary to achieve a specified interval width or distance from

More information

Confidence Intervals about a Population Mean

Confidence Intervals about a Population Mean Confidence Intervals about a Population Mean MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Motivation Goal: to estimate a population mean µ based on data collected

More information

Content Sheet 7-1: Overview of Quality Control for Quantitative Tests

Content Sheet 7-1: Overview of Quality Control for Quantitative Tests Content Sheet 7-1: Overview of Quality Control for Quantitative Tests Role in quality management system Quality Control (QC) is a component of process control, and is a major element of the quality management

More information

Contingency Tables and the Chi Square Statistic. Interpreting Computer Printouts and Constructing Tables

Contingency Tables and the Chi Square Statistic. Interpreting Computer Printouts and Constructing Tables Contingency Tables and the Chi Square Statistic Interpreting Computer Printouts and Constructing Tables Contingency Tables/Chi Square Statistics What are they? A contingency table is a table that shows

More information

Point and Interval Estimates

Point and Interval Estimates Point and Interval Estimates Suppose we want to estimate a parameter, such as p or µ, based on a finite sample of data. There are two main methods: 1. Point estimate: Summarize the sample by a single number

More information

Social Studies 201 Notes for November 19, 2003

Social Studies 201 Notes for November 19, 2003 1 Social Studies 201 Notes for November 19, 2003 Determining sample size for estimation of a population proportion Section 8.6.2, p. 541. As indicated in the notes for November 17, when sample size is

More information

Solution: There are TWO square roots of 196, a positive number and a negative number. So, since and 14 2

Solution: There are TWO square roots of 196, a positive number and a negative number. So, since and 14 2 5.7 Introduction to Square Roots The Square of a Number The number x is called the square of the number x. EX) 9 9 9 81, the number 81 is the square of the number 9. 4 4 4 16, the number 16 is the square

More information

Regression Analysis: Basic Concepts

Regression Analysis: Basic Concepts The simple linear model Regression Analysis: Basic Concepts Allin Cottrell Represents the dependent variable, y i, as a linear function of one independent variable, x i, subject to a random disturbance

More information

Statistical Confidence Calculations

Statistical Confidence Calculations Statistical Confidence Calculations Statistical Methodology Omniture Test&Target utilizes standard statistics to calculate confidence, confidence intervals, and lift for each campaign. The student s T

More information

Experimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test

Experimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test Experimental Design Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 To this point in the semester, we have largely

More information

Prediction and Confidence Intervals in Regression

Prediction and Confidence Intervals in Regression Fall Semester, 2001 Statistics 621 Lecture 3 Robert Stine 1 Prediction and Confidence Intervals in Regression Preliminaries Teaching assistants See them in Room 3009 SH-DH. Hours are detailed in the syllabus.

More information

Good luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name:

Good luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name: Glo bal Leadership M BA BUSINESS STATISTICS FINAL EXAM Name: INSTRUCTIONS 1. Do not open this exam until instructed to do so. 2. Be sure to fill in your name before starting the exam. 3. You have two hours

More information

Power and Sample Size Determination

Power and Sample Size Determination Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 Power 1 / 31 Experimental Design To this point in the semester,

More information

Sampling Distribution of a Sample Proportion

Sampling Distribution of a Sample Proportion Sampling Distribution of a Sample Proportion From earlier material remember that if X is the count of successes in a sample of n trials of a binomial random variable then the proportion of success is given

More information

Simple Linear Regression

Simple Linear Regression STAT 101 Dr. Kari Lock Morgan Simple Linear Regression SECTIONS 9.3 Confidence and prediction intervals (9.3) Conditions for inference (9.1) Want More Stats??? If you have enjoyed learning how to analyze

More information

Unit 26 Estimation with Confidence Intervals

Unit 26 Estimation with Confidence Intervals Unit 26 Estimation with Confidence Intervals Objectives: To see how confidence intervals are used to estimate a population proportion, a population mean, a difference in population proportions, or a difference

More information

An Introduction to Sampling

An Introduction to Sampling An Introduction to Sampling Sampling is the process of selecting a subset of units from the population. We use sampling formulas to determine how many to select because it is based on the characteristics

More information

4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions 4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

More information

Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means

Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means Lesson : Comparison of Population Means Part c: Comparison of Two- Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis

More information

SAMPLING DISTRIBUTIONS

SAMPLING DISTRIBUTIONS 0009T_c07_308-352.qd 06/03/03 20:44 Page 308 7Chapter SAMPLING DISTRIBUTIONS 7.1 Population and Sampling Distributions 7.2 Sampling and Nonsampling Errors 7.3 Mean and Standard Deviation of 7.4 Shape of

More information

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce

More information

Sampling Distributions and the Central Limit Theorem

Sampling Distributions and the Central Limit Theorem 135 Part 2 / Basic Tools of Research: Sampling, Measurement, Distributions, and Descriptive Statistics Chapter 10 Sampling Distributions and the Central Limit Theorem In the previous chapter we explained

More information

Normal distribution. ) 2 /2σ. 2π σ

Normal distribution. ) 2 /2σ. 2π σ Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a

More information

Online Resource 6. Estimating the required sample size

Online Resource 6. Estimating the required sample size Online Resource 6. Estimating the required sample size Power calculations help program managers and evaluators estimate the required sample size that is large enough to provide sufficient statistical power

More information

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

More information

CONFIDENCE INTERVALS ON µ WHEN σ IS UNKNOWN

CONFIDENCE INTERVALS ON µ WHEN σ IS UNKNOWN CONFIDENCE INTERVALS ON µ WHEN σ IS UNKNOWN A. Introduction 1. this situation, where we do not know anything about the population but the sample characteristics, is far and away the most common circumstance

More information

BIOSTATISTICS QUIZ ANSWERS

BIOSTATISTICS QUIZ ANSWERS BIOSTATISTICS QUIZ ANSWERS 1. When you read scientific literature, do you know whether the statistical tests that were used were appropriate and why they were used? a. Always b. Mostly c. Rarely d. Never

More information

Conversions between percents, decimals, and fractions

Conversions between percents, decimals, and fractions Click on the links below to jump directly to the relevant section Conversions between percents, decimals and fractions Operations with percents Percentage of a number Percent change Conversions between

More information

NET PRESENT VALUE SIMULATING WITH A SPREADSHEET

NET PRESENT VALUE SIMULATING WITH A SPREADSHEET Journal of Defense Resources Management No. 1 (1) / 2010 NET PRESENT VALUE SIMULATING WITH A SPREADSHEET Maria CONSTANTINESCU Regional Department of Defense Resources Management Studies Abstract: Decision

More information

Let m denote the margin of error. Then

Let m denote the margin of error. Then S:105 Statistical Methods and Computing Sample size for confidence intervals with σ known t Intervals Lecture 13 Mar. 6, 009 Kate Cowles 374 SH, 335-077 kcowles@stat.uiowa.edu 1 The margin of error The

More information

find confidence interval for a population mean when the population standard deviation is KNOWN Understand the new distribution the t-distribution

find confidence interval for a population mean when the population standard deviation is KNOWN Understand the new distribution the t-distribution Section 8.3 1 Estimating a Population Mean Topics find confidence interval for a population mean when the population standard deviation is KNOWN find confidence interval for a population mean when the

More information

Chapter 3: Data Description Numerical Methods

Chapter 3: Data Description Numerical Methods Chapter 3: Data Description Numerical Methods Learning Objectives Upon successful completion of Chapter 3, you will be able to: Summarize data using measures of central tendency, such as the mean, median,

More information

Summary of Probability

Summary of Probability Summary of Probability Mathematical Physics I Rules of Probability The probability of an event is called P(A), which is a positive number less than or equal to 1. The total probability for all possible

More information

Fixed-Effect Versus Random-Effects Models

Fixed-Effect Versus Random-Effects Models CHAPTER 13 Fixed-Effect Versus Random-Effects Models Introduction Definition of a summary effect Estimating the summary effect Extreme effect size in a large study or a small study Confidence interval

More information

variable univariate data measure of central tendency parameter statistic margin of sampling error measure of variation variance standard deviation

variable univariate data measure of central tendency parameter statistic margin of sampling error measure of variation variance standard deviation variable univariate data measure of central tendency parameter statistic margin of sampling error measure of variation variance standard deviation Measures of Central Tendency A. SALARIES A new Internet

More information

Chapter 7. Estimates and Sample Size

Chapter 7. Estimates and Sample Size Chapter 7. Estimates and Sample Size Chapter Problem: How do we interpret a poll about global warming? Pew Research Center Poll: From what you ve read and heard, is there a solid evidence that the average

More information

Understanding Variability

Understanding Variability 3 Vive la Différence Understanding Variability Difficulty Scale (moderately easy, but not a cinch) How much Excel? (a ton) What you ll learn about in this chapter Why variability is valuable as a descriptive

More information

Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY

Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY 1. Introduction Besides arriving at an appropriate expression of an average or consensus value for observations of a population, it is important to

More information

Confidence Intervals for Cp

Confidence Intervals for Cp Chapter 296 Confidence Intervals for Cp Introduction This routine calculates the sample size needed to obtain a specified width of a Cp confidence interval at a stated confidence level. Cp is a process

More information

Revenue and Costs for Corn, Soybeans, Wheat, and Double-Crop Soybeans, Actual for 2009 through 2015, Projected 2016

Revenue and Costs for Corn, Soybeans, Wheat, and Double-Crop Soybeans, Actual for 2009 through 2015, Projected 2016 CROP COSTS Department of Agricultural and Consumer Economics University of Illinois Revenue and Costs for Corn, Soybeans, Wheat, and Double-Crop Soybeans, Actual for 2009 through 2015, Projected 2016 Department

More information

Sample Size Issues for Conjoint Analysis

Sample Size Issues for Conjoint Analysis Chapter 7 Sample Size Issues for Conjoint Analysis I m about to conduct a conjoint analysis study. How large a sample size do I need? What will be the margin of error of my estimates if I use a sample

More information

2-8: Square Roots and Real Numbers. 2-8: Square Roots and Real Numbers

2-8: Square Roots and Real Numbers. 2-8: Square Roots and Real Numbers OBJECTIVE: You must be able to find a square root, classify numbers, and graph solution of inequalities on number lines. square root - one of two equal factors of a number A number that will multiply by

More information

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.

More information

Chapter 7 - Practice Problems 1

Chapter 7 - Practice Problems 1 Chapter 7 - Practice Problems 1 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. 1) Define a point estimate. What is the

More information

Farm Business Survey - Statistical information

Farm Business Survey - Statistical information Farm Business Survey - Statistical information Sample representation and design The sample structure of the FBS was re-designed starting from the 2010/11 accounting year. The coverage of the survey is

More information

COMP6053 lecture: Relationship between two variables: correlation, covariance and r-squared. jn2@ecs.soton.ac.uk

COMP6053 lecture: Relationship between two variables: correlation, covariance and r-squared. jn2@ecs.soton.ac.uk COMP6053 lecture: Relationship between two variables: correlation, covariance and r-squared jn2@ecs.soton.ac.uk Relationships between variables So far we have looked at ways of characterizing the distribution

More information

MEASURES OF VARIATION

MEASURES OF VARIATION NORMAL DISTRIBTIONS MEASURES OF VARIATION In statistics, it is important to measure the spread of data. A simple way to measure spread is to find the range. But statisticians want to know if the data are

More information

5.4 The Quadratic Formula

5.4 The Quadratic Formula Section 5.4 The Quadratic Formula 481 5.4 The Quadratic Formula Consider the general quadratic function f(x) = ax + bx + c. In the previous section, we learned that we can find the zeros of this function

More information

Data Analysis: Describing Data - Descriptive Statistics

Data Analysis: Describing Data - Descriptive Statistics WHAT IT IS Return to Table of ontents Descriptive statistics include the numbers, tables, charts, and graphs used to describe, organize, summarize, and present raw data. Descriptive statistics are most

More information

Solutions 7. Review, one sample t-test, independent two-sample t-test, binomial distribution, standard errors and one-sample proportions.

Solutions 7. Review, one sample t-test, independent two-sample t-test, binomial distribution, standard errors and one-sample proportions. Solutions 7 Review, one sample t-test, independent two-sample t-test, binomial distribution, standard errors and one-sample proportions. (1) Here we debunk a popular misconception about confidence intervals

More information

Standard Deviation Calculator

Standard Deviation Calculator CSS.com Chapter 35 Standard Deviation Calculator Introduction The is a tool to calculate the standard deviation from the data, the standard error, the range, percentiles, the COV, confidence limits, or

More information

4. Introduction to Statistics

4. Introduction to Statistics Statistics for Engineers 4-1 4. Introduction to Statistics Descriptive Statistics Types of data A variate or random variable is a quantity or attribute whose value may vary from one unit of investigation

More information

MATH 10: Elementary Statistics and Probability Chapter 7: The Central Limit Theorem

MATH 10: Elementary Statistics and Probability Chapter 7: The Central Limit Theorem MATH 10: Elementary Statistics and Probability Chapter 7: The Central Limit Theorem Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides, you

More information

How to Construct a Seasonal Index

How to Construct a Seasonal Index How to Construct a Seasonal Index Methods of Constructing a Seasonal Index There are several ways to construct a seasonal index. The simplest is to produce a graph with the factor being studied (i.e.,

More information

UDOFIA ITON UDOFIA EDET E. NKEREUWEM Library Department University of Calabar Calabar Nigeria

UDOFIA ITON UDOFIA EDET E. NKEREUWEM Library Department University of Calabar Calabar Nigeria Annals of Library Science and Documentation 42,3; 1995; 96-100. SAMPLE SIZE DETERMINATION: A COMPARISON OF ATTRIBUTE AND CONTINUOUS VARIABLE METHODS UDOFIA ITON UDOFIA EDET E. NKEREUWEM Library Department

More information

Experimental Errors and Uncertainty

Experimental Errors and Uncertainty Experimental Errors and Uncertainty No physical quantity can be measured with perfect certainty; there are always errors in any measurement. This means that if we measure some quantity and, then, repeat

More information

The Sampling Distribution of the Mean Confidence Intervals for a Proportion

The Sampling Distribution of the Mean Confidence Intervals for a Proportion Math 130 Jeff Stratton Name The Sampling Distribution of the Mean Confidence Intervals for a Proportion Goal: To gain experience with the sampling distribution of the mean, and with confidence intervals

More information

DETERMINING SURVEY SAMPLE SIZE A SIMPLE PLAN

DETERMINING SURVEY SAMPLE SIZE A SIMPLE PLAN DETERMINING SURVEY SAMPLE SIZE A SIMPLE PLAN Prepared by Market Directions Market Directions B O S T O N 617-323-1862 800-475-9808 www.marketdirectionsmr.com info@marketdirectionsmr.com DETERMING SAMPLE

More information

Descriptive Statistics

Descriptive Statistics Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

More information

A Summary of Error Propagation

A Summary of Error Propagation A Summary of Error Propagation Suppose you measure some quantities a, b, c,... with uncertainties δa, δb, δc,.... Now you want to calculate some other quantity Q which depends on a and b and so forth.

More information

Introduction to Hypothesis Testing

Introduction to Hypothesis Testing I. Terms, Concepts. Introduction to Hypothesis Testing A. In general, we do not know the true value of population parameters - they must be estimated. However, we do have hypotheses about what the true

More information

Hence, multiplying by 12, the 95% interval for the hourly rate is (965, 1435)

Hence, multiplying by 12, the 95% interval for the hourly rate is (965, 1435) Confidence Intervals for Poisson data For an observation from a Poisson distribution, we have σ 2 = λ. If we observe r events, then our estimate ˆλ = r : N(λ, λ) If r is bigger than 20, we can use this

More information

Standard Deviation Estimator

Standard Deviation Estimator CSS.com Chapter 905 Standard Deviation Estimator Introduction Even though it is not of primary interest, an estimate of the standard deviation (SD) is needed when calculating the power or sample size of

More information

HOSPITALITY Math Assessment Preparation Guide. Introduction Operations with Whole Numbers Operations with Integers 9

HOSPITALITY Math Assessment Preparation Guide. Introduction Operations with Whole Numbers Operations with Integers 9 HOSPITALITY Math Assessment Preparation Guide Please note that the guide is for reference only and that it does not represent an exact match with the assessment content. The Assessment Centre at George

More information

Report of for Chapter 2 pretest

Report of for Chapter 2 pretest Report of for Chapter 2 pretest Exam: Chapter 2 pretest Category: Organizing and Graphing Data 1. "For our study of driving habits, we recorded the speed of every fifth vehicle on Drury Lane. Nearly every

More information

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number 1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x - x) B. x 3 x C. 3x - x D. x - 3x 2) Write the following as an algebraic expression

More information

MEASURES OF DISPERSION

MEASURES OF DISPERSION MEASURES OF DISPERSION Measures of Dispersion While measures of central tendency indicate what value of a variable is (in one sense or other) average or central or typical in a set of data, measures of

More information

Mind on Statistics. Chapter 10

Mind on Statistics. Chapter 10 Mind on Statistics Chapter 10 Section 10.1 Questions 1 to 4: Some statistical procedures move from population to sample; some move from sample to population. For each of the following procedures, determine

More information

Comments 2 For Discussion Sheet 2 and Worksheet 2 Frequency Distributions and Histograms

Comments 2 For Discussion Sheet 2 and Worksheet 2 Frequency Distributions and Histograms Comments 2 For Discussion Sheet 2 and Worksheet 2 Frequency Distributions and Histograms Discussion Sheet 2 We have studied graphs (charts) used to represent categorical data. We now want to look at a

More information

Outline. 1 Confidence Intervals for Proportions. 2 Sample Sizes for Proportions. 3 Student s t-distribution. 4 Confidence Intervals without σ

Outline. 1 Confidence Intervals for Proportions. 2 Sample Sizes for Proportions. 3 Student s t-distribution. 4 Confidence Intervals without σ Outline 1 Confidence Intervals for Proportions 2 Sample Sizes for Proportions 3 Student s t-distribution 4 Confidence Intervals without σ Outline 1 Confidence Intervals for Proportions 2 Sample Sizes for

More information

The Philosophy of Hypothesis Testing, Questions and Answers 2006 Samuel L. Baker

The Philosophy of Hypothesis Testing, Questions and Answers 2006 Samuel L. Baker HYPOTHESIS TESTING PHILOSOPHY 1 The Philosophy of Hypothesis Testing, Questions and Answers 2006 Samuel L. Baker Question: So I'm hypothesis testing. What's the hypothesis I'm testing? Answer: When you're

More information

Sample Size Determination Using Statgraphics Centurion

Sample Size Determination Using Statgraphics Centurion Sample Size Determination Using Statgraphics Centurion Neil W. Polhemus, CTO, StatPoint Technologies, Inc. Copyright 2012 by StatPoint Technologies, Inc. Web site: www.statgraphics.com Preliminaries One

More information

Stat 20: Intro to Probability and Statistics

Stat 20: Intro to Probability and Statistics Stat 20: Intro to Probability and Statistics Lecture 16: More Box Models Tessa L. Childers-Day UC Berkeley 22 July 2014 By the end of this lecture... You will be able to: Determine what we expect the sum

More information

! x sum of the entries

! x sum of the entries 3.1 Measures of Central Tendency (Page 1 of 16) 3.1 Measures of Central Tendency Mean, Median and Mode! x sum of the entries a. mean, x = = n number of entries Example 1 Find the mean of 26, 18, 12, 31,

More information

The factor of safety is a factor of ignorance. If the stress on a part at a critical location (the

The factor of safety is a factor of ignorance. If the stress on a part at a critical location (the Appendix C The Factor of Safety as a Design Variable C.1 INTRODUCTION The factor of safety is a factor of ignorance. If the stress on a part at a critical location (the applied stress) is known precisely,

More information

ELEMENTARY PROBABILITY

ELEMENTARY PROBABILITY ELEMENTARY PROBABILITY Events and event sets. Consider tossing a die. There are six possible outcomes, which we shall denote by elements of the set {A i ; i =1, 2,...,6}. A numerical value is assigned

More information

The Math. P (x) = 5! = 1 2 3 4 5 = 120.

The Math. P (x) = 5! = 1 2 3 4 5 = 120. The Math Suppose there are n experiments, and the probability that someone gets the right answer on any given experiment is p. So in the first example above, n = 5 and p = 0.2. Let X be the number of correct

More information

Numerical Measures of Central Tendency

Numerical Measures of Central Tendency Numerical Measures of Central Tendency Often, it is useful to have special numbers which summarize characteristics of a data set These numbers are called descriptive statistics or summary statistics. A

More information