X-ray Imaging System. X-Ray Circuit. Principles of Imaging Science II (RAD 120) X-ray Imaging System Circuitry

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "X-ray Imaging System. X-Ray Circuit. Principles of Imaging Science II (RAD 120) X-ray Imaging System Circuitry"

Transcription

1 Principles of Imaging Science II (RAD 120) X-ray Imaging System Circuitry X-ray Imaging System Operating console Set x-ray tube current (quantity) and voltage (quality) Controls line compensation, kvp, ma and exposure time (mas) via digital meters AEC devices 2 X-Ray Circuit 3 1

2 Operating Console RT controls & meters are located within the low voltage side (primary) of the x-ray circuit Reduce shock potential 4 Operating Console - Line Compensation Incoming Line Voltage (Mains) Electricity supply in US is 60 Hz AC, with a nominal rms of volts Polarity reverses 120 times/sec Voltages constantly fluctuate as resistors are activated in circuit in accordance with Ohm s Law Can vary +5% affecting x-ray production Supplied in the form of a three-phase power cycle 5 Single-Phase Power A. Voltage drops to zero with every change in direction Frequency of sine wave is determined by # of cycles/sec (cps) 60 Hz X 2 directions = 120 changes/sec B. Full wave rectified circuit (DC pulsating) Produces no x-ray photons 120X/sec 7 2

3 Single-Phase Power 1o RMS V of a single-phase sinusoidal wave is approximately 70.7% of peak voltage Calculate the rms voltage of a single-phase sine wave with 90 kvp peak? kvp peak? 46 Inefficient, solve by using three-phase power 8 Three-Phase Power 3o Supplied by power co As each wave peak begins to drop toward 0, voltage is boosted back to peak by next phase A. Sum of phasing never drops to 0 Produces 3 pulses/half cycle 6 pulses/hz & 360 pulses/sec 9 X-Ray Circuit 10 3

4 Autotransformer Single winding around an iron core Operates on self-induction principle Good for controlling voltage on low voltage side of x-ray circuit Supplies precise voltage to the high voltage (secondary) and filament volts delivered to primary side from incoming line voltage Voltage compensation automatic on 1 o side Follows the transformer law 11 A, A1: primary connections that conduct input power to Autotransformer C: Increases voltage due to proximity to end and number of turns encased by the connections E: Decreases voltage Autotransformer 12 Kilovolt Peak (kvp) Selector kvp selector on output side kvp major, kvp minor controls 220 volts delivered to primary side output voltage of autotransformer is usually between 100 to 400 volts Output voltage is then delivered to input side of step up transformer for x-ray tube operation 13 4

5 Milliamperage (ma) Selector X-ray tube current is controlled by the filament circuit Thermionic emission is based upon temp of the filament measured in amperes (A) Filaments operate at 3 6 amps, 6-12 volts Fixed ma stations as resistors Falling load generators Max ma, drops 14 Milliamperage (ma) Selector Voltage from ma station is delivered to filament transformer (Step-Down) Lower voltage, higher current to filament ma meter measures x-ray tube current Placed in the center on output side of high voltage transformer May be placed on control console 15 Exposure Timers Determines exposure duration Connected on the primary side of the high voltage transformer Types: Electronic: Most common, microprocessor controlled. Short time 1ms Good for multiple sequence imaging mas Timer: Electronic timer monitors tube current and is on the output side of the high voltage transformer. Uses the shortest exposure time for mas selected Used in falling load generators Designed to work in 3 phase or high frequency generators Kvp, ma regulated separately Exposure begins at highest ma, then decreases Permits better use of acceptable x-ray tube limits; less costly AEC 16 5

6 Voltage Rectification Required for x-ray tube operation Process of changing alternating current (AC) to pulsating direct current (DC) A rectifier functions by allowing current to flow through it in one direction only Electron flow in the x-ray tube must be from cathode to anode 17 Semiconductors Modern method of rectification N type & P type semiconductors are used N-type have loosely bound electrons that flow easily between the atom s conduction bands Silicon/Phosphorus, Silicon/Arsenic P-type have electron traps (positive holes) that attract and hold electrons instead of allowing them to move to another atom Silicon/Boron, Silicon/Gallium 18 Diode Joining of n-type and p-type semiconductors Electrons are attracted toward positive charge and move through the n-type material to the junction between the semiconductors. Additional electrons move in to replace electrons that migrated At the junction, electrons are attracted to the positive holes keeping a continuous electric potential in one direction only 19 6

7 Solid-State Semiconductor Diode 20 Types of Rectification Half-wave Rectification Single rectifier that suppresses the negative half of the alternating cycle No steady flow of current Energy loss in form of heat 21 Neg Cycle Types of Rectification Full-Wave Rectification Four rectifiers that are arranged to allow electron flow from negative - positive Uses all the current flow from the AC source Rise and fall of current potential Rippling of current produces lower energy x-rays Pos Cycle 22 7

8 Full-Wave Rectification Positive Half Cycle Diodes A & D permit electron flow during the positive half cycle Diode C cannot conduct electrons Negative Half Cycle Diodes B & C permit electron flow Diodes A & D block electron flow 23 Three-phase generators Incorporates three out-ofphase currents to produce a steadier DC, eliminating ripple Three coils of wire are wrapped around the generator core. 24 High-frequency DC X-ray circuitry is designed to increase the standard 60 cycle frequency to 50-5,000 cycles/sec Nearly constant potential waveform Smaller in design Increased radiation quality and quantity Lower patient dose Increase x-ray tube life 25 8

9 Voltage Ripple 26 X-ray Circuit Diagram 27 9

ELEC 435 ELECTRONICS I. Rectifier Circuits

ELEC 435 ELECTRONICS I. Rectifier Circuits ELEC 435 ELECTRONICS I Rectifier Circuits Common types of Transformers The Rectifier Rectification is the conversion of an alternating current to a pulsating direct current. Rectification occurs in both

More information

ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEM 102 INTRODUCTION TO ELECTRICAL ENGINEERING EXPERIMENT 9: DIODES AND DC POWER SUPPLY OBJECTIVE: To observe how a diode functions

More information

Analog Electronics. Module 1: Semiconductor Diodes

Analog Electronics. Module 1: Semiconductor Diodes Analog Electronics s PREPARED BY Academic Services Unit August 2011 Applied Technology High Schools, 2011 s Module Objectives Upon successful completion of this module, students should be able to: 1. Identify

More information

Basic Circuitry and X-ray Production. X-Ray Production. From the Beginning. What are X-Rays? Where do they come from?

Basic Circuitry and X-ray Production. X-Ray Production. From the Beginning. What are X-Rays? Where do they come from? Basic Circuitry and X-ray Production Lynn C. Sadler, MSRS, R.T.(R)(QM) President, WCEC, Inc. What are X-Rays? X-Ray Production Where do they come from? What are some characteristics of x-radiation? How

More information

EXPERIMENT 3 DIODE AS RECTIFIER

EXPERIMENT 3 DIODE AS RECTIFIER EXPERIMENT 3 DIODE AS RECTIFIER 1. OBJECTIVES 1.1 To understand the application of diode. 1.2 To demonstrate the characteristics of three different diode rectifier circuits: halfwave rectifier, center-tapped

More information

Yrd. Doç. Dr. Aytaç Gören

Yrd. Doç. Dr. Aytaç Gören H2 - AC to DC Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits W04 Transistors and Applications (H-Bridge) W05 Op Amps

More information

The full wave rectifier consists of two diodes and a resister as shown in Figure

The full wave rectifier consists of two diodes and a resister as shown in Figure The Full-Wave Rectifier The full wave rectifier consists of two diodes and a resister as shown in Figure The transformer has a centre-tapped secondary winding. This secondary winding has a lead attached

More information

Diode Applications. As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off.

Diode Applications. As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off. Diode Applications Diode Switching As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off. Voltage Rectifier A voltage rectifier is a circuit that converts an

More information

Lecture - 4 Diode Rectifier Circuits

Lecture - 4 Diode Rectifier Circuits Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture - 4 Diode Rectifier Circuits

More information

13/02/2016. Diode Applications

13/02/2016. Diode Applications Diode Applications Introduction to diode circuits DC and AC diode circuits Diode applications Clippers Clampers Limiters Peak rectifiers Voltage multipliers Voltage regulators (with Zener diodes) Rectifiers

More information

POWER SUPPLY MODEL XP-15. Instruction Manual ELENCO

POWER SUPPLY MODEL XP-15. Instruction Manual ELENCO POWER SUPPLY MODEL XP-15 Instruction Manual ELENCO Copyright 2013 by Elenco Electronics, Inc. REV-A 753020 All rights reserved. No part of this book shall be reproduced by any means; electronic, photocopying,

More information

Properties of electrical signals

Properties of electrical signals DC Voltage Component (Average voltage) Properties of electrical signals v(t) = V DC + v ac (t) V DC is the voltage value displayed on a DC voltmeter Triangular waveform DC component Half-wave rectifier

More information

Lab 1 Diode Characteristics

Lab 1 Diode Characteristics Lab 1 Diode Characteristics Purpose The purpose of this lab is to study the characteristics of the diode. Some of the characteristics that will be investigated are the I-V curve and the rectification properties.

More information

Rectifier circuits & DC power supplies

Rectifier circuits & DC power supplies Rectifier circuits & DC power supplies Goal: Generate the DC voltages needed for most electronics starting with the AC power that comes through the power line? 120 V RMS f = 60 Hz T = 1667 ms) = )sin How

More information

AC Direct Off-Line Power Supplies

AC Direct Off-Line Power Supplies AC Direct Off-Line Power Supplies r Introduction Many DC power supplies found in electronic systems, including those in this Tech School, rectify the 120 volts available at an electric outlet. The initial

More information

MAGNETISM MAGNETISM. Principles of Imaging Science II (120)

MAGNETISM MAGNETISM. Principles of Imaging Science II (120) Principles of Imaging Science II (120) Magnetism & Electromagnetism MAGNETISM Magnetism is a property in nature that is present when charged particles are in motion. Any charged particle in motion creates

More information

The D.C Power Supply

The D.C Power Supply The D.C Power Supply Voltage Step Down Electrical Isolation Converts Bipolar signal to Unipolar Half or Full wave Smoothes the voltage variation Still has some ripples Reduce ripples Stabilize the output

More information

Power Supplies. 1.0 Power Supply Basics. www.learnabout-electronics.org. Module

Power Supplies. 1.0 Power Supply Basics. www.learnabout-electronics.org. Module Module 1 www.learnabout-electronics.org Power Supplies 1.0 Power Supply Basics What you ll learn in Module 1 Section 1.0 Power Supply Basics. Basic functions of a power supply. Safety aspects of working

More information

EXPERIMENT 2 HALF-WAVE & FULL- WAVE RECTIFICATION

EXPERIMENT 2 HALF-WAVE & FULL- WAVE RECTIFICATION EASTERN MEDITERRANEAN UNIVERSITY DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING EEE 341 LAB ELECTRONIC I EXPERIMENT 2 HALF-WAVE & FULL- WAVE RECTIFICATION Std. No. Name &Surname: 1 2 3 Group No : Submitted

More information

ELECTRICITY & ELECTROMAGNETISM TRANSFORMERS + ETC

ELECTRICITY & ELECTROMAGNETISM TRANSFORMERS + ETC Circuitry, Formulas & Electricity Ch5 Bushong RT 244 12 Lect # 3 1 RT 244 WEEK 10 rev 2012 2 LECTURE # 3 ELECTRICITY & ELECTROMAGNETISM TRANSFORMERS + ETC BUSHONG CH. 4 & 5 REF: CARLTONS CH 3, 4 & 5 &

More information

Rectifiers and filters

Rectifiers and filters Page 1 of 7 Rectifiers and filters Aim : - To construct a DC power supply and to find the percentage of ripple-factor and percentage of regulation. Apparatus :- Transformer 230/15 ( step-down), four IN

More information

Experiment 2 Diode Applications: Rectifiers

Experiment 2 Diode Applications: Rectifiers ECE 3550 - Practicum Fall 2007 Experiment 2 Diode Applications: Rectifiers Objectives 1. To investigate the characteristics of half-wave and full-wave rectifier circuits. 2. To recognize the usefulness

More information

APPLICATION NOTE - 017

APPLICATION NOTE - 017 APPLICATION NOTE - 017 PWM Motor Drives Theory and Measurement Considerations Pulse Width Modulated (PWM) power electronic techniques represent a large and increasing proportion of modern power electronics.

More information

RICHLAND COLLEGE School of Engineering Business & Technology Rev. 0 W. Slonecker Rev. 1 (8/26/2012) J. Bradbury

RICHLAND COLLEGE School of Engineering Business & Technology Rev. 0 W. Slonecker Rev. 1 (8/26/2012) J. Bradbury RICHLAND COLLEGE School of Engineering Business & Technology Rev. 0 W. Slonecker Rev. 1 (8/26/2012) J. Bradbury INTC 1307 Instrumentation Test Equipment Teaching Unit 3 Alternating Current Meters Unit

More information

Week 3: Diode Application Circuits

Week 3: Diode Application Circuits ELE 2110A Electronic Circuits Week 3: Diode Application Circuits Lecture 03-1 opics to cover oltage Regulation - Zener Diode Rectifiers DC-to-DC converters Wave shaping circuits Photodiode and LED Reading

More information

Diodes (non-linear devices)

Diodes (non-linear devices) C H A P T E R 4 Diodes (non-linear devices) Diode structure Ideal Diode Figure 4.2 The two modes of operation of ideal diodes and the use of an external circuit to limit (a) the forward current and (b)

More information

Semiconductors, Diodes and Their Applications

Semiconductors, Diodes and Their Applications Chapter 16 Semiconductors, Diodes and Their Applications A diode is a one-way valve for Current Examples of One-Way Valves Air Check Valve Leg Vein Valves Heart Valves Typical diode packages and terminal

More information

Rectifiers V OAV " V ODC = 1 T. The simplest version of rectifier circuits is the half wave rectifier

Rectifiers V OAV  V ODC = 1 T. The simplest version of rectifier circuits is the half wave rectifier Rectifiers The simplest version of rectifier circuits is the half wave rectifier The circuit is made by a single diode (the transformer is used both to decouple the load from the mains and to change the

More information

Chapter 3. Diodes and Applications. Introduction [5], [6]

Chapter 3. Diodes and Applications. Introduction [5], [6] Chapter 3 Diodes and Applications Introduction [5], [6] Diode is the most basic of semiconductor device. It should be noted that the term of diode refers to the basic p-n junction diode. All other diode

More information

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,

More information

Experiment No. 5 FULL-WAVE RECTIFIERS AND POWER SUPPLIES

Experiment No. 5 FULL-WAVE RECTIFIERS AND POWER SUPPLIES Experiment No. 5 FULL-WAVE RECTIFIERS AND POWER SUPPLIES Objective: The objective of this experiment is to study the performance and characteristic of full-wave rectifiers and DC power supplies utilizing

More information

Rectifier: It is a circuit which employs one or more diodes to convert ac voltage into pulsating dc voltage. We will consider the following circuits:

Rectifier: It is a circuit which employs one or more diodes to convert ac voltage into pulsating dc voltage. We will consider the following circuits: Rectifier: It is a circuit which employs one or more diodes to convert ac voltage into pulsating dc voltage. We will consider the following circuits: (i) Half wave rectifier. (ii) Full wave rectifier.

More information

Chapter 16. Diodes and Applications. Objectives

Chapter 16. Diodes and Applications. Objectives Chapter 16 Diodes and Applications Objectives Understand the basic structure of semiconductors and how they conduct current Describe the characteristics and biasing of a pn junction diode Describe the

More information

BME 3512 Biomedical Electronics Laboratory Three - Diode (1N4001)

BME 3512 Biomedical Electronics Laboratory Three - Diode (1N4001) BME 3512 Biomedical Electronics Laboratory Three Diode () Learning Objectives: Understand the concept of PN junction diodes, their application as rectifiers, the nature and application of halfwave and

More information

Production of X-Rays. Yoichi Watanabe, Ph.D. Masonic Memorial Building M10-M (612) MPHY 5170/TRAD 7170, Fall semester

Production of X-Rays. Yoichi Watanabe, Ph.D. Masonic Memorial Building M10-M (612) MPHY 5170/TRAD 7170, Fall semester Production of X-Rays Yoichi Watanabe, Ph.D. Masonic Memorial Building M10-M (612)626-6708 watan016@umn.edu MPHY 5170/TRAD 7170, Fall semester Contents 1) Physics of X-ray production 2) The X-ray tube 3)

More information

Cathkin High School Physics Department. Revised Higher Unit 3 Electricity. Problem Booklet

Cathkin High School Physics Department. Revised Higher Unit 3 Electricity. Problem Booklet Cathkin High School Physics Department Revised Higher Unit 3 Electricity Problem Booklet Name Class Exercise 1: Monitoring and measuring a.c. 1. What is the peak voltage of the 230 V mains supply? The

More information

Microelectronics Circuit Analysis and Design. Rectifier Circuits. Donald A. Neamen. Chapter 2. Diode Circuits. In this chapter, we will:

Microelectronics Circuit Analysis and Design. Rectifier Circuits. Donald A. Neamen. Chapter 2. Diode Circuits. In this chapter, we will: icroelectronics Circuit Analysis and Design Donald A. Neamen Chapter 2 Diode Circuits n this chapter, we will: Determine the operation and characteristics of diode rectifier circuits, which is the first

More information

Overview: The purpose of this experiment is to introduce diode rectifier circuits used in DC power supplies.

Overview: The purpose of this experiment is to introduce diode rectifier circuits used in DC power supplies. UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 3 Diodes and Bridge Rectifiers Overview: The purpose of this experiment is to introduce diode

More information

LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier

LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER Full-wave Rectification: Bridge Rectifier For many electronic circuits, DC supply voltages are required but only AC voltages are available.

More information

Lab 3 Rectifier Circuits

Lab 3 Rectifier Circuits ECET 242 Electronic Circuits Lab 3 Rectifier Circuits Page 1 of 5 Name: Objective: Students successfully completing this lab exercise will accomplish the following objectives: 1. Learn how to construct

More information

Chapter 16. Diodes and Applications ISU EE. C.Y. Lee

Chapter 16. Diodes and Applications ISU EE. C.Y. Lee Chapter 16 Diodes and Applications Objectives Understand the basic structure of semiconductors and how they conduct current Describe the characteristics and biasing of a pn junction diode Describe the

More information

Diode Applications. by Kenneth A. Kuhn Sept. 1, 2008. This note illustrates some common applications of diodes.

Diode Applications. by Kenneth A. Kuhn Sept. 1, 2008. This note illustrates some common applications of diodes. by Kenneth A. Kuhn Sept. 1, 2008 This note illustrates some common applications of diodes. Power supply applications A common application for diodes is converting AC to DC. Although half-wave rectification

More information

Analog & Digital Electronics Course No: PH-218

Analog & Digital Electronics Course No: PH-218 Analog & Digital Electronics Course No: PH-18 Lec 3: Rectifier and Clipper circuits Course nstructors: Dr. A. P. VAJPEY Department of Physics, ndian nstitute of Technology Guwahati, ndia 1 Rectifier Circuits:

More information

An application is the use of diodes to create a regulated voltage.

An application is the use of diodes to create a regulated voltage. 8. Use of the Diode Forward Drop in Voltage Regulation: An application is the use of diodes to create a regulated voltage. o A voltage regulator is a circuit whose purpose is to provide a constant dc voltage

More information

Apprentice Electrical Technician Test (ETT) Preparation Guide

Apprentice Electrical Technician Test (ETT) Preparation Guide Apprentice Electrical Technician Test (ETT) Preparation Guide APPRENTICE ELECTRICAL TECHNICIAN TEST (ETT) About the Test There are 40 questions with a maximum time limit of three hours. This is a closed

More information

Rectifier Circuits. A. Half-wave (HW) Rectifier. By: Al Christman Grove City College 100 Campus Drive Grove City, PA

Rectifier Circuits. A. Half-wave (HW) Rectifier. By: Al Christman Grove City College 100 Campus Drive Grove City, PA Rectifier Circuits By: Al Christman Grove City College 100 Campus Drive Grove City, PA Rectifiers are used to convert AC to pulsating DC, and can be combined with various types of filters to form power

More information

HALF-WAVE & FULL-WAVE RECTIFICATION

HALF-WAVE & FULL-WAVE RECTIFICATION HALF-WAE & FULL-WAE RECTIFICATION Objectives: HALF-WAE & FULL-WAE RECTIFICATION To recognize a half-wave rectified sinusoidal voltage. To understand the term mean value as alied to a rectified waveform.

More information

electronics fundamentals

electronics fundamentals electronics fundamentals circuits, devices, and applications THOMAS L. FLOYD DAVID M. BUCHLA Lesson 1: Diodes and Applications Center-Tapped Full-wave Rectifier The center-tapped (CT) full-wave rectifier

More information

Laboratory 5: Half- and Full-wave Rectifier Circuits

Laboratory 5: Half- and Full-wave Rectifier Circuits Laboratory 5: Half- and Full-wave Rectifier Circuits Laboratory 4 Laboratory 5 Laboratory 6 Aims and Objectives The aim of this laboratory is to investigate the effect of a non-linear device on ac signals.

More information

Precision Diode Rectifiers

Precision Diode Rectifiers by Kenneth A. Kuhn March 21, 2013 Precision half-wave rectifiers An operational amplifier can be used to linearize a non-linear function such as the transfer function of a semiconductor diode. The classic

More information

Lecture 8 Diode Applications in Microelectronic Circuits

Lecture 8 Diode Applications in Microelectronic Circuits ECE 3040 - Microelectronic Circuits Lecture 8 iode Applications in Microelectronic Circuits Instructor: r. Shyh-Chiang Shen Study: Jaeger 3.9, 3.10, 3.13.1, 3.13.2, 3.13.3, 3.14, 3.15, 3.16, Lecture Outline

More information

Circuit Components Lesson Amplifier Fundamentals The role of a amplifier is to produce an output which is an enlarged reproduction of the

Circuit Components Lesson Amplifier Fundamentals The role of a amplifier is to produce an output which is an enlarged reproduction of the 4.1 Amplifier Fundamentals The role of a amplifier is to produce an output which is an enlarged reproduction of the features of the signal fed into the input. The increase in signal by an amplifier is

More information

ECEN 1400, Introduction to Analog and Digital Electronics

ECEN 1400, Introduction to Analog and Digital Electronics ECEN 1400, Introduction to Analog and Digital Electronics Lab 4: Power supply 1 INTRODUCTION This lab will span two lab periods. In this lab, you will create the power supply that transforms the AC wall

More information

See Horenstein 4.3 and 4.4

See Horenstein 4.3 and 4.4 EE 462: Laboratory # 4 DC Power Supply Circuits Using Diodes by Drs. A.V. Radun and K.D. Donohue (2/14/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated

More information

Semiconductor Diode. It has already been discussed in the previous chapter that a pn junction conducts current easily. Principles of Electronics

Semiconductor Diode. It has already been discussed in the previous chapter that a pn junction conducts current easily. Principles of Electronics 76 6 Principles of Electronics Semiconductor Diode 6.1 Semiconductor Diode 6.3 Resistance of Crystal Diode 6.5 Crystal Diode Equivalent Circuits 6.7 Crystal Diode Rectifiers 6.9 Output Frequency of Half-Wave

More information

Single phase, uncontrolled rectification (conversion)

Single phase, uncontrolled rectification (conversion) Single phase, uncontrolled rectification (conversion) J Charles Lee Doyle C12763425 29 October 2015 Abstract An experiment investigating full wave rectification, for the purposes of producing a steady

More information

R1 R2 R3. Figure1. Resistances in series V1 I. Figure 2. Equivalent circuit of figure 1 if RE= R1+R2+R3 VRE =V

R1 R2 R3. Figure1. Resistances in series V1 I. Figure 2. Equivalent circuit of figure 1 if RE= R1+R2+R3 VRE =V Supplementary Notes for Unit 2 - Part A (Unit 3 and 4 exams also includes the topics detailed in this note) Series circuits A series circuit is a circuit in which resistors are arranged in a chain, so

More information

AAPM REPORT NO. 14 PERFORMANCE SPECIFICATIONS AND ACCEPTANCE TESTING FOR X-RAY GENERATORS AND AUTOMATIC EXPOSURE CONTROL DEVICES

AAPM REPORT NO. 14 PERFORMANCE SPECIFICATIONS AND ACCEPTANCE TESTING FOR X-RAY GENERATORS AND AUTOMATIC EXPOSURE CONTROL DEVICES AAPM REPORT NO. 14 PERFORMANCE SPECIFICATIONS AND ACCEPTANCE TESTING FOR X-RAY GENERATORS AND AUTOMATIC EXPOSURE CONTROL DEVICES Published for the American Association of Physics in Medicine by the American

More information

= V peak 2 = 0.707V peak

= V peak 2 = 0.707V peak BASIC ELECTRONICS - RECTIFICATION AND FILTERING PURPOSE Suppose that you wanted to build a simple DC electronic power supply, which operated off of an AC input (e.g., something you might plug into a standard

More information

Chapter 2 MENJANA MINDA KREATIF DAN INOVATIF

Chapter 2 MENJANA MINDA KREATIF DAN INOVATIF Chapter 2 DIODE part 2 MENJANA MINDA KREATIF DAN INOATIF objectives Diode with DC supply circuit analysis serial & parallel Diode d applications the DC power supply & Clipper Analysis & Design of rectifier

More information

Half-Wave Rectifiers

Half-Wave Rectifiers Half-Wave Rectifiers Important Points of This Lecture Calculation of output voltage using appropriate piecewise models for diode for simple (unfiltered) half-wave rectifier Differences between calculations

More information

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3. Diodes and Diode Circuits 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3.1 Diode Characteristics Small-Signal Diodes Diode: a semiconductor device, which conduct the current

More information

EE 320L Electronics I Laboratory. Laboratory Exercise #4 Diode and Power Supply Circuit

EE 320L Electronics I Laboratory. Laboratory Exercise #4 Diode and Power Supply Circuit EE 320L Electronics I Laboratory Laboratory Exercise #4 Diode and Power Supply Circuit Department of Electrical and Computer Engineering University of Nevada, at Las Vegas Objective: The purpose of this

More information

Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012

Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012 1 Secondary Task List 100 SAFETY 101 Demonstrate an understanding of State and School safety regulations. 102 Practice safety techniques for electronics work. 103 Demonstrate an understanding of proper

More information

DEALING WITH AC MAINS

DEALING WITH AC MAINS ARTICLE DEALING WITH AC MAINS D.MOHAN KUMAR One of the major problem that is to be solved in an electronic circuit design is the production of low voltage DC power supply from AC mains to power the circuit.

More information

2 Rectifier Circuits Half-Wave Rectifier Circuits Full-Wave Rectifier Circuits Linear Small-Signal Equivalent Circuits 7

2 Rectifier Circuits Half-Wave Rectifier Circuits Full-Wave Rectifier Circuits Linear Small-Signal Equivalent Circuits 7 Lecture Notes: 2304154 Physics and Electronics Lecture 5 (2 nd Half), Year: 2007 Physics Department, Faculty of Science, Chulalongkorn University 25/10/2007 Contents 1 Ideal-Diode Model 1 2 Rectifier Circuits

More information

Lecture 8 Root mean square

Lecture 8 Root mean square Lecture 8: ECEN 14 Introduction to Analog and Digital Electronics Lecture 8 oot mean square Concept of a sinusoidal signal Examples Application to rectified signals obert. McLeod, University of Colorado

More information

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49 Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large

More information

X-ray Imaging Systems

X-ray Imaging Systems Principles of Imaging Science I (RAD 119) X-ray Tube & Equipment X-ray Imaging Systems Medical X-ray Equipment Classified by purpose or energy/current levels kvp, ma Radiographic Non-dynamic procedures

More information

Building the HVPS High Voltage Power Supply

Building the HVPS High Voltage Power Supply Introduction Building the HVPS High Voltage Power Supply Voltages higher than the LVPS provides kilovolts are needed in later experiments to get strong electric fields and to generate microwaves. The high-voltage

More information

Lab Report. Signature. Name. Experiment No Experiment Name. Group Number Group Members. 2. Faisal Ahmed Shamima Akter

Lab Report. Signature. Name. Experiment No Experiment Name. Group Number Group Members. 2. Faisal Ahmed Shamima Akter Lab Report Course Name Course Code Experiment No Experiment Name : Electronic Circuit-I : EEE102 :02 : Study of Diode Rectifier Circuits Group Number Group Members : 02 : Name ID 1. Md. Solayman Khan 2013-1-80-022

More information

CONSTRUCTING A VARIABLE POWER SUPPLY UNIT

CONSTRUCTING A VARIABLE POWER SUPPLY UNIT CONSTRUCTING A VARIABLE POWER SUPPLY UNIT Building a power supply is a good way to put into practice many of the ideas we have been studying about electrical power so far. Most often, power supplies are

More information

Robert L. Boylestad Electronic Devices and Circuit Theory, 9e

Robert L. Boylestad Electronic Devices and Circuit Theory, 9e Fig. 2.44 Half-wave rectifier. Fig. 2.45 Conduction region (0 T/2). Fig. 2.46 Nonconduction region (T/2 T). Fig. 2.47 Half-wave rectified signal. Fig. 2.48 Effect of V K on half-wave rectified signal.

More information

Faculty of Engineering and Information Technology. Lab 2 Diode Circuits

Faculty of Engineering and Information Technology. Lab 2 Diode Circuits Faculty of Engineering and Information Technology Subject: 48521 Fundamentals of Electrical Engineering Assessment Number: 2 Assessment Title: Lab 2 Diode Circuits Tutorial Group: Students Name(s) and

More information

Meters, Power Supplies and Generators

Meters, Power Supplies and Generators 1. Meters Meters, Power Supplies and Generators Generally analog meters respond to the average of the signal being measured. This is due to the mechanical mass of the pointer and the RC response time of

More information

CHAPTER THREE DIODE RECTIFIERS

CHAPTER THREE DIODE RECTIFIERS CHATE THEE DODE ECTFES 3. Single-hase Half Wave ectifier: Single phase half-wave rectifier is the simplest circuit, this circuit is not used in precise practical applications due to high voltage ripples,

More information

Silicon Controlled Rectifiers

Silicon Controlled Rectifiers 554 20 Principles of Electronics Silicon Controlled Rectifiers 20.1 Silicon Controlled Rectifier (SCR) 20.2 Working of SCR 20.3 Equivalent Circuit of SCR 20.4 Important Terms 20.5 V-I Characteristics of

More information

Diode Characteristics EELE101 Laboratory

Diode Characteristics EELE101 Laboratory Diode Characteristics EELE101 Laboratory Amplifying Montana s Advanced Manufacturing and Innovation Industry #TC-23760-12-60-A-30 This product was funded by a grant awarded by the U.S. Department of Labor

More information

X-ray Production. Target Interactions. Principles of Imaging Science I (RAD119) X-ray Production & Emission

X-ray Production. Target Interactions. Principles of Imaging Science I (RAD119) X-ray Production & Emission Principles of Imaging Science I (RAD119) X-ray Production & Emission X-ray Production X-rays are produced inside the x-ray tube when high energy projectile electrons from the filament interact with the

More information

BSNL TTA Question Paper-Instruments and Measurement Specialization 2007

BSNL TTA Question Paper-Instruments and Measurement Specialization 2007 BSNL TTA Question Paper-Instruments and Measurement Specialization 2007 (1) Instrument is a device for determining (a) the magnitude of a quantity (b) the physics of a variable (c) either of the above

More information

Three phase circuits

Three phase circuits Three phase circuits THREE PHASE CIRCUITS THREE-PHASE ADVANTAGES 1. The horsepower rating of three-phase motors and the kva rating of three-phase transformers are 150% greater than single-phase motors

More information

CHAPTER 2B: DIODE AND APPLICATIONS. D.Wilcher

CHAPTER 2B: DIODE AND APPLICATIONS. D.Wilcher CHAPTER 2B: DIODE AND APPLICATIONS D.Wilcher 1 CHAPTER 2B: OBJECTIVES Analyze the operation of 3 basic types of rectifiers Describe the operation of rectifier filters and IC regulators Analyze the operation

More information

Solution Tutorial 1. Diode Basics, Application and Special Diodes

Solution Tutorial 1. Diode Basics, Application and Special Diodes Solution Tutorial 1 Diode Basics, Application and Special Diodes 1. What is the maximum number of electrons that can exist in the 3 rd shell of an atom? 2. A certain atom has four valence electrons. What

More information

CIRCUITS LABORATORY. Experiment 8. DC Power Supplies

CIRCUITS LABORATORY. Experiment 8. DC Power Supplies CIRCUITS LABORATORY Experiment 8 DC Power Supplies 8.1 INTRODUCTION This exercise constitutes a study of circuits that approximate an ideal constantvoltage source. Recall that the ideal constant-voltage

More information

Chapter 22 Further Electronics

Chapter 22 Further Electronics hapter 22 Further Electronics washing machine has a delay on the door opening after a cycle of washing. Part of this circuit is shown below. s the cycle ends, switch S closes. t this stage the capacitor

More information

Physics. Teacher s notes 56 Diodes: A.C. diode rectification. Electricity and Heat

Physics. Teacher s notes 56 Diodes: A.C. diode rectification. Electricity and Heat Sensors: Loggers: An EASYSENSE capable of fast logging Physics Logging : 500 ms Teacher s notes 56 Diodes: A.C. diode rectification Read In investigation 55, students will have found out that diodes only

More information

NZQA registered unit standard 20431 version 2 Page 1 of 7. Demonstrate and apply fundamental knowledge of a.c. principles for electronics technicians

NZQA registered unit standard 20431 version 2 Page 1 of 7. Demonstrate and apply fundamental knowledge of a.c. principles for electronics technicians NZQA registered unit standard 0431 version Page 1 of 7 Title Demonstrate and apply fundamental knowledge of a.c. principles for electronics technicians Level 3 Credits 7 Purpose This unit standard covers

More information

Semiconductor Fundamentals

Semiconductor Fundamentals Student Workbook 91564-00 Edition 4 Ê>{XHèRÆ3UË 3091564000503 FOURTH EDITION Second Printing, March 2005 Copyright March, 2003 Lab-Volt Systems, Inc. All rights reserved. No part of this publication may

More information

ELEC 2020 EXPERIMENT 6 Zener Diodes and LED's

ELEC 2020 EXPERIMENT 6 Zener Diodes and LED's ELEC 2020 EXPERIMENT 6 Zener Diodes and LED's Objectives: The experiments in this laboratory exercise will provide an introduction to diodes. You will use the Bit Bucket breadboarding system to build and

More information

electronics fundamentals

electronics fundamentals electronics fundamentals circuits, devices, and applications THOMAS L. FLOYD DAVID M. BUCHLA Lesson 1: Diodes and Applications Clamper Circuits (Diode Clampers) A clamper adds a dc level to an ac voltage.

More information

Technical University of Gdańsk Department of Medical and Ecological Electronics. Laboratory of Basic Electronics Exercise 2

Technical University of Gdańsk Department of Medical and Ecological Electronics. Laboratory of Basic Electronics Exercise 2 Technical University of Gdańsk Department of Medical and Ecological Electronics Laboratory of Basic Electronics Exercise 2 prepeared by : Krzysztof Suchocki Gdańsk 1999 Exercise 2 Detection diodes, Zener

More information

X-ray Imaging Systems

X-ray Imaging Systems Principles of Imaging Science I (RAD 119) X-ray Tube & Equipment X-ray Imaging Systems Medical X-ray Equipment Classified by purpose or energy/current levels kvp, ma Radiographic Non-dynamic procedures

More information

Develop the basic principle of operation of a diode. Classify the different types of diodes and analyze their applications.

Develop the basic principle of operation of a diode. Classify the different types of diodes and analyze their applications. Key educational goals: Develop the basic principle of operation of a diode. Classify the different types of diodes and analyze their applications. Reading/Preparatory activities for class i)textbook: Chapter

More information

EE/CE 3111 Electronic Circuits Laboratory Spring 2015

EE/CE 3111 Electronic Circuits Laboratory Spring 2015 Lab 2: Rectifiers Objectives The objective of this lab is for you to become familiar with the functionality of a diode in circuits. We will experiment the use of diodes in limiting and rectifying circuits.

More information

Homework Assignment 03

Homework Assignment 03 Question 1 (2 points each unless noted otherwise) Homework Assignment 03 1. A 9-V dc power supply generates 10 W in a resistor. What peak-to-peak amplitude should an ac source have to generate the same

More information

ECE 2201 PRELAB 2 DIODE APPLICATIONS

ECE 2201 PRELAB 2 DIODE APPLICATIONS ECE 2201 PRELAB 2 DIODE APPLICATIONS P1. Review this experiment IN ADVANCE and prepare Circuit Diagrams, Tables, and Graphs in your notebook, prior to coming to lab. P2. Hand Analysis: (1) For the zener

More information

David L. Senasack June, 2006 Dale Jackson Career Center, Lewisville Texas. The PN Junction

David L. Senasack June, 2006 Dale Jackson Career Center, Lewisville Texas. The PN Junction David L. Senasack June, 2006 Dale Jackson Career Center, Lewisville Texas The PN Junction Objectives: Upon the completion of this unit, the student will be able to; name the two categories of integrated

More information

APPLICATION NOTE. Fluorescent Ballast Design Using Passive P.F.C. and Crest Factor Control AN998

APPLICATION NOTE. Fluorescent Ballast Design Using Passive P.F.C. and Crest Factor Control AN998 APPLICATION NOTE International Rectifier 233 Kansas Street El Segundo CA 90245 USA AN998 Fluorescent Ballast Design Using Passive P.F.C. and Crest Factor Control by Peter N. Wood I. INTRODUCTION Power

More information

Harmonic Design Considerations

Harmonic Design Considerations Harmonic Design Considerations Michael Leporace Specification Engineer, GE Consumer & Industrial ABSTRACT Power quality can be defined as the comparison of voltage and current waveforms to their fundamental

More information

Analog & Digital Electronics Course No: PH-218

Analog & Digital Electronics Course No: PH-218 Analog & Digital Electronics Course No: PH-218 Lec-4: Clampers, Voltage multipliers, & Zener diode Course nstructors: Dr. A. P. VAJPEY Department of Physics, ndian nstitute of Technology Guwahati, ndia

More information