4/1/2017. PS. Sequences and Series FROM 9.2 AND 9.3 IN THE BOOK AS WELL AS FROM OTHER SOURCES. TODAY IS NATIONAL MANATEE APPRECIATION DAY

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "4/1/2017. PS. Sequences and Series FROM 9.2 AND 9.3 IN THE BOOK AS WELL AS FROM OTHER SOURCES. TODAY IS NATIONAL MANATEE APPRECIATION DAY"

Transcription

1 PS. Sequences and Series FROM 9.2 AND 9.3 IN THE BOOK AS WELL AS FROM OTHER SOURCES. TODAY IS NATIONAL MANATEE APPRECIATION DAY 1

2 Oh the things you should learn How to recognize and write arithmetic sequences How to find an nth partial sum of an arithmetic sequence How to use arithmetic sequences to model and solve real-life problems How to recognize, write, and use geometric sequences. Understand series and their sums. ARITHMETIC SEQUENCES An arithmetic sequence is a sequence in which each term differs from the previous one by the same fixed number. The common difference of an arithmetic sequence is... The difference d between consecutive terms of an arithmetic sequence Note: It can also be referred to as an arithmetic progression. IB BOOK is arithmetic, (note the double arrow is IFF) for all positive integers n where d is a constant called the common difference. PRECALCULUS BOOK, where d is the common difference between consecutive terms of the sequence, and. Therefore, an arithmetic sequence may be thought of as linear function whose domain is the set of natural numbers. 2

3 Example: see if the difference is constant! Determine whether or not the following sequence is arithmetic. If it is, find the common difference. 7, 3, - 1, - 5, - 9,... Find a formula for the nth term of the arithmetic sequence whose common difference is 2 and whose first term is C=

4 Example New one Find a formula for the nth term of the arithmetic sequence whose common difference is 4 and whose fifth term is 19. The General Term formula IB BOOK Suppose the first term of an arithmetic sequence is and the common difference is d. Then, 2, 3, and so on. Hence SO: In General, For an arithmetic sequence with first term and common difference d the general term or nth term is Precalculus Book: The nth term of an arithmetic sequence has the alternative recursive formula 4

5 Examples! 1) Find the sixth term of the arithmetic sequence that begins with 15 and ) Find the nth term of the arithmetic sequence with fifth term 19 and ninth term Another way to look at it. 4, 4! So , then d 2. This means we can find, because 4 You try it out! IB terms a)find the general term for an arithmetic sequence with 8 and

6 The Sum of a Finite Arithmetic Sequence We denote the sum of a arithmetic sequence as in both books! Thank goodness!!! However, the formulas are slightly different. This is how it s found So The sum of an arithmetic series with n terms is Another form: Example Find the 15 th partial sum of the sequence 2, 5, 8, 11, Find the sum of the first 20 terms of the sequence with nth term 28 5 D= -5, c=

7 Applications Each row of an auditorium has two more seats than the preceding row. Find the seating capacity of the auditorium if the front row has 30 seats and there are 40 rows. Homework: p.635 & odd, 33-43odd, 59-63odd, 67,69 9.3: Geometric Sequence A sequence is geometric if each term can be obtained from the previous one by multiplying by the same non-zero constant. A geometric sequence can also be referred to as a geometric progression. is geometric, constant called the common ratio. for all positive integers n where r is a Example: find the common ratio for the geometric sequence: 2,-10, 50, -250, 7

8 The General Term Formula For a geometric sequence with first term or and common ratio r, the general term or nth term is or Example: Find the nth term for the geometric sequence with first term 5 and common ratio 2. Example: Find the twentieth term of the geometric sequence 1, 3, 9, 27, 1 3 1,162,261,467 Harder examples: what we can do! Find the fifteenth term of the geometric sequence with a third term of and a sixth term of Another (better) way: , hence. Then use to find 8

9 Now you try A geometric sequence has 6 and 162. Find its general term. There is one other way So 27 3 whatever way works best. Finish out the problem. On Your Own A geometric sequence has 24 and 192. Find its general term. 9

10 Finite & Infinite sum A geometric series Is the addition of successive terms of a geometric sequence. The Sum of a Finite Geometric Sequence: A geometric series Is the addition of successive terms of a geometric sequence. If r < 1, the sum of the infinite geometric series: Examples Find the sum of to 12 terms. Identify the terms that are important for a finite sum. 10

11 Another example Find a formula for for the first n terms of Another example Find a) a formula for for the first n terms of B) to 12 terms 11

10.2 Series and Convergence

10.2 Series and Convergence 10.2 Series and Convergence Write sums using sigma notation Find the partial sums of series and determine convergence or divergence of infinite series Find the N th partial sums of geometric series and

More information

Arithmetic Progression

Arithmetic Progression Worksheet 3.6 Arithmetic and Geometric Progressions Section 1 Arithmetic Progression An arithmetic progression is a list of numbers where the difference between successive numbers is constant. The terms

More information

IB Maths SL Sequence and Series Practice Problems Mr. W Name

IB Maths SL Sequence and Series Practice Problems Mr. W Name IB Maths SL Sequence and Series Practice Problems Mr. W Name Remember to show all necessary reasoning! Separate paper is probably best. 3b 3d is optional! 1. In an arithmetic sequence, u 1 = and u 3 =

More information

Properties of sequences Since a sequence is a special kind of function it has analogous properties to functions:

Properties of sequences Since a sequence is a special kind of function it has analogous properties to functions: Sequences and Series A sequence is a special kind of function whose domain is N - the set of natural numbers. The range of a sequence is the collection of terms that make up the sequence. Just as the word

More information

Arithmetic Sequence. Formula for the nth Term of an Arithmetic Sequence

Arithmetic Sequence. Formula for the nth Term of an Arithmetic Sequence 638 (1-1) Chapter 1 Sequences and Series In this section 1.3 ARITHMETIC SEQUENCES AND SERIES We defined sequences and series in Sections 1.1 and 1.. In this section you will study a special type of sequence

More information

#1-12: Write the first 4 terms of the sequence. (Assume n begins with 1.)

#1-12: Write the first 4 terms of the sequence. (Assume n begins with 1.) Section 9.1: Sequences #1-12: Write the first 4 terms of the sequence. (Assume n begins with 1.) 1) a n = 3n a 1 = 3*1 = 3 a 2 = 3*2 = 6 a 3 = 3*3 = 9 a 4 = 3*4 = 12 3) a n = 3n 5 Answer: 3,6,9,12 a 1

More information

Math 115 Spring 2011 Written Homework 5 Solutions

Math 115 Spring 2011 Written Homework 5 Solutions . Evaluate each series. a) 4 7 0... 55 Math 5 Spring 0 Written Homework 5 Solutions Solution: We note that the associated sequence, 4, 7, 0,..., 55 appears to be an arithmetic sequence. If the sequence

More information

1, 1 2, 1 3, 1 4,... 2 nd term. 1 st term

1, 1 2, 1 3, 1 4,... 2 nd term. 1 st term 1 Sequences 11 Overview A (numerical) sequence is a list of real numbers in which each entry is a function of its position in the list The entries in the list are called terms For example, 1, 1, 1 3, 1

More information

To discuss this topic fully, let us define some terms used in this and the following sets of supplemental notes.

To discuss this topic fully, let us define some terms used in this and the following sets of supplemental notes. INFINITE SERIES SERIES AND PARTIAL SUMS What if we wanted to sum up the terms of this sequence, how many terms would I have to use? 1, 2, 3,... 10,...? Well, we could start creating sums of a finite number

More information

1.2. Successive Differences

1.2. Successive Differences 1. An Application of Inductive Reasoning: Number Patterns In the previous section we introduced inductive reasoning, and we showed how it can be applied in predicting what comes next in a list of numbers

More information

0018 DATA ANALYSIS, PROBABILITY and STATISTICS

0018 DATA ANALYSIS, PROBABILITY and STATISTICS 008 DATA ANALYSIS, PROBABILITY and STATISTICS A permutation tells us the number of ways we can combine a set where {a, b, c} is different from {c, b, a} and without repetition. r is the size of of the

More information

Sequence of Numbers. Mun Chou, Fong QED Education Scientific Malaysia

Sequence of Numbers. Mun Chou, Fong QED Education Scientific Malaysia Sequence of Numbers Mun Chou, Fong QED Education Scientific Malaysia LEVEL High school after students have learned sequence. OBJECTIVES To review sequences and generate sequences using scientific calculator.

More information

Overview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series

Overview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series Sequences and Series Overview Number of instruction days: 4 6 (1 day = 53 minutes) Content to Be Learned Write arithmetic and geometric sequences both recursively and with an explicit formula, use them

More information

Sequences and Series Lesson Plan 1. CLIL Lesson Plan 1. To develop in students, the Mathematical Analysis to understand sequences.

Sequences and Series Lesson Plan 1. CLIL Lesson Plan 1. To develop in students, the Mathematical Analysis to understand sequences. Sequences and Series Lesson Plan 1 Aim: CLIL Lesson Plan 1 To develop in students, the Mathematical Analysis to understand sequences. Objectives: Upon completion of this lesson, students will: have been

More information

GEOMETRIC SEQUENCES AND SERIES

GEOMETRIC SEQUENCES AND SERIES 4.4 Geometric Sequences and Series (4 7) 757 of a novel and every day thereafter increase their daily reading by two pages. If his students follow this suggestion, then how many pages will they read during

More information

AFM Ch.12 - Practice Test

AFM Ch.12 - Practice Test AFM Ch.2 - Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question.. Form a sequence that has two arithmetic means between 3 and 89. a. 3, 33, 43, 89

More information

Some sequences have a fixed length and have a last term, while others go on forever.

Some sequences have a fixed length and have a last term, while others go on forever. Sequences and series Sequences A sequence is a list of numbers (actually, they don t have to be numbers). Here is a sequence: 1, 4, 9, 16 The order makes a difference, so 16, 9, 4, 1 is a different sequence.

More information

Section 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4.

Section 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4. Difference Equations to Differential Equations Section. The Sum of a Sequence This section considers the problem of adding together the terms of a sequence. Of course, this is a problem only if more than

More information

SEQUENCES ARITHMETIC SEQUENCES. Examples

SEQUENCES ARITHMETIC SEQUENCES. Examples SEQUENCES ARITHMETIC SEQUENCES An ordered list of numbers such as: 4, 9, 6, 25, 36 is a sequence. Each number in the sequence is a term. Usually variables with subscripts are used to label terms. For example,

More information

Appendix F: Mathematical Induction

Appendix F: Mathematical Induction Appendix F: Mathematical Induction Introduction In this appendix, you will study a form of mathematical proof called mathematical induction. To see the logical need for mathematical induction, take another

More information

Introduction. Appendix D Mathematical Induction D1

Introduction. Appendix D Mathematical Induction D1 Appendix D Mathematical Induction D D Mathematical Induction Use mathematical induction to prove a formula. Find a sum of powers of integers. Find a formula for a finite sum. Use finite differences to

More information

I remember that when I

I remember that when I 8. Airthmetic and Geometric Sequences 45 8. ARITHMETIC AND GEOMETRIC SEQUENCES Whenever you tell me that mathematics is just a human invention like the game of chess I would like to believe you. But I

More information

Math 55: Discrete Mathematics

Math 55: Discrete Mathematics Math 55: Discrete Mathematics UC Berkeley, Spring 2012 Homework # 9, due Wednesday, April 11 8.1.5 How many ways are there to pay a bill of 17 pesos using a currency with coins of values of 1 peso, 2 pesos,

More information

5.1 Radical Notation and Rational Exponents

5.1 Radical Notation and Rational Exponents Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots

More information

ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite

ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite ALGEBRA Pupils should be taught to: Generate and describe sequences As outcomes, Year 7 pupils should, for example: Use, read and write, spelling correctly: sequence, term, nth term, consecutive, rule,

More information

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

More information

Fourier Series. Chapter Some Properties of Functions Goal Preliminary Remarks

Fourier Series. Chapter Some Properties of Functions Goal Preliminary Remarks Chapter 3 Fourier Series 3.1 Some Properties of Functions 3.1.1 Goal We review some results about functions which play an important role in the development of the theory of Fourier series. These results

More information

Math Workshop October 2010 Fractions and Repeating Decimals

Math Workshop October 2010 Fractions and Repeating Decimals Math Workshop October 2010 Fractions and Repeating Decimals This evening we will investigate the patterns that arise when converting fractions to decimals. As an example of what we will be looking at,

More information

9.2 Summation Notation

9.2 Summation Notation 9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a

More information

Discrete Mathematics: Homework 7 solution. Due: 2011.6.03

Discrete Mathematics: Homework 7 solution. Due: 2011.6.03 EE 2060 Discrete Mathematics spring 2011 Discrete Mathematics: Homework 7 solution Due: 2011.6.03 1. Let a n = 2 n + 5 3 n for n = 0, 1, 2,... (a) (2%) Find a 0, a 1, a 2, a 3 and a 4. (b) (2%) Show that

More information

Section 6-3 Arithmetic and Geometric Sequences

Section 6-3 Arithmetic and Geometric Sequences 466 6 SEQUENCES, SERIES, AND PROBABILITY Section 6- Arithmetic and Geometric Sequences Arithmetic and Geometric Sequences nth-term Formulas Sum Formulas for Finite Arithmetic Series Sum Formulas for Finite

More information

Math 55: Discrete Mathematics

Math 55: Discrete Mathematics Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 5, due Wednesday, February 22 5.1.4 Let P (n) be the statement that 1 3 + 2 3 + + n 3 = (n(n + 1)/2) 2 for the positive integer n. a) What

More information

Assignment 5 - Due Friday March 6

Assignment 5 - Due Friday March 6 Assignment 5 - Due Friday March 6 (1) Discovering Fibonacci Relationships By experimenting with numerous examples in search of a pattern, determine a simple formula for (F n+1 ) 2 + (F n ) 2 that is, a

More information

The distribution of the non-prime numbers - A new Sieve -

The distribution of the non-prime numbers - A new Sieve - Text, methods, sieve and algorithms copyright Fabio Giraldo- Franco The distribution of the non-prime numbers - A new Sieve - FABIO GIRALDO-FRANCO and PHIL DYKE 1. Introduction The aim of this work is

More information

Math 2602 Finite and Linear Math Fall 14. Homework 9: Core solutions

Math 2602 Finite and Linear Math Fall 14. Homework 9: Core solutions Math 2602 Finite and Linear Math Fall 14 Homework 9: Core solutions Section 8.2 on page 264 problems 13b, 27a-27b. Section 8.3 on page 275 problems 1b, 8, 10a-10b, 14. Section 8.4 on page 279 problems

More information

6.8 Taylor and Maclaurin s Series

6.8 Taylor and Maclaurin s Series 6.8. TAYLOR AND MACLAURIN S SERIES 357 6.8 Taylor and Maclaurin s Series 6.8.1 Introduction The previous section showed us how to find the series representation of some functions by using the series representation

More information

Stanford Math Circle: Sunday, May 9, 2010 Square-Triangular Numbers, Pell s Equation, and Continued Fractions

Stanford Math Circle: Sunday, May 9, 2010 Square-Triangular Numbers, Pell s Equation, and Continued Fractions Stanford Math Circle: Sunday, May 9, 00 Square-Triangular Numbers, Pell s Equation, and Continued Fractions Recall that triangular numbers are numbers of the form T m = numbers that can be arranged in

More information

Advanced Algebra 2. I. Equations and Inequalities

Advanced Algebra 2. I. Equations and Inequalities Advanced Algebra 2 I. Equations and Inequalities A. Real Numbers and Number Operations 6.A.5, 6.B.5, 7.C.5 1) Graph numbers on a number line 2) Order real numbers 3) Identify properties of real numbers

More information

Discrete Mathematics: Solutions to Homework (12%) For each of the following sets, determine whether {2} is an element of that set.

Discrete Mathematics: Solutions to Homework (12%) For each of the following sets, determine whether {2} is an element of that set. Discrete Mathematics: Solutions to Homework 2 1. (12%) For each of the following sets, determine whether {2} is an element of that set. (a) {x R x is an integer greater than 1} (b) {x R x is the square

More information

2) Based on the information in the table which choice BEST shows the answer to 1 906? 906 899 904 909

2) Based on the information in the table which choice BEST shows the answer to 1 906? 906 899 904 909 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ) Multiplying a number by results in what type of. even. 0. even.,0. odd..,0. even ) Based on the information in the table which choice BEST shows the answer to 0? 0 0 0 )

More information

1. Staircase Sums. Here is an example of a kind of arrangement that we'll call a "staircase". It has 4 steps and the first step is of height 2.

1. Staircase Sums. Here is an example of a kind of arrangement that we'll call a staircase. It has 4 steps and the first step is of height 2. Arithmetic Sequences and Series 1 You will need: Lab Gear and/or graph paper. One Step at a Time 1. Staircase Sums Here is an example of a kind of arrangement that we'll call a "staircase". It has 4 steps

More information

Congruences. Robert Friedman

Congruences. Robert Friedman Congruences Robert Friedman Definition of congruence mod n Congruences are a very handy way to work with the information of divisibility and remainders, and their use permeates number theory. Definition

More information

SECTION 10-5 Multiplication Principle, Permutations, and Combinations

SECTION 10-5 Multiplication Principle, Permutations, and Combinations 10-5 Multiplication Principle, Permutations, and Combinations 761 54. Can you guess what the next two rows in Pascal s triangle, shown at right, are? Compare the numbers in the triangle with the binomial

More information

APPLICATIONS AND MODELING WITH QUADRATIC EQUATIONS

APPLICATIONS AND MODELING WITH QUADRATIC EQUATIONS APPLICATIONS AND MODELING WITH QUADRATIC EQUATIONS Now that we are starting to feel comfortable with the factoring process, the question becomes what do we use factoring to do? There are a variety of classic

More information

Patterns in Pascal s Triangle

Patterns in Pascal s Triangle Pascal s Triangle Pascal s Triangle is an infinite triangular array of numbers beginning with a at the top. Pascal s Triangle can be constructed starting with just the on the top by following one easy

More information

CHAPTER 5. Number Theory. 1. Integers and Division. Discussion

CHAPTER 5. Number Theory. 1. Integers and Division. Discussion CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a

More information

SECTION 10-2 Mathematical Induction

SECTION 10-2 Mathematical Induction 73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms

More information

SYSTEMS OF EQUATIONS

SYSTEMS OF EQUATIONS SYSTEMS OF EQUATIONS 1. Examples of systems of equations Here are some examples of systems of equations. Each system has a number of equations and a number (not necessarily the same) of variables for which

More information

Grade 7/8 Math Circles Sequences and Series

Grade 7/8 Math Circles Sequences and Series Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 7/8 Math Circles Sequences and Series November 30, 2012 What are sequences? A sequence is an ordered

More information

Lecture VI. Review of even and odd functions Definition 1 A function f(x) is called an even function if. f( x) = f(x)

Lecture VI. Review of even and odd functions Definition 1 A function f(x) is called an even function if. f( x) = f(x) ecture VI Abstract Before learning to solve partial differential equations, it is necessary to know how to approximate arbitrary functions by infinite series, using special families of functions This process

More information

SMMG February 25 th, 2006 featuring Dr. Alistair Windsor Fun with Fractals

SMMG February 25 th, 2006 featuring Dr. Alistair Windsor Fun with Fractals SMMG February 25 th, 2006 featuring Dr. Alistair Windsor Fun with Fractals 1. If f(z) is a function, various behaviors can arise when f is iterated. Gaston Julia studied the iteration of polynomials and

More information

Example 1: If the sum of seven and a number is multiplied by four, the result is 76. Find the number.

Example 1: If the sum of seven and a number is multiplied by four, the result is 76. Find the number. EXERCISE SET 2.3 DUE DATE: STUDENT INSTRUCTOR: 2.3 MORE APPLICATIONS OF LINEAR EQUATIONS Here are a couple of reminders you may need for this section: perimeter is the distance around the outside of the

More information

Generating Functions

Generating Functions Generating Functions If you take f(x =/( x x 2 and expand it as a power series by long division, say, then you get f(x =/( x x 2 =+x+2x 2 +x +5x 4 +8x 5 +x 6 +. It certainly seems as though the coefficient

More information

Continued fractions and good approximations.

Continued fractions and good approximations. Continued fractions and good approximations We will study how to find good approximations for important real life constants A good approximation must be both accurate and easy to use For instance, our

More information

THE GOLDEN RATIO AND THE FIBONACCI SEQUENCE

THE GOLDEN RATIO AND THE FIBONACCI SEQUENCE / 24 THE GOLDEN RATIO AND THE FIBONACCI SEQUENCE Todd Cochrane Everything is Golden 2 / 24 Golden Ratio Golden Proportion Golden Relation Golden Rectangle Golden Spiral Golden Angle Geometric Growth, (Exponential

More information

Since the ratios are constant, the sequence is geometric. The common ratio is.

Since the ratios are constant, the sequence is geometric. The common ratio is. Determine whether each sequence is arithmetic, geometric, or neither. Explain. 1. 200, 40, 8, Since the ratios are constant, the sequence is geometric. The common ratio is. 2. 2, 4, 16, The ratios are

More information

We now explore a third method of proof: proof by contradiction.

We now explore a third method of proof: proof by contradiction. CHAPTER 6 Proof by Contradiction We now explore a third method of proof: proof by contradiction. This method is not limited to proving just conditional statements it can be used to prove any kind of statement

More information

Construction of the Real Line 2 Is Every Real Number Rational? 3 Problems Algebra of the Real Numbers 7

Construction of the Real Line 2 Is Every Real Number Rational? 3 Problems Algebra of the Real Numbers 7 About the Author v Preface to the Instructor xiii WileyPLUS xviii Acknowledgments xix Preface to the Student xxi 1 The Real Numbers 1 1.1 The Real Line 2 Construction of the Real Line 2 Is Every Real Number

More information

Acquisition Lesson Planning Form Key Standards addressed in this Lesson: MM2A3d,e Time allotted for this Lesson: 4 Hours

Acquisition Lesson Planning Form Key Standards addressed in this Lesson: MM2A3d,e Time allotted for this Lesson: 4 Hours Acquisition Lesson Planning Form Key Standards addressed in this Lesson: MM2A3d,e Time allotted for this Lesson: 4 Hours Essential Question: LESSON 4 FINITE ARITHMETIC SERIES AND RELATIONSHIP TO QUADRATIC

More information

Derivative Approximation by Finite Differences

Derivative Approximation by Finite Differences Derivative Approximation by Finite Differences David Eberly Geometric Tools, LLC http://wwwgeometrictoolscom/ Copyright c 998-26 All Rights Reserved Created: May 3, 2 Last Modified: April 25, 25 Contents

More information

7-8 Recursive Formulas. Find the first five terms of each sequence. 1. SOLUTION: Use a 1. = 16 and the recursive formula to find the next four terms.

7-8 Recursive Formulas. Find the first five terms of each sequence. 1. SOLUTION: Use a 1. = 16 and the recursive formula to find the next four terms. Find the first five terms of each sequence. 1. Use a 1 = 16 and the recursive formula to find the next four terms. The first five terms are 16, 13, 10, 7, and 4. esolutions Manual - Powered by Cognero

More information

Senior Secondary Australian Curriculum

Senior Secondary Australian Curriculum Senior Secondary Australian Curriculum Mathematical Methods Glossary Unit 1 Functions and graphs Asymptote A line is an asymptote to a curve if the distance between the line and the curve approaches zero

More information

6.042/18.062J Mathematics for Computer Science December 12, 2006 Tom Leighton and Ronitt Rubinfeld. Random Walks

6.042/18.062J Mathematics for Computer Science December 12, 2006 Tom Leighton and Ronitt Rubinfeld. Random Walks 6.042/8.062J Mathematics for Comuter Science December 2, 2006 Tom Leighton and Ronitt Rubinfeld Lecture Notes Random Walks Gambler s Ruin Today we re going to talk about one-dimensional random walks. In

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

WRITING PROOFS. Christopher Heil Georgia Institute of Technology

WRITING PROOFS. Christopher Heil Georgia Institute of Technology WRITING PROOFS Christopher Heil Georgia Institute of Technology A theorem is just a statement of fact A proof of the theorem is a logical explanation of why the theorem is true Many theorems have this

More information

Sequences. A sequence is a list of numbers, or a pattern, which obeys a rule.

Sequences. A sequence is a list of numbers, or a pattern, which obeys a rule. Sequences A sequence is a list of numbers, or a pattern, which obeys a rule. Each number in a sequence is called a term. ie the fourth term of the sequence 2, 4, 6, 8, 10, 12... is 8, because it is the

More information

Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have

Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have 8.6 Rational Exponents 8.6 OBJECTIVES 1. Define rational exponents 2. Simplify expressions containing rational exponents 3. Use a calculator to estimate the value of an expression containing rational exponents

More information

A fairly quick tempo of solutions discussions can be kept during the arithmetic problems.

A fairly quick tempo of solutions discussions can be kept during the arithmetic problems. Distributivity and related number tricks Notes: No calculators are to be used Each group of exercises is preceded by a short discussion of the concepts involved and one or two examples to be worked out

More information

Teaching & Learning Plans. Arithmetic Sequences. Leaving Certificate Syllabus

Teaching & Learning Plans. Arithmetic Sequences. Leaving Certificate Syllabus Teaching & Learning Plans Arithmetic Sequences Leaving Certificate Syllabus The Teaching & Learning Plans are structured as follows: Aims outline what the lesson, or series of lessons, hopes to achieve.

More information

To define function and introduce operations on the set of functions. To investigate which of the field properties hold in the set of functions

To define function and introduce operations on the set of functions. To investigate which of the field properties hold in the set of functions Chapter 7 Functions This unit defines and investigates functions as algebraic objects. First, we define functions and discuss various means of representing them. Then we introduce operations on functions

More information

Sets and Counting. Let A and B be two sets. It is easy to see (from the diagram above) that A B = A + B A B

Sets and Counting. Let A and B be two sets. It is easy to see (from the diagram above) that A B = A + B A B Sets and Counting Let us remind that the integer part of a number is the greatest integer that is less or equal to. It is denoted by []. Eample [3.1] = 3, [.76] = but [ 3.1] = 4 and [.76] = 6 A B Let A

More information

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system 1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables

More information

ALGEBRA 2/TRIGONOMETRY

ALGEBRA 2/TRIGONOMETRY ALGEBRA /TRIGONOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA /TRIGONOMETRY Tuesday, June 1, 011 1:15 to 4:15 p.m., only Student Name: School Name: Print your name

More information

Chapter 2. CASH FLOW Objectives: To calculate the values of cash flows using the standard methods.. To evaluate alternatives and make reasonable

Chapter 2. CASH FLOW Objectives: To calculate the values of cash flows using the standard methods.. To evaluate alternatives and make reasonable Chapter 2 CASH FLOW Objectives: To calculate the values of cash flows using the standard methods To evaluate alternatives and make reasonable suggestions To simulate mathematical and real content situations

More information

Bracken County Schools Curriculum Guide Math

Bracken County Schools Curriculum Guide Math Unit 1: Expressions and Equations (Ch. 1-3) Suggested Length: Semester Course: 4 weeks Year Course: 8 weeks Program of Studies Core Content 1. How do you use basic skills and operands to create and solve

More information

8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

More information

Finding Rates and the Geometric Mean

Finding Rates and the Geometric Mean Finding Rates and the Geometric Mean So far, most of the situations we ve covered have assumed a known interest rate. If you save a certain amount of money and it earns a fixed interest rate for a period

More information

Rational Exponents. Given that extension, suppose that. Squaring both sides of the equation yields. a 2 (4 1/2 ) 2 a 2 4 (1/2)(2) a a 2 4 (2)

Rational Exponents. Given that extension, suppose that. Squaring both sides of the equation yields. a 2 (4 1/2 ) 2 a 2 4 (1/2)(2) a a 2 4 (2) SECTION 0. Rational Exponents 0. OBJECTIVES. Define rational exponents. Simplify expressions with rational exponents. Estimate the value of an expression using a scientific calculator. Write expressions

More information

Applications of Methods of Proof

Applications of Methods of Proof CHAPTER 4 Applications of Methods of Proof 1. Set Operations 1.1. Set Operations. The set-theoretic operations, intersection, union, and complementation, defined in Chapter 1.1 Introduction to Sets are

More information

Some Notes on Taylor Polynomials and Taylor Series

Some Notes on Taylor Polynomials and Taylor Series Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited

More information

CHAPTER TWO. 2.1 Unsigned Binary Counting. Numbering Systems

CHAPTER TWO. 2.1 Unsigned Binary Counting. Numbering Systems CHAPTER TWO Numbering Systems Chapter one discussed how computers remember numbers using transistors, tiny devices that act like switches with only two positions, on or off. A single transistor, therefore,

More information

Chapter 4. Applying Linear Functions

Chapter 4. Applying Linear Functions Chapter 4 Applying Linear Functions Many situations in real life can be represented mathematically. You can write equations, create tables, or even construct graphs that display real-life data. Part of

More information

5-4 Prime and Composite Numbers

5-4 Prime and Composite Numbers 5-4 Prime and Composite Numbers Prime and Composite Numbers Prime Factorization Number of Divisorss Determining if a Number is Prime More About Primes Prime and Composite Numbers Students should recognizee

More information

Mathematical Induction. Lecture 10-11

Mathematical Induction. Lecture 10-11 Mathematical Induction Lecture 10-11 Menu Mathematical Induction Strong Induction Recursive Definitions Structural Induction Climbing an Infinite Ladder Suppose we have an infinite ladder: 1. We can reach

More information

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12 CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

More information

The Pointless Machine and Escape of the Clones

The Pointless Machine and Escape of the Clones MATH 64091 Jenya Soprunova, KSU The Pointless Machine and Escape of the Clones The Pointless Machine that operates on ordered pairs of positive integers (a, b) has three modes: In Mode 1 the machine adds

More information

POWER SETS AND RELATIONS

POWER SETS AND RELATIONS POWER SETS AND RELATIONS L. MARIZZA A. BAILEY 1. The Power Set Now that we have defined sets as best we can, we can consider a sets of sets. If we were to assume nothing, except the existence of the empty

More information

Fractions and Decimals

Fractions and Decimals Fractions and Decimals Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles December 1, 2005 1 Introduction If you divide 1 by 81, you will find that 1/81 =.012345679012345679... The first

More information

Mathematical Induction

Mathematical Induction Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,

More information

x if x 0, x if x < 0.

x if x 0, x if x < 0. Chapter 3 Sequences In this chapter, we discuss sequences. We say what it means for a sequence to converge, and define the limit of a convergent sequence. We begin with some preliminary results about the

More information

5544 = 2 2772 = 2 2 1386 = 2 2 2 693. Now we have to find a divisor of 693. We can try 3, and 693 = 3 231,and we keep dividing by 3 to get: 1

5544 = 2 2772 = 2 2 1386 = 2 2 2 693. Now we have to find a divisor of 693. We can try 3, and 693 = 3 231,and we keep dividing by 3 to get: 1 MATH 13150: Freshman Seminar Unit 8 1. Prime numbers 1.1. Primes. A number bigger than 1 is called prime if its only divisors are 1 and itself. For example, 3 is prime because the only numbers dividing

More information

Algorithms 2/17/2015. Double Summations. Enough Mathematical Appetizers! Algorithms. Algorithms. Algorithm Examples. Algorithm Examples

Algorithms 2/17/2015. Double Summations. Enough Mathematical Appetizers! Algorithms. Algorithms. Algorithm Examples. Algorithm Examples Double Summations Table 2 in 4 th Edition: Section 1.7 5 th Edition: Section.2 6 th and 7 th Edition: Section 2.4 contains some very useful formulas for calculating sums. Enough Mathematical Appetizers!

More information

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)! Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

More information

Exponentials. 1. Motivating Example

Exponentials. 1. Motivating Example 1 Exponentials 1. Motivating Example Suppose the population of monkeys on an island increases by 6% annually. Beginning with 455 animals in 2008, estimate the population for 2011 and for 2025. Each year

More information

Geometric Series and Annuities

Geometric Series and Annuities Geometric Series and Annuities Our goal here is to calculate annuities. For example, how much money do you need to have saved for retirement so that you can withdraw a fixed amount of money each year for

More information

Introducing Functions

Introducing Functions Functions 1 Introducing Functions A function f from a set A to a set B, written f : A B, is a relation f A B such that every element of A is related to one element of B; in logical notation 1. (a, b 1

More information

Matrix Inverse and Determinants

Matrix Inverse and Determinants DM554 Linear and Integer Programming Lecture 5 and Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1 2 3 4 and Cramer s rule 2 Outline 1 2 3 4 and

More information

How to Calculate the Probabilities of Winning the Nine PowerBall Prize Levels:

How to Calculate the Probabilities of Winning the Nine PowerBall Prize Levels: How to Calculate the Probabilities of Winning the Nine PowerBall Prize Levels: Powerball numbers are drawn from two sets of numbers. Five numbers are drawn from one set of 59 numbered white balls and one

More information

A permutation can also be represented by describing its cycles. What do you suppose is meant by this?

A permutation can also be represented by describing its cycles. What do you suppose is meant by this? Shuffling, Cycles, and Matrices Warm up problem. Eight people stand in a line. From left to right their positions are numbered,,,... 8. The eight people then change places according to THE RULE which directs

More information

General Framework for an Iterative Solution of Ax b. Jacobi s Method

General Framework for an Iterative Solution of Ax b. Jacobi s Method 2.6 Iterative Solutions of Linear Systems 143 2.6 Iterative Solutions of Linear Systems Consistent linear systems in real life are solved in one of two ways: by direct calculation (using a matrix factorization,

More information