# Name: Date: Use the following to answer questions 3-4:

 To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Name: Date: 1. Determine whether each of the following statements is true or false. A) The margin of error for a 95% confidence interval for the mean increases as the sample size increases. B) The margin of error for a confidence interval for the mean, based on a specified sample size n, increases as the confidence level decreases. C) The margin of error for a 95% confidence interval for the mean decreases as the population standard deviation decreases. D) The sample size required to obtain a confidence interval of specified margin of error m increases as the confidence level increases. 2. Suppose that the population of the scores of all high school seniors who took the SAT Math (SAT-M) test this year follows a Normal distribution with standard deviation = 100. You read a report that says, On the basis of a simple random sample of 100 high school seniors that took the SAT-M test this year, a confidence interval for is found to be ± What was the confidence level used to calculate this confidence interval? A) 90% B) 95% C) 99% D) 99.9% Use the following to answer questions 3-4: An agricultural researcher plants 25 plots with a new variety of yellow corn. Assume that the yield per acre for the new variety of yellow corn follows a Normal distribution with an unknown mean of and a standard deviation of = 10 bushels per acre. 3. If the average yield for these 25 plots is x = 150 bushels per acre, what is a 90% confidence interval for? A) 150 ± B) 150 ± 2.00 C) 150 ± 3.29 D) 150 ± 3.92 Page 1

2 4. Which of the following would produce a confidence interval with a smaller margin of error than the 90% confidence interval? A) Plant only five plots rather than 25, because five are easier to manage and control. B) Plant 10 plots rather than 25, because a smaller sample size will result in a smaller margin of error. C) Plant 100 plots rather than 25, because a larger sample size will result in a smaller margin of error. D) Compute a 99% confidence interval rather than a 90% confidence interval, because a higher confidence level will result in a smaller margin of error. 5. To assess the accuracy of a laboratory scale, a standard weight that is known to weigh exactly 1 gram is repeatedly weighed a total of n times and the mean x is computed. Suppose the scale readings are Normally distributed with an unknown mean of and a standard deviation of = 0.01 g. How large should n be so that a 95% confidence interval for has a margin of error no larger than ± ? A) n = 100 B) n = 196 C) n = D) n = Use the following to answer questions 6-7: A nationally distributed college newspaper conducts a survey among students nationwide every year. This year, responses from a simple random sample of 204 college students to the question About how many CDs do you own? resulted in a sample mean of x = Based on data from previous years, the editors of the newspaper will assume that = Use the information given to obtain a 95% confidence interval for the mean number of CDs owned by all college students. A) (65.6, 80.0) B) (71.8, 73.8) C) (72.0, 73.6) D) (72.3, 73.3) 7. Answer each of the following questions with yes, no, or can't tell. A) Does the sample mean lie in the 95% confidence interval? B) Does the population mean lie in the 95% confidence interval? C) If we were to use a 92% confidence level, would the confidence interval from the same data produce an interval wider than the 95% confidence interval? D) With a smaller sample size, all other things being the same, would the 95% confidence interval be wider? Page 2

3 8. The larger the level of confidence, C, the the confidence interval. A) smaller B) larger C) None of the above. 9. In order to obtain a small margin of error with high levels of confidence, C, you will need observations. A) a large number of B) a small number of C) 10 D) None of the above. 10. Since confidence intervals are based on the sampling distribution of the sample mean, it is possible to form confidence intervals when sampling from slightly skewed distributions due to the central limit theorem. 11. How do you form a confidence interval when taking a small sample from a non-normal population? A) Use the bootstrap procedure. B) You will not be able to form a confidence interval. C) Use the central limit theorem. D) None of the above. 12. The purpose of forming confidence intervals is to find the exact value of the true population mean based on a random sample. 13. As you increase the margin error of a confidence interval,. (Note: Assume the sample size is fixed.) A) the confidence level increases. B) the confidence level decreases. C) the confidence level remains the same. 14. The null and alternative hypotheses are stated in terms of the statistics from the random sample. Page 3

4 15. When we state the alternative hypothesis to look for a difference in a parameter in any direction, we are doing a. A) one-sided test B) two-sided test C) None of the above. 16. When we state the alternative hypothesis to look for a difference in a parameter in one direction, we are doing a. A) one-sided test B) two-sided test C) None of the above. 17. Confidence intervals and two-sided significance tests are linked in the sense that a twosided test at a significance level can be carried in the form of a confidence interval with confidence level Given that a test of significance was done for a two-sided test and the P-value obtained was.02, what would be the P-value for a one-sided significance test? A) 0.02 B) 0.04 C) 0.01 D) Given that a test of significance was done for a one-sided test and the P-value obtained was 0.02, what would be the P-value for a two-sided significance test? A) 0.02 B) 0.04 C) 0.01 D) Typically, the null hypothesis in a test of significance is a statement of no difference in the true means. Page 4

5 21. Is the mean height for all adult American males between the ages of 18 and 21 now over 6 feet? Let represent the population mean height of all adult American males between the ages of 18 and 21. What are the appropriate null and alternative hypotheses to answer this question? A) H0: = 6 vs. Ha: < 6 B) H0: = 6 vs. Ha: 6 C) H0: = 6 vs. Ha: > In a test of statistical hypotheses, what does the P-value tell us? A) If the null hypothesis is true. B) If the alternative hypothesis is true. C) The largest level of significance at which the null hypothesis can be rejected. D) The smallest level of significance at which the null hypothesis can be rejected. 23. The test statistic for a two-sided significance test for a population mean is z = What is the corresponding P-value? A) B) C) D) The tail area above a test statistic value of z = is Determine whether each of the following statements is true or false. A) If the alternative hypothesis is of the form Ha: > 0, the data are statistically significant at significance level = B) If the alternative hypothesis is of the form Ha: > 0, the data are statistically significant at significance level = C) If the alternative hypothesis is of the form Ha: 0, the data are statistically significant at significance level = D) If the alternative hypothesis is of the form Ha: 0, the data are statistically significant at significance level = Page 5

6 25. A college student is doing some research on the cost of one-bedroom apartments in town. He has randomly selected 25 apartments for which the price was published. The average price for these apartments is x = \$652. He will assume that price follows roughly a Normal distribution. Based on prices from previous years, a real estate agent gives him the information that is approximately \$55. A 95% confidence interval for is found to be 652 ± = (\$630.44, \$673.56). Determine which of the following statements is true. A) A test of the hypotheses H0: = 650 vs. Ha: 650 would be rejected at the 0.05 level. B) A test of the hypotheses H0: = 650 vs. Ha: > 650 would be rejected at the 0.05 level. C) A test of the hypotheses H0: = 675 vs. Ha: 675 would be rejected at the 0.05 level. D) All of the above. 26. A simple random sample of six male patients over the age of 65 is being used in a blood pressure study. The standard error of the mean blood pressure of these six men was What is the standard deviation of these six blood pressure measurements? A) 9.31 B) C) D) A simple random sample of five female basketball players is selected. Their heights (in cm) are 170, 175, 169, 183, and 177. What is the standard error of the mean of these height measurements? A) B) C) D) A sample of size n = 27 is used to conduct a significance test for H0: = 75 versus Ha: > 75. The test statistic is t = What are the degrees of freedom for this test statistic? A) 26 B) 27 C) 74 D) 75 Page 6

7 29. The hypotheses H0: = 350 versus Ha: < 350 are examined using a sample of size n = 20. The one-sample t statistic has the value t = What do we know about the P- value of this test? A) P-value < 0.01 B) 0.01 < P-value < C) < P-value < 0.05 D) P-value > Scores on the SAT Mathematics test are believed to be Normally distributed. The scores of a simple random sample of five students who recently took the exam are 550, 620, 710, 520, and 480. What is a 95% confidence interval for, the population mean score on the SAT Math test? A) (456.7, 695.3) B) (463.4, 688.6) C) (480.8, 671.2) D) (496.5, 655.5) Use the following to answer question 31: We wish to see if the dial indicating the oven temperature for a certain model oven is properly calibrated. Four ovens of this model are selected at random. The dial on each is set to 300 F, and after one hour, the actual temperature of each is measured. The temperatures measured are 305, 310, 300, and 305. Assume that the distribution of the actual temperatures for this model when the dial is set to 300 is Normal. To test if the dial is properly calibrated, we will test the following hypotheses: H0: = 300 versus Ha: Are the data statistically significant at the 5% significance level? A) Yes, because the P-value is less than B) Yes, because the sample mean x = 305, which is much higher than 300. C) No, because a difference of 5 (between x and ) as compared to 300 is very small (insignificant). D) No, because the P-value is greater than Use the following to answer questions 32-33: A one-sample t test of H0: = 125 against Ha: > 125 is carried out based on sample data from a Normal population. The SRS of size n = 15 produced a mean x = and s = Page 7

8 32. What is the value of the appropriate test statistics? A) z = 2.40 B) t = 2.32 C) t = 2.40 D) z = 2.32 E) t = What is the P-value of the test in this situation? A) P = B) P > 0.02 C) 0.02 < P < 0.04 D) 0.01 < P < 0.02 E) 0.02 < P < Use the following to answer question 34: Assume that sample data, based on two independent samples of size 25, give us x 1 = 505, x 2 = 515, s1 = 23, and s2 = What is a 95% confidence interval (use the conservative value for the degrees of freedom) for 2 1? A) ( 2.40, 22.40) B) ( 4.57, 24.57) C) ( 4.96, 24.96) D) (5.79, 14.21) 35. Two sample t procedures are used when. A) subjects are the same in both samples B) subjects in one sample are completely unrelated to the subjects in the other sample C) Subjects are similar in both samples D) None of the above. 36. An instructor is teaching two sections of the same basic statistics course. The instructor is giving the same exams, homework assignments, and quizzes in both sections. Which t procedure should be used to determine if there is a difference in the academic performance between the two course sections? A) One-sample t test. B) Matched-pairs t procedure. C) Two-sample t test. D) None of the above. Page 8

9 37. When performing a two-sample t procedure, which of the following methods will help determine the degrees of freedom? A) Take the smaller of the two samples and subtract 1. B) Take the larger of the two samples and subtract 1. C) Take the smaller of the two samples and add The two-sample z statistic is used when the population mean is known from both samples. 39. When testing the hypothesis of equal means of two independent random samples, which distribution is used? A) Normal distribution B) t distribution C) F distribution D) Binomial distribution 40. Two independent random samples were selected from Normally distributed populations with unknown means and standard deviations. Sample 1 with a sample size of 20 gave the following results: x 1 = and s 1 = 6.2. Sample 2 of size 17 produced: x 2 = and s 2 = 7.1. If a 95% confidence interval were constructed for the population mean difference, 1 2, what would be the approximate margin of error? 2 2 (6.2) (7.1) A) B) C) D) E) (6.2) (7.1) (6.2) (7.1) (6.2) (7.1) ( ) (6.2) (7.1) ( ) Page 9

10 Answer Key 1. A) False,, C) True, D) True 2. C 3. C 4. C 5. D 6. B 7. A 8. B 9. A 10. A 11. B 12. B 13. B 14. B 15. B 16. A 17. A 18. C 19. B 20. A 21. C 22. D 23. B 24., B) True, C) False, D) True 25. C 26. C 27. A 28. A 29. D 30. B 31. D 32. C 33. D 34. C 35. B 36. C 37. A 38. B 39. B 40. B Page 10

### BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420

BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420 1. Which of the following will increase the value of the power in a statistical test

### General Method: Difference of Means. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n 1, n 2 ) 1.

General Method: Difference of Means 1. Calculate x 1, x 2, SE 1, SE 2. 2. Combined SE = SE1 2 + SE2 2. ASSUMES INDEPENDENT SAMPLES. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n

### BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394

BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394 1. Does vigorous exercise affect concentration? In general, the time needed for people to complete

### STA218 Introduction to Hypothesis Testing

STA218 Introduction to Hypothesis Testing Al Nosedal. University of Toronto. Fall 2015 October 29, 2015 Who wants to be a millionaire? Let s say that one of you is invited to this popular show. As you

### STAT 350 Practice Final Exam Solution (Spring 2015)

PART 1: Multiple Choice Questions: 1) A study was conducted to compare five different training programs for improving endurance. Forty subjects were randomly divided into five groups of eight subjects

### STAT 145 (Notes) Al Nosedal anosedal@unm.edu Department of Mathematics and Statistics University of New Mexico. Fall 2013

STAT 145 (Notes) Al Nosedal anosedal@unm.edu Department of Mathematics and Statistics University of New Mexico Fall 2013 CHAPTER 18 INFERENCE ABOUT A POPULATION MEAN. Conditions for Inference about mean

### Math 58. Rumbos Fall 2008 1. Solutions to Review Problems for Exam 2

Math 58. Rumbos Fall 2008 1 Solutions to Review Problems for Exam 2 1. For each of the following scenarios, determine whether the binomial distribution is the appropriate distribution for the random variable

### Testing: is my coin fair?

Testing: is my coin fair? Formally: we want to make some inference about P(head) Try it: toss coin several times (say 7 times) Assume that it is fair ( P(head)= ), and see if this assumption is compatible

### Chapter 7 Section 1 Homework Set A

Chapter 7 Section 1 Homework Set A 7.15 Finding the critical value t *. What critical value t * from Table D (use software, go to the web and type t distribution applet) should be used to calculate the

### Chapter 7 Section 7.1: Inference for the Mean of a Population

Chapter 7 Section 7.1: Inference for the Mean of a Population Now let s look at a similar situation Take an SRS of size n Normal Population : N(, ). Both and are unknown parameters. Unlike what we used

### An Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10- TWO-SAMPLE TESTS

The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 130) Spring Semester 011 Chapter 10- TWO-SAMPLE TESTS Practice

### STATISTICS 8, FINAL EXAM. Last six digits of Student ID#: Circle your Discussion Section: 1 2 3 4

STATISTICS 8, FINAL EXAM NAME: KEY Seat Number: Last six digits of Student ID#: Circle your Discussion Section: 1 2 3 4 Make sure you have 8 pages. You will be provided with a table as well, as a separate

### Unit 26: Small Sample Inference for One Mean

Unit 26: Small Sample Inference for One Mean Prerequisites Students need the background on confidence intervals and significance tests covered in Units 24 and 25. Additional Topic Coverage Additional coverage

### 3.4 Statistical inference for 2 populations based on two samples

3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted

### Solutions 7. Review, one sample t-test, independent two-sample t-test, binomial distribution, standard errors and one-sample proportions.

Solutions 7 Review, one sample t-test, independent two-sample t-test, binomial distribution, standard errors and one-sample proportions. (1) Here we debunk a popular misconception about confidence intervals

### Chapter 23 Inferences About Means

Chapter 23 Inferences About Means Chapter 23 - Inferences About Means 391 Chapter 23 Solutions to Class Examples 1. See Class Example 1. 2. We want to know if the mean battery lifespan exceeds the 300-minute

### Statistiek I. t-tests. John Nerbonne. CLCG, Rijksuniversiteit Groningen. John Nerbonne 1/35

Statistiek I t-tests John Nerbonne CLCG, Rijksuniversiteit Groningen http://wwwletrugnl/nerbonne/teach/statistiek-i/ John Nerbonne 1/35 t-tests To test an average or pair of averages when σ is known, we

### How to Conduct a Hypothesis Test

How to Conduct a Hypothesis Test The idea of hypothesis testing is relatively straightforward. In various studies we observe certain events. We must ask, is the event due to chance alone, or is there some

### Unit 27: Comparing Two Means

Unit 27: Comparing Two Means Prerequisites Students should have experience with one-sample t-procedures before they begin this unit. That material is covered in Unit 26, Small Sample Inference for One

### Recall this chart that showed how most of our course would be organized:

Chapter 4 One-Way ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical

### Mind on Statistics. Chapter 13

Mind on Statistics Chapter 13 Sections 13.1-13.2 1. Which statement is not true about hypothesis tests? A. Hypothesis tests are only valid when the sample is representative of the population for the question

PROBLEM SET 1 For the first three answer true or false and explain your answer. A picture is often helpful. 1. Suppose the significance level of a hypothesis test is α=0.05. If the p-value of the test

### Inferential Statistics

Inferential Statistics Sampling and the normal distribution Z-scores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are

### Introduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures.

Introduction to Hypothesis Testing Point estimation and confidence intervals are useful statistical inference procedures. Another type of inference is used frequently used concerns tests of hypotheses.

### Example for testing one population mean:

Today: Sections 13.1 to 13.3 ANNOUNCEMENTS: We will finish hypothesis testing for the 5 situations today. See pages 586-587 (end of Chapter 13) for a summary table. Quiz for week 8 starts Wed, ends Monday

### Statistical inference provides methods for drawing conclusions about a population from sample data.

Chapter 15 Tests of Significance: The Basics Statistical inference provides methods for drawing conclusions about a population from sample data. Two of the most common types of statistical inference: 1)

### College of the Canyons A. Morrow Math 140 Exam 3

College of the Canyons Name: A. Morrow Math 140 Exam 3 Answer the following questions NEATLY. Show all necessary work directly on the exam. Scratch paper will be discarded unread. 1 point each part unless

### Practice problems for Homework 12 - confidence intervals and hypothesis testing. Open the Homework Assignment 12 and solve the problems.

Practice problems for Homework 1 - confidence intervals and hypothesis testing. Read sections 10..3 and 10.3 of the text. Solve the practice problems below. Open the Homework Assignment 1 and solve the

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

STT315 Practice Ch 5-7 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. 1) The length of time a traffic signal stays green (nicknamed

### Hypothesis Test for Mean Using Given Data (Standard Deviation Known-z-test)

Hypothesis Test for Mean Using Given Data (Standard Deviation Known-z-test) A hypothesis test is conducted when trying to find out if a claim is true or not. And if the claim is true, is it significant.

### MONT 107N Understanding Randomness Solutions For Final Examination May 11, 2010

MONT 07N Understanding Randomness Solutions For Final Examination May, 00 Short Answer (a) (0) How are the EV and SE for the sum of n draws with replacement from a box computed? Solution: The EV is n times

### Third Midterm Exam (MATH1070 Spring 2012)

Third Midterm Exam (MATH1070 Spring 2012) Instructions: This is a one hour exam. You can use a notesheet. Calculators are allowed, but other electronics are prohibited. 1. [40pts] Multiple Choice Problems

### Good luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name:

Glo bal Leadership M BA BUSINESS STATISTICS FINAL EXAM Name: INSTRUCTIONS 1. Do not open this exam until instructed to do so. 2. Be sure to fill in your name before starting the exam. 3. You have two hours

### HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men

### Statistics Final Exam Review MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Statistics Final Exam Review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Assume that X has a normal distribution, and find the indicated

Chapter 8 Hypothesis Tests Chapter Table of Contents Introduction...157 One-Sample t-test...158 Paired t-test...164 Two-Sample Test for Proportions...169 Two-Sample Test for Variances...172 Discussion

### E205 Final: Version B

Name: Class: Date: E205 Final: Version B Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The owner of a local nightclub has recently surveyed a random

### Sociology 6Z03 Topic 15: Statistical Inference for Means

Sociology 6Z03 Topic 15: Statistical Inference for Means John Fox McMaster University Fall 2016 John Fox (McMaster University) Soc 6Z03: Statistical Inference for Means Fall 2016 1 / 41 Outline: Statistical

### Hypothesis Testing. April 21, 2009

Hypothesis Testing April 21, 2009 Your Claim is Just a Hypothesis I ve never made a mistake. Once I thought I did, but I was wrong. Your Claim is Just a Hypothesis Confidence intervals quantify how sure

### Chapter 8 Introduction to Hypothesis Testing

Chapter 8 Student Lecture Notes 8-1 Chapter 8 Introduction to Hypothesis Testing Fall 26 Fundamentals of Business Statistics 1 Chapter Goals After completing this chapter, you should be able to: Formulate

### MATH 2200 PROBABILITY AND STATISTICS M2200FL083.1

MATH 2200 PROBABILITY AND STATISTICS M2200FL083.1 In almost all problems, I have given the answers to four significant digits. If your answer is slightly different from one of mine, consider that to be

### Construct a scatterplot for the given data. 2) x Answer:

Review for Test 5 STA 2023 spr 2014 Name Given the linear correlation coefficient r and the sample size n, determine the critical values of r and use your finding to state whether or not the given r represents

### Practice Problems and Exams

Practice Problems and Exams 1 The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 1302) Spring Semester 2009-2010

### 1. Rejecting a true null hypothesis is classified as a error. 2. Failing to reject a false null hypothesis is classified as a error.

1. Rejecting a true null hypothesis is classified as a error. 2. Failing to reject a false null hypothesis is classified as a error. 8.5 Goodness of Fit Test Suppose we want to make an inference about

### 9-3.4 Likelihood ratio test. Neyman-Pearson lemma

9-3.4 Likelihood ratio test Neyman-Pearson lemma 9-1 Hypothesis Testing 9-1.1 Statistical Hypotheses Statistical hypothesis testing and confidence interval estimation of parameters are the fundamental

### T adult = 96 T child = 114.

Homework Solutions Do all tests at the 5% level and quote p-values when possible. When answering each question uses sentences and include the relevant JMP output and plots (do not include the data in your

### CONTENTS OF DAY 2. II. Why Random Sampling is Important 9 A myth, an urban legend, and the real reason NOTES FOR SUMMER STATISTICS INSTITUTE COURSE

1 2 CONTENTS OF DAY 2 I. More Precise Definition of Simple Random Sample 3 Connection with independent random variables 3 Problems with small populations 8 II. Why Random Sampling is Important 9 A myth,

### MATH 214 (NOTES) Math 214 Al Nosedal. Department of Mathematics Indiana University of Pennsylvania. MATH 214 (NOTES) p. 1/6

MATH 214 (NOTES) Math 214 Al Nosedal Department of Mathematics Indiana University of Pennsylvania MATH 214 (NOTES) p. 1/6 "Pepsi" problem A market research consultant hired by the Pepsi-Cola Co. is interested

### Nonparametric Two-Sample Tests. Nonparametric Tests. Sign Test

Nonparametric Two-Sample Tests Sign test Mann-Whitney U-test (a.k.a. Wilcoxon two-sample test) Kolmogorov-Smirnov Test Wilcoxon Signed-Rank Test Tukey-Duckworth Test 1 Nonparametric Tests Recall, nonparametric

### Practice Exam. 1. What is the median of this data? A) 64 B) 63.5 C) 67.5 D) 59 E) 35

Practice Exam Use the following to answer questions 1-2: A census is done in a given region. Following are the populations of the towns in that particular region (in thousands): 35, 46, 52, 63, 64, 71,

### STA 2023H Solutions for Practice Test 4

1. Which statement is not true about confidence intervals? A. A confidence interval is an interval of values computed from sample data that is likely to include the true population value. B. An approximate

### Chapter 11-12 1 Review

Chapter 11-12 Review Name 1. In formulating hypotheses for a statistical test of significance, the null hypothesis is often a statement of no effect or no difference. the probability of observing the data

### 1 Confidence intervals

Math 143 Inference for Means 1 Statistical inference is inferring information about the distribution of a population from information about a sample. We re generally talking about one of two things: 1.

### MAT X Hypothesis Testing - Part I

MAT 2379 3X Hypothesis Testing - Part I Definition : A hypothesis is a conjecture concerning a value of a population parameter (or the shape of the population). The hypothesis will be tested by evaluating

### LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.

### Business Statistics. Lecture 8: More Hypothesis Testing

Business Statistics Lecture 8: More Hypothesis Testing 1 Goals for this Lecture Review of t-tests Additional hypothesis tests Two-sample tests Paired tests 2 The Basic Idea of Hypothesis Testing Start

### Hypothesis testing: Examples. AMS7, Spring 2012

Hypothesis testing: Examples AMS7, Spring 2012 Example 1: Testing a Claim about a Proportion Sect. 7.3, # 2: Survey of Drinking: In a Gallup survey, 1087 randomly selected adults were asked whether they

### Math 62 Statistics Sample Exam Questions

Math 62 Statistics Sample Exam Questions 1. (10) Explain the difference between the distribution of a population and the sampling distribution of a statistic, such as the mean, of a sample randomly selected

### Math 108 Exam 3 Solutions Spring 00

Math 108 Exam 3 Solutions Spring 00 1. An ecologist studying acid rain takes measurements of the ph in 12 randomly selected Adirondack lakes. The results are as follows: 3.0 6.5 5.0 4.2 5.5 4.7 3.4 6.8

### HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men

### t Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon

t-tests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com www.excelmasterseries.com

### 1 Hypotheses test about µ if σ is not known

1 Hypotheses test about µ if σ is not known In this section we will introduce how to make decisions about a population mean, µ, when the standard deviation is not known. In order to develop a confidence

### CHAPTER 15: Tests of Significance: The Basics

CHAPTER 15: Tests of Significance: The Basics The Basic Practice of Statistics 6 th Edition Moore / Notz / Fligner Lecture PowerPoint Slides Chapter 15 Concepts 2 The Reasoning of Tests of Significance

### Hypothesis Testing. Bluman Chapter 8

CHAPTER 8 Learning Objectives C H A P T E R E I G H T Hypothesis Testing 1 Outline 8-1 Steps in Traditional Method 8-2 z Test for a Mean 8-3 t Test for a Mean 8-4 z Test for a Proportion 8-5 2 Test for

### In the general population of 0 to 4-year-olds, the annual incidence of asthma is 1.4%

Hypothesis Testing for a Proportion Example: We are interested in the probability of developing asthma over a given one-year period for children 0 to 4 years of age whose mothers smoke in the home In the

### C. The null hypothesis is not rejected when the alternative hypothesis is true. A. population parameters.

Sample Multiple Choice Questions for the material since Midterm 2. Sample questions from Midterms and 2 are also representative of questions that may appear on the final exam.. A randomly selected sample

### THE FIRST SET OF EXAMPLES USE SUMMARY DATA... EXAMPLE 7.2, PAGE 227 DESCRIBES A PROBLEM AND A HYPOTHESIS TEST IS PERFORMED IN EXAMPLE 7.

THERE ARE TWO WAYS TO DO HYPOTHESIS TESTING WITH STATCRUNCH: WITH SUMMARY DATA (AS IN EXAMPLE 7.17, PAGE 236, IN ROSNER); WITH THE ORIGINAL DATA (AS IN EXAMPLE 8.5, PAGE 301 IN ROSNER THAT USES DATA FROM

### STATISTICS 8: CHAPTERS 7 TO 10, SAMPLE MULTIPLE CHOICE QUESTIONS

STATISTICS 8: CHAPTERS 7 TO 10, SAMPLE MULTIPLE CHOICE QUESTIONS 1. If two events (both with probability greater than 0) are mutually exclusive, then: A. They also must be independent. B. They also could

### Tutorial 5: Hypothesis Testing

Tutorial 5: Hypothesis Testing Rob Nicholls nicholls@mrc-lmb.cam.ac.uk MRC LMB Statistics Course 2014 Contents 1 Introduction................................ 1 2 Testing distributional assumptions....................

### STATISTICS 151 SECTION 1 FINAL EXAM MAY

STATISTICS 151 SECTION 1 FINAL EXAM MAY 2 2009 This is an open book exam. Course text, personal notes and calculator are permitted. You have 3 hours to complete the test. Personal computers and cellphones

### The calculations lead to the following values: d 2 = 46, n = 8, s d 2 = 4, s d = 2, SEof d = s d n s d n

EXAMPLE 1: Paired t-test and t-interval DBP Readings by Two Devices The diastolic blood pressures (DBP) of 8 patients were determined using two techniques: the standard method used by medical personnel

### 6: Introduction to Hypothesis Testing

6: Introduction to Hypothesis Testing Significance testing is used to help make a judgment about a claim by addressing the question, Can the observed difference be attributed to chance? We break up significance

### Sections 4.5-4.7: Two-Sample Problems. Paired t-test (Section 4.6)

Sections 4.5-4.7: Two-Sample Problems Paired t-test (Section 4.6) Examples of Paired Differences studies: Similar subjects are paired off and one of two treatments is given to each subject in the pair.

### Hypothesis Testing. Hypothesis Testing CS 700

Hypothesis Testing CS 700 1 Hypothesis Testing! Purpose: make inferences about a population parameter by analyzing differences between observed sample statistics and the results one expects to obtain if

### Hypothesis Testing. Steps for a hypothesis test:

Hypothesis Testing Steps for a hypothesis test: 1. State the claim H 0 and the alternative, H a 2. Choose a significance level or use the given one. 3. Draw the sampling distribution based on the assumption

### Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

### Lecture 1: t tests and CLT

Lecture 1: t tests and CLT http://www.stats.ox.ac.uk/ winkel/phs.html Dr Matthias Winkel 1 Outline I. z test for unknown population mean - review II. Limitations of the z test III. t test for unknown population

### a) Find the five point summary for the home runs of the National League teams. b) What is the mean number of home runs by the American League teams?

1. Phone surveys are sometimes used to rate TV shows. Such a survey records several variables listed below. Which ones of them are categorical and which are quantitative? - the number of people watching

### p1^ = 0.18 p2^ = 0.12 A) 0.150 B) 0.387 C) 0.300 D) 0.188 3) n 1 = 570 n 2 = 1992 x 1 = 143 x 2 = 550 A) 0.270 B) 0.541 C) 0.520 D) 0.

Practice for chapter 9 and 10 Disclaimer: the actual exam does not mirror this. This is meant for practicing questions only. The actual exam in not multiple choice. Find the number of successes x suggested

### Statistics 641 - EXAM II - 1999 through 2003

Statistics 641 - EXAM II - 1999 through 2003 December 1, 1999 I. (40 points ) Place the letter of the best answer in the blank to the left of each question. (1) In testing H 0 : µ 5 vs H 1 : µ > 5, the

### Case l: Watchdog, Inc: Keeping hospitals honest

Case l: Watchdog, Inc: Keeping hospitals honest Insurance companies hire independent firms like Watchdog, Inc to review their hospital bills. They pay Watchdog a percentage of the overcharges it finds.

### ACTM State Exam-Statistics

ACTM State Exam-Statistics For the 25 multiple-choice questions, make your answer choice and record it on the answer sheet provided. Once you have completed that section of the test, proceed to the tie-breaker

### The alternative hypothesis,, is the statement that the parameter value somehow differs from that claimed by the null hypothesis. : 0.5 :>0.5 :<0.

Section 8.2-8.5 Null and Alternative Hypotheses... The null hypothesis,, is a statement that the value of a population parameter is equal to some claimed value. :=0.5 The alternative hypothesis,, is the

### Statistical Inference

Statistical Inference Idea: Estimate parameters of the population distribution using data. How: Use the sampling distribution of sample statistics and methods based on what would happen if we used this

### = \$96 = \$24. (b) The degrees of freedom are. s n. 7.3. For the mean monthly rent, the 95% confidence interval for µ is

Chapter 7 Solutions 71 (a) The standard error of the mean is df = n 1 = 15 s n = \$96 = \$24 (b) The degrees of freedom are 16 72 In each case, use df = n 1; if that number is not in Table D, drop to the

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) ±1.88 B) ±1.645 C) ±1.96 D) ±2.

Ch. 6 Confidence Intervals 6.1 Confidence Intervals for the Mean (Large Samples) 1 Find a Critical Value 1) Find the critical value zc that corresponds to a 94% confidence level. A) ±1.88 B) ±1.645 C)

### 7 Hypothesis testing - one sample tests

7 Hypothesis testing - one sample tests 7.1 Introduction Definition 7.1 A hypothesis is a statement about a population parameter. Example A hypothesis might be that the mean age of students taking MAS113X

### A) 0.1554 B) 0.0557 C) 0.0750 D) 0.0777

Math 210 - Exam 4 - Sample Exam 1) What is the p-value for testing H1: µ < 90 if the test statistic is t=-1.592 and n=8? A) 0.1554 B) 0.0557 C) 0.0750 D) 0.0777 2) The owner of a football team claims that

### Sample Size Determination

Sample Size Determination Population A: 10,000 Population B: 5,000 Sample 10% Sample 15% Sample size 1000 Sample size 750 The process of obtaining information from a subset (sample) of a larger group (population)

### Experimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test

Experimental Design Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 To this point in the semester, we have largely

### CHAPTER 11 SECTION 2: INTRODUCTION TO HYPOTHESIS TESTING

CHAPTER 11 SECTION 2: INTRODUCTION TO HYPOTHESIS TESTING MULTIPLE CHOICE 56. In testing the hypotheses H 0 : µ = 50 vs. H 1 : µ 50, the following information is known: n = 64, = 53.5, and σ = 10. The standardized

### Chapter 7 - Practice Problems 1

Chapter 7 - Practice Problems 1 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. 1) Define a point estimate. What is the

### AP Statistics 2010 Scoring Guidelines

AP Statistics 2010 Scoring Guidelines The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in

### Part 1 Running a Hypothesis Test in Rcmdr

Math 17, Section 2 Spring 2011 Lab 7 Name SOLUTIONS Goal: To gain experience with hypothesis tests for a proportion Part 1 Running a Hypothesis Test in Rcmdr The goal of this part of the lab is to become

Chapter 11 Testing Hypotheses About Proportions Hypothesis testing method: uses data from a sample to judge whether or not a statement about a population may be true. Steps in Any Hypothesis Test 1. Determine

### Nonparametric tests these test hypotheses that are not statements about population parameters (e.g.,

CHAPTER 13 Nonparametric and Distribution-Free Statistics Nonparametric tests these test hypotheses that are not statements about population parameters (e.g., 2 tests for goodness of fit and independence).

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

STATISTICS/GRACEY EXAM 3 PRACTICE/CH. 8-9 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the P-value for the indicated hypothesis test. 1) A

### Power and Sample Size Determination

Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 Power 1 / 31 Experimental Design To this point in the semester,