CONSTRUCTING A VARIABLE POWER SUPPLY UNIT
|
|
|
- Philomena Potter
- 9 years ago
- Views:
Transcription
1 CONSTRUCTING A VARIABLE POWER SUPPLY UNIT Building a power supply is a good way to put into practice many of the ideas we have been studying about electrical power so far. Most often, power supplies are used in consumer electronics to provide a source of DC power that is not dependent on batteries; which of course lose voltage and run down over time. The project associated with this chapter will be to construct a variable power supply, because this type contains some overtones of an analog electronic dimmer used to control lighting equipment. Building any sort of electronics kit teaches several basic skills such as reading a schematic, understanding the functions of basic electronic components, and learning soldering techniques, which are important to any beginning technician. You will recall that the waveform of a 15 volt, DC current looks like this: This doesn t look like much of a wave at all, because the peaks and valleys all have the same position on the y axis, or amplitude. Since the peak voltage and the minimum voltage each have the same value the graph is a straight line from left to right. A 120VAC waveform looks like this: The peak positive voltage is The maximum inverse voltage is -141 volts. The RMS apparent voltage is 120VAC. The sine curve of an AC voltage is due to induction of an electrical current passing through a circular motion, such as was described in the functioning of a generator. In order to build this type of device, which will convert 120VAC power to a 0 to 15VDC variable source, we will need to do the following things: 1 Use a switch to turn the power on and off. 2 Use a transformer to lower a 120VAC mains power supply to a much safer 12VAC. 3 Use a pair of diodes to rectify the AC power into a pulsating DC waveform. (diodes will allow current to flow in one direction only) 1
2 4 Use a capacitor to smooth out the pulsating DC waveform to a more linear shape. 5 Use resistors as a voltage divider to provide specific voltages to certain parts of the power supply unit. 6 Use a variable resistor or potentiometer to create a variable voltage divider. 7 Use a transistor to control the DC voltage output of the variable supply unit. Switches are used everywhere to open and close circuits. They are the start mechanism that sets an electrical process in motion. You see this everyday in turning on a wall switch so that a room light comes on. What you are really doing is completing the electrical circuit so that electrons flow through it to do their work of lighting, starting a motor, turning on a television set, and so forth. In a schematic the symbol for a single pole switch looks like this: Since this transformer is manufactured with one terminal producing +12 volts, and the other 12 volts, the voltage potential (difference) between the two is 24 volts. A diode is an electronic component that allows current to flow in one direction, but not the other. The first diodes were made as vacuum tubes, but today s solid state version looks on the outside very much like a resistor, but electronically is very different. We ve already spent a bit of time looking at transformers, their job is to change voltage pressure. In this instance the transformer is said to be center-tapped, meaning that the ground potential of 0 volts is in the center of the secondary coil of wire. This causes the transformer output to have both positive and negative outputs. The center tap is 0 volts, the top one is + 12 volts, and the bottom one is 12 volts. The schematic symbol for that is: It is very important to put the diode into a circuit going the right direction so that current is resisted in one direction, but allowed freely in the other. Diodes are generally black, with a silver line around one end as seen in the drawing. The schematic symbol is a triangle with a line at one end. In order for the diode to conduct electricity, the line end of the symbol, and/or the line end of the diode should be on the side of the device which 2
3 is closest to the source of power, represented by the negative terminal. In a DC circuit this would look like: to be noisy, and can cause problems with delicate electronics. Noise is an apt description because it can cause sound equipment to hum very loudly. In our power supply project, the center tapped transformer allows the use of two diodes, so that both halves of the sine wave are captured. With this arrangement, the part of the wave that is on the bottom portion of the graph is flipped to the positive side of the x axis so that the output of the circuit after both the transformer and diode sections looks like this: However, diodes are not often used in DC circuits. Instead they are used to rectify alternating current so that it becomes DC. Remember that AC gets its name from the fact that it alternates between negative and positive, so that electrons are flowing one direction and then the other. The diode will allow current flow in one direction and not the other, so only one-half of the waveform is permitted to pass. As you will recall, capacitors are used to store electrons. This electrical phenomenon was one of the first observed by early electrical pioneers like Leyden and Franklin. A Leyden jar has two metal plates that are forced apart because they are both charged similarly, and like charges repel one another. The two plates in a Leyden jar have a certain capacity for storing electrons. This is, technically, a DC current because electrons flow in only one direction, but it would be helpful to create a current that is steadier than this. An unsteady DC current with this type of waveform is said 3
4 In practical modern terms, a capacitor is used to store electrons until they are needed again. In our power supply project, the capacitor is used to smooth out the pulsating waveform coming from the diodes so that it more closely resembles a steady, battery-like current. It does this by storing electrons as the wave form ramps up on the front of the sine curve, and then discharging them as the voltage pressure falls on the back side of the wave form. A filter capacitor of this type needs to be quite large because it needs to store many electrons. expensive, using too small a component will not filter the waveform sufficiently. The remaining fluctuation in the waveform is known as ripple, and is often noted on the specification sheet of an electronic device. The next section of the power supply unit will control the output of the device so that it goes from 0 to 15 volts. Resistors and transistors are used to vary the voltage. Transistors are most often used to amplify voltage or current, and in this case the voltage. The resistors, including the variable potentiometer, are used to control the transistors. The transistors in this circuit have three terminals; base, collector, and emitter. Electrons in the power supply flow through the collector to the emitter. The voltage pressure of the output of the transistor is determined by the input of electrons to the base of the transistor. In accordance with Ohm s Laws (E=IR and R T =R 1 +R 2 +R n ) from chapter three, the potentiometer controls the voltage (as a voltage divider) of electrons entering the base of the transistor. Increasing a small current at the base of the transistor creates a bigger, or amplified change to the voltage, which in this case is the output of the power supply. In this project, the output is continuously variable from 0 to 15 volts. A very large capacitor is used in the filtering process, and as a result, the capacitor does not have time to release all of its electrons before the next cycle begins. As soon as the voltage pressure of the pulsating DC waveform rises to a point where it is equal to the pressure of the remaining electrons in the capacitor, it will once again charge the capacitor to prepare for the next wave cycle. Although large value capacitors are somewhat 4
5 TERMS USED IN THIS CHAPTER Kits to build a power supply of this type are easily found on the web from a variety of different suppliers of electronic kits. Or, if you are especially adventurous, the same companies can supply the following components, which you can use to assemble the power supply unit. 24 volt, center tapped transformer 2200 μf capacitor rated at 35 volts μf capacitor two half-watt 1kΩ resistors one 50kΩ potentiometer (linear taper) two 1N4003 diodes one 2N3904 transistor one 2n3055 transistor Capacitor Diode Leyden jar Noise Peak voltage Potentiometer Power supply Rectify Resistor Ripple Single pole switch Switch Transformer Transistor Base-Collector-Emitter Variable power supply Voltage divider Waveform Wires, switch, power cord, binding posts for the output. Remember that this circuit involves connecting the transformer to the line voltage from the wall, and thus can be very dangerous if you touch one of the live wires. Be sure to get help from someone who has experience with that in order to avoid a possibly life-threatening accident. 5
6 6
POWER SUPPLY MODEL XP-15. Instruction Manual ELENCO
POWER SUPPLY MODEL XP-15 Instruction Manual ELENCO Copyright 2013 by Elenco Electronics, Inc. REV-A 753020 All rights reserved. No part of this book shall be reproduced by any means; electronic, photocopying,
ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING
ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEM 102 INTRODUCTION TO ELECTRICAL ENGINEERING EXPERIMENT 9: DIODES AND DC POWER SUPPLY OBJECTIVE: To observe how a diode functions
Diode Applications. As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off.
Diode Applications Diode Switching As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off. Voltage Rectifier A voltage rectifier is a circuit that converts an
= V peak 2 = 0.707V peak
BASIC ELECTRONICS - RECTIFICATION AND FILTERING PURPOSE Suppose that you wanted to build a simple DC electronic power supply, which operated off of an AC input (e.g., something you might plug into a standard
The full wave rectifier consists of two diodes and a resister as shown in Figure
The Full-Wave Rectifier The full wave rectifier consists of two diodes and a resister as shown in Figure The transformer has a centre-tapped secondary winding. This secondary winding has a lead attached
AC Direct Off-Line Power Supplies
AC Direct Off-Line Power Supplies r Introduction Many DC power supplies found in electronic systems, including those in this Tech School, rectify the 120 volts available at an electric outlet. The initial
Properties of electrical signals
DC Voltage Component (Average voltage) Properties of electrical signals v(t) = V DC + v ac (t) V DC is the voltage value displayed on a DC voltmeter Triangular waveform DC component Half-wave rectifier
ECEN 1400, Introduction to Analog and Digital Electronics
ECEN 1400, Introduction to Analog and Digital Electronics Lab 4: Power supply 1 INTRODUCTION This lab will span two lab periods. In this lab, you will create the power supply that transforms the AC wall
13. Diode Rectifiers, Filters, and Power Supplies
1 13. Diode Rectifiers, Filters, and Power Supplies Introduction A power supply takes Alternating Current or A.C. power from your electric utility (Con Edison) and converts the A.C. electrical current
Diode Applications. by Kenneth A. Kuhn Sept. 1, 2008. This note illustrates some common applications of diodes.
by Kenneth A. Kuhn Sept. 1, 2008 This note illustrates some common applications of diodes. Power supply applications A common application for diodes is converting AC to DC. Although half-wave rectification
The D.C Power Supply
The D.C Power Supply Voltage Step Down Electrical Isolation Converts Bipolar signal to Unipolar Half or Full wave Smoothes the voltage variation Still has some ripples Reduce ripples Stabilize the output
Lab 3 Rectifier Circuits
ECET 242 Electronic Circuits Lab 3 Rectifier Circuits Page 1 of 5 Name: Objective: Students successfully completing this lab exercise will accomplish the following objectives: 1. Learn how to construct
Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012
1 Secondary Task List 100 SAFETY 101 Demonstrate an understanding of State and School safety regulations. 102 Practice safety techniques for electronics work. 103 Demonstrate an understanding of proper
electronics fundamentals
electronics fundamentals circuits, devices, and applications THOMAS L. FLOYD DAVID M. BUCHLA Lesson 1: Diodes and Applications Center-Tapped Full-wave Rectifier The center-tapped (CT) full-wave rectifier
Lecture - 4 Diode Rectifier Circuits
Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture - 4 Diode Rectifier Circuits
LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier
LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER Full-wave Rectification: Bridge Rectifier For many electronic circuits, DC supply voltages are required but only AC voltages are available.
Chapter 2 MENJANA MINDA KREATIF DAN INOVATIF
Chapter 2 DIODE part 2 MENJANA MINDA KREATIF DAN INOATIF objectives Diode with DC supply circuit analysis serial & parallel Diode d applications the DC power supply & Clipper Analysis & Design of rectifier
LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.
LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus
Rectifier circuits & DC power supplies
Rectifier circuits & DC power supplies Goal: Generate the DC voltages needed for most electronics starting with the AC power that comes through the power line? 120 V RMS f = 60 Hz T = 1667 ms) = )sin How
Experiment 2 Diode Applications: Rectifiers
ECE 3550 - Practicum Fall 2007 Experiment 2 Diode Applications: Rectifiers Objectives 1. To investigate the characteristics of half-wave and full-wave rectifier circuits. 2. To recognize the usefulness
CHAPTER 2B: DIODE AND APPLICATIONS. D.Wilcher
CHAPTER 2B: DIODE AND APPLICATIONS D.Wilcher 1 CHAPTER 2B: OBJECTIVES Analyze the operation of 3 basic types of rectifiers Describe the operation of rectifier filters and IC regulators Analyze the operation
GenTech Practice Questions
GenTech Practice Questions Basic Electronics Test: This test will assess your knowledge of and ability to apply the principles of Basic Electronics. This test is comprised of 90 questions in the following
Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1
Electronics Operational Amplifier Internal design of an operational amplifier LD Physics Leaflets Discrete assembly of an operational amplifier as a transistor circuit P4.2.1.1 Objects of the experiment
Content Map For Career & Technology
Content Strand: Applied Academics CT-ET1-1 analysis of electronic A. Fractions and decimals B. Powers of 10 and engineering notation C. Formula based problem solutions D. Powers and roots E. Linear equations
Chapter 22 Further Electronics
hapter 22 Further Electronics washing machine has a delay on the door opening after a cycle of washing. Part of this circuit is shown below. s the cycle ends, switch S closes. t this stage the capacitor
Power Supplies. 1.0 Power Supply Basics. www.learnabout-electronics.org. Module
Module 1 www.learnabout-electronics.org Power Supplies 1.0 Power Supply Basics What you ll learn in Module 1 Section 1.0 Power Supply Basics. Basic functions of a power supply. Safety aspects of working
Chapter 3. Diodes and Applications. Introduction [5], [6]
Chapter 3 Diodes and Applications Introduction [5], [6] Diode is the most basic of semiconductor device. It should be noted that the term of diode refers to the basic p-n junction diode. All other diode
Chapter 19 Operational Amplifiers
Chapter 19 Operational Amplifiers The operational amplifier, or op-amp, is a basic building block of modern electronics. Op-amps date back to the early days of vacuum tubes, but they only became common
Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode)
Diode Circuits Operating in the Reverse Breakdown region. (Zener Diode) In may applications, operation in the reverse breakdown region is highly desirable. The reverse breakdown voltage is relatively insensitive
Building the AMP Amplifier
Building the AMP Amplifier Introduction For about 80 years it has been possible to amplify voltage differences and to increase the associated power, first with vacuum tubes using electrons from a hot filament;
Routinely DIYers opt to make themselves a passive preamp - just an input selector and a volume control.
The First Watt B1 Buffer Preamp Nelson Pass, June 2008 Side A So here we are in the New Millennium, and thanks to Tom Holman and THX we ve got lots of gain in our electronics. More gain than some of us
Semiconductor Diode. It has already been discussed in the previous chapter that a pn junction conducts current easily. Principles of Electronics
76 6 Principles of Electronics Semiconductor Diode 6.1 Semiconductor Diode 6.3 Resistance of Crystal Diode 6.5 Crystal Diode Equivalent Circuits 6.7 Crystal Diode Rectifiers 6.9 Output Frequency of Half-Wave
Building the HVPS High Voltage Power Supply
Introduction Building the HVPS High Voltage Power Supply Voltages higher than the LVPS provides kilovolts are needed in later experiments to get strong electric fields and to generate microwaves. The high-voltage
Analog & Digital Electronics Course No: PH-218
Analog & Digital Electronics Course No: PH-18 Lec 3: Rectifier and Clipper circuits Course nstructors: Dr. A. P. VAJPEY Department of Physics, ndian nstitute of Technology Guwahati, ndia 1 Rectifier Circuits:
Line Reactors and AC Drives
Line Reactors and AC Drives Rockwell Automation Mequon Wisconsin Quite often, line and load reactors are installed on AC drives without a solid understanding of why or what the positive and negative consequences
GLOLAB Two Wire Stepper Motor Positioner
Introduction A simple and inexpensive way to remotely rotate a display or object is with a positioner that uses a stepper motor to rotate it. The motor is driven by a circuit mounted near the motor and
BJT Characteristics and Amplifiers
BJT Characteristics and Amplifiers Matthew Beckler [email protected] EE2002 Lab Section 003 April 2, 2006 Abstract As a basic component in amplifier design, the properties of the Bipolar Junction Transistor
3 Slot Payphone Controller
5A2 3 Slot Payphone Controller The 3 Slot Payphone -- Part of American History Building a Coin Relay Controller Version S1BX Instruction Manual and Safety Precautions It is very important that for your
UNDERSTANDING POWER FACTOR AND INPUT CURRENT HARMONICS IN SWITCHED MODE POWER SUPPLIES
UNDERSTANDING POWER FACTOR AND INPUT CURRENT HARMONICS IN SWITCHED MODE POWER SUPPLIES WHITE PAPER: TW0062 36 Newburgh Road Hackettstown, NJ 07840 Feb 2009 Alan Gobbi About the Author Alan Gobbi Alan Gobbi
ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME
The national association for AMATEUR RADIO ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME This supplement is intended for use with the ARRL Morse Code Oscillator kit, sold separately.
Study Guide for the Electronics Technician Pre-Employment Examination
Bay Area Rapid Transit District Study Guide for the Electronics Technician Pre-Employment Examination INTRODUCTION The Bay Area Rapid Transit (BART) District makes extensive use of electronics technology
Episode 126: Capacitance and the equation C =Q/V
Episode 126: Capacitance and the equation C =Q/V Having established that there is charge on each capacitor plate, the next stage is to establish the relationship between charge and potential difference
ε: Voltage output of Signal Generator (also called the Source voltage or Applied
Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and
Diodes have an arrow showing the direction of the flow.
The Big Idea Modern circuitry depends on much more than just resistors and capacitors. The circuits in your computer, cell phone, Ipod depend on circuit elements called diodes, inductors, transistors,
DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b
DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,
Pulse Width Modulation (PWM) LED Dimmer Circuit. Using a 555 Timer Chip
Pulse Width Modulation (PWM) LED Dimmer Circuit Using a 555 Timer Chip Goals of Experiment Demonstrate the operation of a simple PWM circuit that can be used to adjust the intensity of a green LED by varying
Yrd. Doç. Dr. Aytaç Gören
H2 - AC to DC Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits W04 Transistors and Applications (H-Bridge) W05 Op Amps
Lecture 24. Inductance and Switching Power Supplies (how your solar charger voltage converter works)
Lecture 24 Inductance and Switching Power Supplies (how your solar charger voltage converter works) Copyright 2014 by Mark Horowitz 1 Roadmap: How Does This Work? 2 Processor Board 3 More Detailed Roadmap
Measurement of Capacitance
Measurement of Capacitance Pre-Lab Questions Page Name: Class: Roster Number: Instructor:. A capacitor is used to store. 2. What is the SI unit for capacitance? 3. A capacitor basically consists of two
EET272 Worksheet Week 9
EET272 Worksheet Week 9 answer questions 1-5 in preparation for discussion for the quiz on Monday. Finish the rest of the questions for discussion in class on Wednesday. Question 1 Questions AC s are becoming
See Horenstein 4.3 and 4.4
EE 462: Laboratory # 4 DC Power Supply Circuits Using Diodes by Drs. A.V. Radun and K.D. Donohue (2/14/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated
ENGR-4300 Electronic Instrumentation Quiz 4 Spring 2011 Name Section
ENGR-4300 Electronic Instrumentation Quiz 4 Spring 2011 Name Section Question I (20 points) Question II (20 points) Question III (20 points) Question IV (20 points) Question V (20 points) Total (100 points)
EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits
EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits 1. Introduction and Goal: Exploring transient behavior due to inductors and capacitors in DC circuits; gaining experience with lab instruments.
Panasonic Microwave Oven Inverter HV Power Supply
Panasonic Microwave Oven Inverter HV Power Supply David Smith VK3HZ (vk3hz (*at*) wia.org.au) This particular power supply comes from a circa-2000 Panasonic Microwave model NN-S550WF. Nearly all Panasonic
LEP 4.4.07. Rectifier circuits
Related topics Half-wave rectifier, full-wave rectifier, Graetz rectifier, diode, Zener diode, avalanche effect, charging capacitor, ripple, r.m.s. value, internal resistance, smoothing factor, ripple
Bipolar Transistor Amplifiers
Physics 3330 Experiment #7 Fall 2005 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must
FREQUENCY RESPONSE OF AN AUDIO AMPLIFIER
2014 Amplifier - 1 FREQUENCY RESPONSE OF AN AUDIO AMPLIFIER The objectives of this experiment are: To understand the concept of HI-FI audio equipment To generate a frequency response curve for an audio
Rectifier filter stage post filtering sense
TopCon DC power supplies Customer support files Nr. 042.0208.016_e Topic: Protecting the DC output 1. Abstract TopCon DC power supplies are generally well suited for operation into reactive DC loads. Reactive
Principles of Adjustable Frequency Drives
What is an Adjustable Frequency Drive? An adjustable frequency drive is a system for controlling the speed of an AC motor by controlling the frequency of the power supplied to the motor. A basic adjustable
DIRECT CURRENT GENERATORS
DIRECT CURRENT GENERATORS Revision 12:50 14 Nov 05 INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. This principle
Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997
Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain
Module 11: Conducted Emissions
Module 11: Conducted Emissions 11.1 Overview The term conducted emissions refers to the mechanism that enables electromagnetic energy to be created in an electronic device and coupled to its AC power cord.
Operational Amplifier - IC 741
Operational Amplifier - IC 741 Tabish December 2005 Aim: To study the working of an 741 operational amplifier by conducting the following experiments: (a) Input bias current measurement (b) Input offset
Operating Manual Ver.1.1
Class B Amplifier (Push-Pull Emitter Follower) Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731-
Transistor Amplifiers
Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input
Lab #9: AC Steady State Analysis
Theory & Introduction Lab #9: AC Steady State Analysis Goals for Lab #9 The main goal for lab 9 is to make the students familar with AC steady state analysis, db scale and the NI ELVIS frequency analyzer.
GENERAL POWER SYSTEM WIRING PRACTICES APPLIED TO TECNADYNE DC BRUSHLESS MOTORS
1/5/2006 Page 1 of 6 GENERAL POWER SYSTEM WIRING PRACTICES APPLIED TO TECNADYNE DC BRUSHLESS MOTORS 1. Introduction The purpose of this application note is to describe some common connection and filtering
PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.
PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,
Type SA-1 Generator Differential Relay
ABB Automation Inc. Substation Automation and Protection Division Coral Springs, FL 33065 Instruction Leaflet 41-348.11C Effective: November 1999 Supersedes I.L. 41-348.11B, Dated August 1986 ( ) Denotes
1. The diagram below represents magnetic lines of force within a region of space.
1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest
Transformer circuit calculations
Transformer circuit calculations This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS
LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS Objective In this experiment you will study the i-v characteristics of an MOS transistor. You will use the MOSFET as a variable resistor and as a switch. BACKGROUND
Precision Diode Rectifiers
by Kenneth A. Kuhn March 21, 2013 Precision half-wave rectifiers An operational amplifier can be used to linearize a non-linear function such as the transfer function of a semiconductor diode. The classic
Lab Equipment: Using Your Tools. 2008 Oregon State University ECE 322 Manual Page 1
SECTION ONE Lab Equipment: Using Your Tools 2008 Oregon State University ECE 322 Manual Page 1 Section One: Lab Equipment (Using Your Tools) SECTION OVERVIEW This section will be a review on lab equipment
Odyssey of the Mind Technology Fair. Simple Electronics
Simple Electronics 1. Terms volts, amps, ohms, watts, positive, negative, AC, DC 2. Matching voltages a. Series vs. parallel 3. Battery capacity 4. Simple electronic circuit light bulb 5. Chose the right
X-ray Imaging System. X-Ray Circuit. Principles of Imaging Science II (RAD 120) X-ray Imaging System Circuitry
Principles of Imaging Science II (RAD 120) X-ray Imaging System Circuitry X-ray Imaging System Operating console Set x-ray tube current (quantity) and voltage (quality) Controls line compensation, kvp,
Resistors. Some substances are insulators. A battery will not make detectible current flow through them.
Resistors Some substances are insulators. A battery will not make detectible current flow through them. Many substances (lead, iron, graphite, etc.) will let current flow. For most substances that are
Electronics Technology
Teacher Assessment Blueprint Electronics Technology Test Code: 5907 / Version: 01 Copyright 2011 NOCTI. All Rights Reserved. General Assessment Information Blueprint Contents General Assessment Information
The Electronic Power Supply. 1. Problem Statement ( 4 situations) 2. Sample Solution 3. Notes for the Instructor
I N T E R D I S C I P L I N A R Y L I V E L Y A P P L I C A T I O N S P R O J E C T M A T E R I A L S 1. Problem Statement ( 4 situations) 2. Sample Solution 3. Notes for the Instructor Computing Requirements:
FREQUENCY CONTROLLED AC MOTOR DRIVE
FREQUENCY CONTROLLED AC MOTOR DRIVE 1.0 Features of Standard AC Motors The squirrel cage induction motor is the electrical motor motor type most widely used in industry. This leading position results mainly
Current Loop Tuning Procedure. Servo Drive Current Loop Tuning Procedure (intended for Analog input PWM output servo drives) General Procedure AN-015
Servo Drive Current Loop Tuning Procedure (intended for Analog input PWM output servo drives) The standard tuning values used in ADVANCED Motion Controls drives are conservative and work well in over 90%
Objectives. Capacitors 262 CHAPTER 5 ENERGY
Objectives Describe a capacitor. Explain how a capacitor stores energy. Define capacitance. Calculate the electrical energy stored in a capacitor. Describe an inductor. Explain how an inductor stores energy.
Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49
Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large
BSNL TTA Question Paper-Instruments and Measurement Specialization 2007
BSNL TTA Question Paper-Instruments and Measurement Specialization 2007 (1) Instrument is a device for determining (a) the magnitude of a quantity (b) the physics of a variable (c) either of the above
Build a Voltage and Current Peak Detector
ax You Can DIY! Build a Voltage and Current Peak Detector Here is a simple portable device that can help answer the question about peak voltage and peak current requirements and whether or not your power
V out. Figure 1: A voltage divider on the left, and potentiometer on the right.
Living with the Lab Fall 202 Voltage Dividers and Potentiometers Gerald Recktenwald v: November 26, 202 [email protected] Introduction Voltage dividers and potentiometers are passive circuit components
Charger Output AC Ripple Voltage and the affect on VRLA batteries
TECHNICAL BULLETIN 41-2131 Charger Output AC Ripple Voltage and the affect on VRLA batteries Please Note: The information in this technical bulletin was developed for C&D Dynasty 12 Volt VRLA products.
The Time Constant of an RC Circuit
The Time Constant of an RC Circuit 1 Objectives 1. To determine the time constant of an RC Circuit, and 2. To determine the capacitance of an unknown capacitor. 2 Introduction What the heck is a capacitor?
Electrical Resonance
Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION
Handheld measurement equipment for measuring extremely low frequency electromagnetic fields
Handheld measurement equipment for measuring extremely low frequency electromagnetic fields Intermediate Report S u b m i t t e d b y A s h u t o s h B a h e t i, N e h a B a h e t i, S h i l p a S a r
What is a multimeter?
What is a multimeter? A multimeter is a devise used to measure voltage, resistance and current in electronics & electrical equipment It is also used to test continuity between to 2 points to verify if
Introduction to Electricity & Magnetism. Dr Lisa Jardine-Wright Cavendish Laboratory
Introduction to Electricity & Magnetism Dr Lisa Jardine-Wright Cavendish Laboratory Examples of uses of electricity Christmas lights Cars Electronic devices Human body Electricity? Electricity is the presence
BASIC ELECTRONICS AC CIRCUIT ANALYSIS. December 2011
AM 5-202 BASIC ELECTRONICS AC CIRCUIT ANALYSIS December 2011 DISTRIBUTION RESTRICTION: Approved for Pubic Release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT
Electronic WorkBench tutorial
Electronic WorkBench tutorial Introduction Electronic WorkBench (EWB) is a simulation package for electronic circuits. It allows you to design and analyze circuits without using breadboards, real components
Touch Screen Technology. Taking apart a tablet
Touch Screen Technology Topics covered: 1) Resistance, Capacitance, Charge, Voltage, and Current 2) Introduction to simple circuits Taking apart a tablet For example, an ipad2 Touchscreen Motherboard Lots
Operational Amplifier as mono stable multi vibrator
Page 1 of 5 Operational Amplifier as mono stable multi vibrator Aim :- To construct a monostable multivibrator using operational amplifier 741 and to determine the duration of the output pulse generated
RLC Series Resonance
RLC Series Resonance 11EM Object: The purpose of this laboratory activity is to study resonance in a resistor-inductor-capacitor (RLC) circuit by examining the current through the circuit as a function
Inductors in AC Circuits
Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum
Oscillations and Regenerative Amplification using Negative Resistance Devices
Oscillations and Regenerative Amplification using Negative Resistance Devices Ramon Vargas Patron [email protected] INICTEL The usual procedure for the production of sustained oscillations in tuned
Regulated D.C. Power Supply
442 17 Principles of Electronics Regulated D.C. Power Supply 17.1 Ordinary D.C. Power Supply 17.2 Important Terms 17.3 Regulated Power Supply 17.4 Types of Voltage Regulators 17.5 Zener Diode Voltage Regulator
