Factoring integers, Producing primes and the RSA cryptosystem HarishChandra Research Institute


 Cordelia Horn
 1 years ago
 Views:
Transcription
1 RSA cryptosystem HRI, Allahabad, February, Factoring integers, Producing primes and the RSA cryptosystem HarishChandra Research Institute Allahabad (UP), INDIA February, 2005
2 RSA cryptosystem HRI, Allahabad, February,
3 RSA cryptosystem HRI, Allahabad, February, RSA 2048 =
4 RSA cryptosystem HRI, Allahabad, February, RSA 2048 = RSA 2048 is a 617 (decimal) digit number
5 RSA cryptosystem HRI, Allahabad, February, RSA 2048 = RSA 2048 is a 617 (decimal) digit number
6 RSA cryptosystem HRI, Allahabad, February, RSA 2048 =p q, p, q
7 RSA cryptosystem HRI, Allahabad, February, RSA 2048 =p q, p, q PROBLEM: Compute p and q
8 RSA cryptosystem HRI, Allahabad, February, RSA 2048 =p q, p, q PROBLEM: Compute p and q Price: US$ ( 87, 36, 000 Indian Rupee)!!
9 RSA cryptosystem HRI, Allahabad, February, RSA 2048 =p q, p, q PROBLEM: Compute p and q Price: US$ ( 87, 36, 000 Indian Rupee)!! Theorem. If a N! p 1 < p 2 < < p k primes s.t. a = p α 1 1 pα k k
10 RSA cryptosystem HRI, Allahabad, February, RSA 2048 =p q, p, q PROBLEM: Compute p and q Price: US$ ( 87, 36, 000 Indian Rupee)!! Theorem. If a N! p 1 < p 2 < < p k primes s.t. a = p α 1 1 pα k k Regrettably: RSAlabs believes that factoring in one year requires: number computers memory RSA Tb RSA , 000, Gb RSA ,000 4Gb.
11 RSA cryptosystem HRI, Allahabad, February,
12 RSA cryptosystem HRI, Allahabad, February, Challenge Number Prize ($US) RSA 576 $10,000 RSA 640 $20,000 RSA 704 $30,000 RSA 768 $50,000 RSA 896 $75,000 RSA 1024 $100,000 RSA 1536 $150,000 RSA 2048 $200,000
13 RSA cryptosystem HRI, Allahabad, February, Challenge Number Prize ($US) Status RSA 576 $10,000 Factored December 2003 RSA 640 $20,000 Not Factored RSA 704 $30,000 Not Factored RSA 768 $50,000 Not Factored RSA 896 $75,000 Not Factored RSA 1024 $100,000 Not Factored RSA 1536 $150,000 Not Factored RSA 2048 $200,000 Not Factored
14 RSA cryptosystem HRI, Allahabad, February, History of the Art of Factoring
15 RSA cryptosystem HRI, Allahabad, February, History of the Art of Factoring 220 BC Greeks (Eratosthenes of Cyrene )
16 RSA cryptosystem HRI, Allahabad, February, History of the Art of Factoring 220 BC Greeks (Eratosthenes of Cyrene ) 1730 Euler =
17 RSA cryptosystem HRI, Allahabad, February, History of the Art of Factoring 220 BC Greeks (Eratosthenes of Cyrene ) 1730 Euler = Fermat, Gauss (Sieves  Tables)
18 RSA cryptosystem HRI, Allahabad, February, History of the Art of Factoring 220 BC Greeks (Eratosthenes of Cyrene ) 1730 Euler = Fermat, Gauss (Sieves  Tables) 1880 Landry & Le Lasseur: =
19 RSA cryptosystem HRI, Allahabad, February, History of the Art of Factoring 220 BC Greeks (Eratosthenes of Cyrene ) 1730 Euler = Fermat, Gauss (Sieves  Tables) 1880 Landry & Le Lasseur: = Pierre and Eugène Carissan (Factoring Machine)
20 RSA cryptosystem HRI, Allahabad, February, History of the Art of Factoring 220 BC Greeks (Eratosthenes of Cyrene ) 1730 Euler = Fermat, Gauss (Sieves  Tables) 1880 Landry & Le Lasseur: = Pierre and Eugène Carissan (Factoring Machine) 1970 Morrison & Brillhart =
21 RSA cryptosystem HRI, Allahabad, February, History of the Art of Factoring 220 BC Greeks (Eratosthenes of Cyrene ) 1730 Euler = Fermat, Gauss (Sieves  Tables) 1880 Landry & Le Lasseur: = Pierre and Eugène Carissan (Factoring Machine) 1970 Morrison & Brillhart = Quadratic Sieve QS (Pomerance) Number Fields Sieve NFS
22 RSA cryptosystem HRI, Allahabad, February, History of the Art of Factoring 220 BC Greeks (Eratosthenes of Cyrene ) 1730 Euler = Fermat, Gauss (Sieves  Tables) 1880 Landry & Le Lasseur: = Pierre and Eugène Carissan (Factoring Machine) 1970 Morrison & Brillhart = Quadratic Sieve QS (Pomerance) Number Fields Sieve NFS 1987 Elliptic curves factoring ECF (Lenstra)
23 RSA cryptosystem HRI, Allahabad, February, Carissan s ancient Factoring Machine
24 RSA cryptosystem HRI, Allahabad, February, Carissan s ancient Factoring Machine Figure 1: Conservatoire Nationale des Arts et Métiers in Paris
25 RSA cryptosystem HRI, Allahabad, February, Carissan s ancient Factoring Machine Figure 1: Conservatoire Nationale des Arts et Métiers in Paris shallit/papers/carissan.html
26 RSA cryptosystem HRI, Allahabad, February, Figure 2: Lieutenant Eugène Carissan
27 RSA cryptosystem HRI, Allahabad, February, Figure 2: Lieutenant Eugène Carissan = minutes = minutes = minutes
28 RSA cryptosystem HRI, Allahabad, February, Contemporary Factoring
29 RSA cryptosystem HRI, Allahabad, February, Contemporary Factoring ❶ 1994, Quadratic Sieve (QS): (8 months, 600 voluntaries, 20 countries) D.Atkins, M. Graff, A. Lenstra, P. Leyland RSA 129 = = =
30 RSA cryptosystem HRI, Allahabad, February, Contemporary Factoring ❶ 1994, Quadratic Sieve (QS): (8 months, 600 voluntaries, 20 countries) D.Atkins, M. Graff, A. Lenstra, P. Leyland RSA 129 = = = ❷ (February ), Number Fields Sieve (NFS): (160 Sun, 4 months) RSA 155 = = =
31 RSA cryptosystem HRI, Allahabad, February, Contemporary Factoring ❶ 1994, Quadratic Sieve (QS): (8 months, 600 voluntaries, 20 countries) D.Atkins, M. Graff, A. Lenstra, P. Leyland RSA 129 = = = ❷ (February ), Number Fields Sieve (NFS): (160 Sun, 4 months) RSA 155 = = = ❸ (December 3, 2003) (NFS): J. Franke et al. (174 decimal digits) RSA 576 = = =
32 RSA cryptosystem HRI, Allahabad, February, Contemporary Factoring ❶ 1994, Quadratic Sieve (QS): (8 months, 600 voluntaries, 20 countries) D.Atkins, M. Graff, A. Lenstra, P. Leyland RSA 129 = = = ❷ (February ), Number Fields Sieve (NFS): (160 Sun, 4 months) RSA 155 = = = ❸ (December 3, 2003) (NFS): J. Franke et al. (174 decimal digits) RSA 576 = = = ❹ Elliptic curves factoring: introduced by da H. Lenstra. suitable to find prime factors with 50 digits (small)
33 RSA cryptosystem HRI, Allahabad, February, Contemporary Factoring ❶ 1994, Quadratic Sieve (QS): (8 months, 600 voluntaries, 20 countries) D.Atkins, M. Graff, A. Lenstra, P. Leyland RSA 129 = = = ❷ (February ), Number Fields Sieve (NFS): (160 Sun, 4 months) RSA 155 = = = ❸ (December 3, 2003) (NFS): J. Franke et al. (174 decimal digits) RSA 576 = = = ❹ Elliptic curves factoring: introduced by da H. Lenstra. suitable to find prime factors with 50 digits (small)
34 RSA cryptosystem HRI, Allahabad, February, All: sub exponential running time
35 RSA cryptosystem HRI, Allahabad, February, RSA Adi Shamir, Ron L. Rivest, Leonard Adleman (1978)
36 RSA cryptosystem HRI, Allahabad, February, The RSA cryptosystem
37 RSA cryptosystem HRI, Allahabad, February, The RSA cryptosystem 1978 R. L. Rivest, A. Shamir, L. Adleman (Patent expired in 1998)
38 RSA cryptosystem HRI, Allahabad, February, The RSA cryptosystem 1978 R. L. Rivest, A. Shamir, L. Adleman (Patent expired in 1998) Problem: Alice wants to send the message P to Bob so that Charles cannot read it
39 RSA cryptosystem HRI, Allahabad, February, The RSA cryptosystem 1978 R. L. Rivest, A. Shamir, L. Adleman (Patent expired in 1998) Problem: Alice wants to send the message P to Bob so that Charles cannot read it A (Alice) B (Bob) C (Charles)
40 RSA cryptosystem HRI, Allahabad, February, The RSA cryptosystem 1978 R. L. Rivest, A. Shamir, L. Adleman (Patent expired in 1998) Problem: Alice wants to send the message P to Bob so that Charles cannot read it ❶ ❷ ❸ ❹ A (Alice) B (Bob) C (Charles)
41 RSA cryptosystem HRI, Allahabad, February, The RSA cryptosystem 1978 R. L. Rivest, A. Shamir, L. Adleman (Patent expired in 1998) Problem: Alice wants to send the message P to Bob so that Charles cannot read it A (Alice) B (Bob) C (Charles) ❶ Key generation Bob has to do it ❷ ❸ ❹
42 RSA cryptosystem HRI, Allahabad, February, The RSA cryptosystem 1978 R. L. Rivest, A. Shamir, L. Adleman (Patent expired in 1998) Problem: Alice wants to send the message P to Bob so that Charles cannot read it A (Alice) B (Bob) C (Charles) ❶ Key generation ❷ Encryption Bob has to do it Alice has to do it ❸ ❹
43 RSA cryptosystem HRI, Allahabad, February, The RSA cryptosystem 1978 R. L. Rivest, A. Shamir, L. Adleman (Patent expired in 1998) Problem: Alice wants to send the message P to Bob so that Charles cannot read it A (Alice) B (Bob) C (Charles) ❶ Key generation ❷ Encryption ❸ Decryption Bob has to do it Alice has to do it Bob has to do it ❹
44 RSA cryptosystem HRI, Allahabad, February, The RSA cryptosystem 1978 R. L. Rivest, A. Shamir, L. Adleman (Patent expired in 1998) Problem: Alice wants to send the message P to Bob so that Charles cannot read it A (Alice) B (Bob) C (Charles) ❶ Key generation ❷ Encryption ❸ Decryption ❹ Attack Bob has to do it Alice has to do it Bob has to do it Charles would like to do it
45 RSA cryptosystem HRI, Allahabad, February, Bob: Key generation
46 RSA cryptosystem HRI, Allahabad, February, Bob: Key generation
47 RSA cryptosystem HRI, Allahabad, February, Bob: Key generation He chooses randomly p and q primes (p, q )
48 RSA cryptosystem HRI, Allahabad, February, Bob: Key generation He chooses randomly p and q primes (p, q ) He computes M = p q, ϕ(m) = (p 1) (q 1)
49 RSA cryptosystem HRI, Allahabad, February, Bob: Key generation He chooses randomly p and q primes (p, q ) He computes M = p q, ϕ(m) = (p 1) (q 1) He chooses an integer e s.t.
50 RSA cryptosystem HRI, Allahabad, February, Bob: Key generation He chooses randomly p and q primes (p, q ) He computes M = p q, ϕ(m) = (p 1) (q 1) He chooses an integer e s.t. 0 e ϕ(m) and gcd(e, ϕ(m)) = 1
51 RSA cryptosystem HRI, Allahabad, February, Bob: Key generation He chooses randomly p and q primes (p, q ) He computes M = p q, ϕ(m) = (p 1) (q 1) He chooses an integer e s.t. 0 e ϕ(m) and gcd(e, ϕ(m)) = 1 Note. One could take e = 3 and p q 2 mod 3
52 RSA cryptosystem HRI, Allahabad, February, Bob: Key generation He chooses randomly p and q primes (p, q ) He computes M = p q, ϕ(m) = (p 1) (q 1) He chooses an integer e s.t. 0 e ϕ(m) and gcd(e, ϕ(m)) = 1 Note. One could take e = 3 and p q 2 mod 3 Experts recommend e =
53 RSA cryptosystem HRI, Allahabad, February, Bob: Key generation He chooses randomly p and q primes (p, q ) He computes M = p q, ϕ(m) = (p 1) (q 1) He chooses an integer e s.t. 0 e ϕ(m) and gcd(e, ϕ(m)) = 1 Note. One could take e = 3 and p q 2 mod 3 Experts recommend e = He computes arithmetic inverse d of e modulo ϕ(m)
54 RSA cryptosystem HRI, Allahabad, February, Bob: Key generation He chooses randomly p and q primes (p, q ) He computes M = p q, ϕ(m) = (p 1) (q 1) He chooses an integer e s.t. 0 e ϕ(m) and gcd(e, ϕ(m)) = 1 Note. One could take e = 3 and p q 2 mod 3 Experts recommend e = He computes arithmetic inverse d of e modulo ϕ(m) (i.e. d N (unique ϕ(m)) s.t. e d 1 (mod ϕ(m)))
55 RSA cryptosystem HRI, Allahabad, February, Bob: Key generation He chooses randomly p and q primes (p, q ) He computes M = p q, ϕ(m) = (p 1) (q 1) He chooses an integer e s.t. 0 e ϕ(m) and gcd(e, ϕ(m)) = 1 Note. One could take e = 3 and p q 2 mod 3 Experts recommend e = He computes arithmetic inverse d of e modulo ϕ(m) (i.e. d N (unique ϕ(m)) s.t. e d 1 (mod ϕ(m))) Publishes (M, e) public key and hides secret key d
56 RSA cryptosystem HRI, Allahabad, February, Bob: Key generation He chooses randomly p and q primes (p, q ) He computes M = p q, ϕ(m) = (p 1) (q 1) He chooses an integer e s.t. 0 e ϕ(m) and gcd(e, ϕ(m)) = 1 Note. One could take e = 3 and p q 2 mod 3 Experts recommend e = He computes arithmetic inverse d of e modulo ϕ(m) (i.e. d N (unique ϕ(m)) s.t. e d 1 (mod ϕ(m))) Publishes (M, e) public key and hides secret key d Problem: How does Bob do all this? We will go came back to it!
57 RSA cryptosystem HRI, Allahabad, February, Alice: Encryption
58 RSA cryptosystem HRI, Allahabad, February, Alice: Encryption Represent the message P as an element of Z/MZ
59 RSA cryptosystem HRI, Allahabad, February, Alice: Encryption Represent the message P as an element of Z/MZ (for example) A 1 B 2 C 3... Z 26 AA 27...
60 RSA cryptosystem HRI, Allahabad, February, Alice: Encryption Represent the message P as an element of Z/MZ (for example) A 1 B 2 C 3... Z 26 AA Sukumar = Note. Better if texts are not too short. Otherwise one performs some padding
61 RSA cryptosystem HRI, Allahabad, February, Alice: Encryption Represent the message P as an element of Z/MZ (for example) A 1 B 2 C 3... Z 26 AA Sukumar = Note. Better if texts are not too short. Otherwise one performs some padding C = E(P) = P e (mod M)
62 RSA cryptosystem HRI, Allahabad, February, Alice: Encryption Represent the message P as an element of Z/MZ (for example) A 1 B 2 C 3... Z 26 AA Sukumar = Note. Better if texts are not too short. Otherwise one performs some padding C = E(P) = P e (mod M) Example: p = , q = , M = , e = = 65537, P = Sukumar:
63 RSA cryptosystem HRI, Allahabad, February, Alice: Encryption Represent the message P as an element of Z/MZ (for example) A 1 B 2 C 3... Z 26 AA Sukumar = Note. Better if texts are not too short. Otherwise one performs some padding C = E(P) = P e (mod M) Example: p = , q = , M = , e = = 65537, P = Sukumar: E(Sukumar) = (mod ) = = C = JGEBNBAUYTCOFJ
64 RSA cryptosystem HRI, Allahabad, February, Bob: Decryption
65 RSA cryptosystem HRI, Allahabad, February, Bob: Decryption P = D(C) = C d (mod M)
66 RSA cryptosystem HRI, Allahabad, February, Bob: Decryption P = D(C) = C d (mod M) Note. Bob decrypts because he is the only one that knows d.
67 RSA cryptosystem HRI, Allahabad, February, Bob: Decryption P = D(C) = C d (mod M) Note. Bob decrypts because he is the only one that knows d. Theorem. (Euler) If a, m N, gcd(a, m) = 1, a ϕ(m) 1 (mod m). If n 1 n 2 mod ϕ(m) then a n 1 a n 2 mod m.
68 RSA cryptosystem HRI, Allahabad, February, Bob: Decryption P = D(C) = C d (mod M) Note. Bob decrypts because he is the only one that knows d. Theorem. (Euler) If a, m N, gcd(a, m) = 1, a ϕ(m) 1 (mod m). If n 1 n 2 mod ϕ(m) then a n 1 a n 2 mod m. Therefore (ed 1 mod ϕ(m)) D(E(P)) = P ed P mod M
69 RSA cryptosystem HRI, Allahabad, February, Bob: Decryption P = D(C) = C d (mod M) Note. Bob decrypts because he is the only one that knows d. Therefore (ed 1 mod ϕ(m)) Theorem. (Euler) If a, m N, gcd(a, m) = 1, a ϕ(m) 1 (mod m). If n 1 n 2 mod ϕ(m) then a n 1 a n 2 mod m. D(E(P)) = P ed P mod M Example(cont.):d = mod ϕ( ) = D(JGEBNBAUYTCOFJ) = (mod ) = Sukumar
70 RSA cryptosystem HRI, Allahabad, February, RSA at work
71 RSA cryptosystem HRI, Allahabad, February, Repeated squaring algorithm
72 RSA cryptosystem HRI, Allahabad, February, Repeated squaring algorithm Problem: How does one compute a b mod c?
73 RSA cryptosystem HRI, Allahabad, February, Repeated squaring algorithm Problem: How does one compute a b mod c? (mod )
74 RSA cryptosystem HRI, Allahabad, February, Repeated squaring algorithm Problem: How does one compute a b mod c? (mod )
75 RSA cryptosystem HRI, Allahabad, February, Repeated squaring algorithm Problem: How does one compute a b mod c? (mod ) Compute the binary expansion b = [log 2 b] j=0 ɛ j 2 j
76 RSA cryptosystem HRI, Allahabad, February, Repeated squaring algorithm Problem: How does one compute a b mod c? (mod ) Compute the binary expansion b = [log 2 b] j=0 ɛ j 2 j =
77 RSA cryptosystem HRI, Allahabad, February, Repeated squaring algorithm Problem: How does one compute a b mod c? (mod ) Compute the binary expansion b = [log 2 b] j=0 ɛ j 2 j = Compute recursively a 2j mod c, j = 1,..., [log 2 b]:
78 RSA cryptosystem HRI, Allahabad, February, Repeated squaring algorithm Problem: How does one compute a b mod c? (mod ) Compute the binary expansion b = [log 2 b] j=0 ɛ j 2 j = Compute recursively a 2j mod c, j = 1,..., [log 2 b]: ( 2 a 2j mod c = a 2j 1 mod c) mod c
79 RSA cryptosystem HRI, Allahabad, February, Repeated squaring algorithm Problem: How does one compute a b mod c? (mod ) Compute the binary expansion b = [log 2 b] j=0 ɛ j 2 j = Compute recursively a 2j mod c, j = 1,..., [log 2 b]: ( 2 a 2j mod c = a 2j 1 mod c) mod c Multiply the a 2j mod c with ɛ j = 1
80 RSA cryptosystem HRI, Allahabad, February, Repeated squaring algorithm Problem: How does one compute a b mod c? (mod ) Compute the binary expansion b = [log 2 b] j=0 ɛ j 2 j = Compute recursively a 2j mod c, j = 1,..., [log 2 b]: ( 2 a 2j mod c = a 2j 1 mod c) mod c Multiply the a 2j mod c with ɛ j = 1 ) a b mod c = mod c ( [log2 b] j=0,ɛ j =1 a2j mod c
81 RSA cryptosystem HRI, Allahabad, February, #{oper. in Z/cZ to compute a b mod c} 2 log 2 b
82 RSA cryptosystem HRI, Allahabad, February, #{oper. in Z/cZ to compute a b mod c} 2 log 2 b JGEBNBAUYTCOFJ is decrypted with 131 operations in Z/ Z
83 RSA cryptosystem HRI, Allahabad, February, #{oper. in Z/cZ to compute a b mod c} 2 log 2 b JGEBNBAUYTCOFJ is decrypted with 131 operations in Z/ Z Pseudo code: e c (a, b) = a b mod c
84 RSA cryptosystem HRI, Allahabad, February, #{oper. in Z/cZ to compute a b mod c} 2 log 2 b JGEBNBAUYTCOFJ is decrypted with 131 operations in Z/ Z Pseudo code: e c (a, b) = a b mod c e c (a, b) = if b = 1 then a mod c if 2 b then e c (a, b 2 )2 mod c else a e c (a, b 1 2 )2 mod c
85 RSA cryptosystem HRI, Allahabad, February, #{oper. in Z/cZ to compute a b mod c} 2 log 2 b JGEBNBAUYTCOFJ is decrypted with 131 operations in Z/ Z Pseudo code: e c (a, b) = a b mod c e c (a, b) = if b = 1 then a mod c if 2 b then e c (a, b 2 )2 mod c else a e c (a, b 1 2 )2 mod c To encrypt with e = , only 17 operations in Z/MZ are enough
86 RSA cryptosystem HRI, Allahabad, February, Key generation
87 RSA cryptosystem HRI, Allahabad, February, Key generation Problem. Produce a random prime p Probabilistic algorithm (type Las Vegas) 1. Let p = Random( ) 2. If isprime(p)=1 then Output=p else goto 1
88 RSA cryptosystem HRI, Allahabad, February, Key generation Problem. Produce a random prime p Probabilistic algorithm (type Las Vegas) 1. Let p = Random( ) 2. If isprime(p)=1 then Output=p else goto 1 subproblems:
89 RSA cryptosystem HRI, Allahabad, February, Key generation Problem. Produce a random prime p Probabilistic algorithm (type Las Vegas) 1. Let p = Random( ) 2. If isprime(p)=1 then Output=p else goto 1 subproblems: A. How many iterations are necessary? (i.e. how are primes distributes?)
90 RSA cryptosystem HRI, Allahabad, February, Key generation Problem. Produce a random prime p Probabilistic algorithm (type Las Vegas) 1. Let p = Random( ) 2. If isprime(p)=1 then Output=p else goto 1 subproblems: A. How many iterations are necessary? (i.e. how are primes distributes?) B. How does one check if p is prime? (i.e. how does one compute isprime(p)?) Primality test
91 RSA cryptosystem HRI, Allahabad, February, Key generation Problem. Produce a random prime p Probabilistic algorithm (type Las Vegas) 1. Let p = Random( ) 2. If isprime(p)=1 then Output=p else goto 1 subproblems: A. How many iterations are necessary? (i.e. how are primes distributes?) B. How does one check if p is prime? (i.e. how does one compute isprime(p)?) Primality test False Metropolitan Legend: Check primality is equivalent to factoring
92 RSA cryptosystem HRI, Allahabad, February, A. Distribution of prime numbers
93 RSA cryptosystem HRI, Allahabad, February, A. Distribution of prime numbers π(x) = #{p x t. c. p is prime}
94 RSA cryptosystem HRI, Allahabad, February, A. Distribution of prime numbers π(x) = #{p x t. c. p is prime} Theorem. (Hadamard  de la vallee Pussen ) π(x) x log x
95 RSA cryptosystem HRI, Allahabad, February, A. Distribution of prime numbers Quantitative version: π(x) = #{p x t. c. p is prime} Theorem. (Hadamard  de la vallee Pussen ) π(x) x log x Theorem. (Rosser  Schoenfeld) if x 67 x log x 1/2 < π(x) < x log x 3/2
96 RSA cryptosystem HRI, Allahabad, February, A. Distribution of prime numbers Quantitative version: Therefore π(x) = #{p x t. c. p is prime} Theorem. (Hadamard  de la vallee Pussen ) π(x) x log x Theorem. (Rosser  Schoenfeld) if x 67 x log x 1/2 < π(x) < x log x 3/ < P rob (Random( ) = prime <
97 RSA cryptosystem HRI, Allahabad, February, If P k is the probability that among k random numbers there is a prime one, then
98 RSA cryptosystem HRI, Allahabad, February, If P k is the probability that among k random numbers there is a prime one, then P k = 1 ( ) k 1 π(10100 )
99 RSA cryptosystem HRI, Allahabad, February, If P k is the probability that among k random numbers there is a prime one, then P k = 1 ( ) k 1 π(10100 ) Therefore < P 250 <
100 RSA cryptosystem HRI, Allahabad, February, If P k is the probability that among k random numbers there is a prime one, then P k = 1 ( ) k 1 π(10100 ) Therefore < P 250 < To speed up the process: One can consider only odd random numbers not divisible by 3 nor by 5.
101 RSA cryptosystem HRI, Allahabad, February, If P k is the probability that among k random numbers there is a prime one, then P k = 1 ( ) k 1 π(10100 ) Therefore < P 250 < To speed up the process: One can consider only odd random numbers not divisible by 3 nor by 5. Let Ψ(x, 30) = # {n x s.t. gcd(n, 30) = 1}
102 RSA cryptosystem HRI, Allahabad, February, To speed up the process: One can consider only odd random numbers not divisible by 3 nor by 5.
103 RSA cryptosystem HRI, Allahabad, February, To speed up the process: One can consider only odd random numbers not divisible by 3 nor by 5. Let Ψ(x, 30) = # {n x s.t. gcd(n, 30) = 1} then
Factoring integers, Producing primes and the RSA cryptosystem
Factoring integers,..., RSA Erbil, Kurdistan 0 Lecture in Number Theory College of Sciences Department of Mathematics University of Salahaddin Debember 1, 2014 Factoring integers, Producing primes and
More informationFactoring integers and Producing primes
Factoring integers,..., RSA Erbil, Kurdistan 0 Lecture in Number Theory College of Sciences Department of Mathematics University of Salahaddin Debember 4, 2014 Factoring integers and Producing primes Francesco
More informationPrimality  Factorization
Primality  Factorization Christophe Ritzenthaler November 9, 2009 1 Prime and factorization Definition 1.1. An integer p > 1 is called a prime number (nombre premier) if it has only 1 and p as divisors.
More informationPrimality Testing and Factorization Methods
Primality Testing and Factorization Methods Eli Howey May 27, 2014 Abstract Since the days of Euclid and Eratosthenes, mathematicians have taken a keen interest in finding the nontrivial factors of integers,
More informationIs n a Prime Number? Manindra Agrawal. March 27, 2006, Delft. IIT Kanpur
Is n a Prime Number? Manindra Agrawal IIT Kanpur March 27, 2006, Delft Manindra Agrawal (IIT Kanpur) Is n a Prime Number? March 27, 2006, Delft 1 / 47 Overview 1 The Problem 2 Two Simple, and Slow, Methods
More informationDiscrete Mathematics, Chapter 4: Number Theory and Cryptography
Discrete Mathematics, Chapter 4: Number Theory and Cryptography Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 4 1 / 35 Outline 1 Divisibility
More informationElements of Applied Cryptography Public key encryption
Network Security Elements of Applied Cryptography Public key encryption Public key cryptosystem RSA and the factorization problem RSA in practice Other asymmetric ciphers Asymmetric Encryption Scheme Let
More informationPublic Key Cryptography and RSA. Review: Number Theory Basics
Public Key Cryptography and RSA Murat Kantarcioglu Based on Prof. Ninghui Li s Slides Review: Number Theory Basics Definition An integer n > 1 is called a prime number if its positive divisors are 1 and
More information3. Applications of Number Theory
3. APPLICATIONS OF NUMBER THEORY 163 3. Applications of Number Theory 3.1. Representation of Integers. Theorem 3.1.1. Given an integer b > 1, every positive integer n can be expresses uniquely as n = a
More informationShor s algorithm and secret sharing
Shor s algorithm and secret sharing Libor Nentvich: QC 23 April 2007: Shor s algorithm and secret sharing 1/41 Goals: 1 To explain why the factoring is important. 2 To describe the oldest and most successful
More informationMathematics of Internet Security. Keeping Eve The Eavesdropper Away From Your Credit Card Information
The : Keeping Eve The Eavesdropper Away From Your Credit Card Information Department of Mathematics North Dakota State University 16 September 2010 Science Cafe Introduction Disclaimer: is not an internet
More informationPublic Key Cryptography: RSA and Lots of Number Theory
Public Key Cryptography: RSA and Lots of Number Theory Public vs. PrivateKey Cryptography We have just discussed traditional symmetric cryptography: Uses a single key shared between sender and receiver
More informationLecture Note 5 PUBLICKEY CRYPTOGRAPHY. Sourav Mukhopadhyay
Lecture Note 5 PUBLICKEY CRYPTOGRAPHY Sourav Mukhopadhyay Cryptography and Network Security  MA61027 Modern/Publickey cryptography started in 1976 with the publication of the following paper. W. Diffie
More informationSecure Network Communication Part II II Public Key Cryptography. Public Key Cryptography
Kommunikationssysteme (KSy)  Block 8 Secure Network Communication Part II II Public Key Cryptography Dr. Andreas Steffen 20002001 A. Steffen, 28.03.2001, KSy_RSA.ppt 1 Secure Key Distribution Problem
More informationCryptography: RSA and the discrete logarithm problem
Cryptography: and the discrete logarithm problem R. Hayden Advanced Maths Lectures Department of Computing Imperial College London February 2010 Public key cryptography Assymmetric cryptography two keys:
More informationRecent Breakthrough in Primality Testing
Nonlinear Analysis: Modelling and Control, 2004, Vol. 9, No. 2, 171 184 Recent Breakthrough in Primality Testing R. Šleževičienė, J. Steuding, S. Turskienė Department of Computer Science, Faculty of Physics
More informationRSA and Primality Testing
and Primality Testing Joan Boyar, IMADA, University of Southern Denmark Studieretningsprojekter 2010 1 / 81 Correctness of cryptography cryptography Introduction to number theory Correctness of with 2
More informationTHE MATHEMATICS OF PUBLIC KEY CRYPTOGRAPHY.
THE MATHEMATICS OF PUBLIC KEY CRYPTOGRAPHY. IAN KIMING 1. Forbemærkning. Det kan forekomme idiotisk, at jeg som dansktalende og skrivende i et danskbaseret tidsskrift med en (formentlig) primært dansktalende
More informationMATH 168: FINAL PROJECT Troels Eriksen. 1 Introduction
MATH 168: FINAL PROJECT Troels Eriksen 1 Introduction In the later years cryptosystems using elliptic curves have shown up and are claimed to be just as secure as a system like RSA with much smaller key
More information(x + a) n = x n + a Z n [x]. Proof. If n is prime then the map
22. A quick primality test Prime numbers are one of the most basic objects in mathematics and one of the most basic questions is to decide which numbers are prime (a clearly related problem is to find
More informationCryptography and Network Security
Cryptography and Network Security Spring 2012 http://users.abo.fi/ipetre/crypto/ Lecture 7: Publickey cryptography and RSA Ion Petre Department of IT, Åbo Akademi University 1 Some unanswered questions
More informationAn Overview of Integer Factoring Algorithms. The Problem
An Overview of Integer Factoring Algorithms Manindra Agrawal IITK / NUS The Problem Given an integer n, find all its prime divisors as efficiently as possible. 1 A Difficult Problem No efficient algorithm
More informationLecture 13  Basic Number Theory.
Lecture 13  Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are nonnegative integers. We say that A divides B, denoted
More informationArithmetic algorithms for cryptology 5 October 2015, Paris. Sieves. Razvan Barbulescu CNRS and IMJPRG. R. Barbulescu Sieves 0 / 28
Arithmetic algorithms for cryptology 5 October 2015, Paris Sieves Razvan Barbulescu CNRS and IMJPRG R. Barbulescu Sieves 0 / 28 Starting point Notations q prime g a generator of (F q ) X a (secret) integer
More informationFaster deterministic integer factorisation
David Harvey (joint work with Edgar Costa, NYU) University of New South Wales 25th October 2011 The obvious mathematical breakthrough would be the development of an easy way to factor large prime numbers
More information9 Modular Exponentiation and Cryptography
9 Modular Exponentiation and Cryptography 9.1 Modular Exponentiation Modular arithmetic is used in cryptography. In particular, modular exponentiation is the cornerstone of what is called the RSA system.
More informationCryptography and Network Security Chapter 9
Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 9 Public Key Cryptography and RSA Every Egyptian received two names,
More informationThe application of prime numbers to RSA encryption
The application of prime numbers to RSA encryption Prime number definition: Let us begin with the definition of a prime number p The number p, which is a member of the set of natural numbers N, is considered
More informationBasic Algorithms In Computer Algebra
Basic Algorithms In Computer Algebra Kaiserslautern SS 2011 Prof. Dr. Wolfram Decker 2. Mai 2011 References Cohen, H.: A Course in Computational Algebraic Number Theory. Springer, 1993. Cox, D.; Little,
More informationNotes on Public Key Cryptography And Primality Testing Part 1: Randomized Algorithms Miller Rabin and Solovay Strassen Tests
Notes on Public Key Cryptography And Primality Testing Part 1: Randomized Algorithms Miller Rabin and Solovay Strassen Tests Jean Gallier Department of Computer and Information Science University of Pennsylvania
More informationApplied Cryptography Public Key Algorithms
Applied Cryptography Public Key Algorithms Sape J. Mullender Huygens Systems Research Laboratory Universiteit Twente Enschede 1 Public Key Cryptography Independently invented by Whitfield Diffie & Martin
More informationInternational Journal of Information Technology, Modeling and Computing (IJITMC) Vol.1, No.3,August 2013
FACTORING CRYPTOSYSTEM MODULI WHEN THE COFACTORS DIFFERENCE IS BOUNDED Omar Akchiche 1 and Omar Khadir 2 1,2 Laboratory of Mathematics, Cryptography and Mechanics, Fstm, University of Hassan II MohammediaCasablanca,
More informationCryptography and Network Security
Cryptography and Network Security Fifth Edition by William Stallings Chapter 9 Public Key Cryptography and RSA PrivateKey Cryptography traditional private/secret/single key cryptography uses one key shared
More informationThe RSA Algorithm. Evgeny Milanov. 3 June 2009
The RSA Algorithm Evgeny Milanov 3 June 2009 In 1978, Ron Rivest, Adi Shamir, and Leonard Adleman introduced a cryptographic algorithm, which was essentially to replace the less secure National Bureau
More informationMA2C03 Mathematics School of Mathematics, Trinity College Hilary Term 2016 Lecture 59 (April 1, 2016) David R. Wilkins
MA2C03 Mathematics School of Mathematics, Trinity College Hilary Term 2016 Lecture 59 (April 1, 2016) David R. Wilkins The RSA encryption scheme works as follows. In order to establish the necessary public
More informationNotes on Network Security Prof. Hemant K. Soni
Chapter 9 Public Key Cryptography and RSA PrivateKey Cryptography traditional private/secret/single key cryptography uses one key shared by both sender and receiver if this key is disclosed communications
More informationThe Mathematics of the RSA PublicKey Cryptosystem
The Mathematics of the RSA PublicKey Cryptosystem Burt Kaliski RSA Laboratories ABOUT THE AUTHOR: Dr Burt Kaliski is a computer scientist whose involvement with the security industry has been through
More informationU.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory
More informationOverview of PublicKey Cryptography
CS 361S Overview of PublicKey Cryptography Vitaly Shmatikov slide 1 Reading Assignment Kaufman 6.16 slide 2 PublicKey Cryptography public key public key? private key Alice Bob Given: Everybody knows
More informationPrinciples of Public Key Cryptography. Applications of Public Key Cryptography. Security in Public Key Algorithms
Principles of Public Key Cryptography Chapter : Security Techniques Background Secret Key Cryptography Public Key Cryptography Hash Functions Authentication Chapter : Security on Network and Transport
More informationRSA Attacks. By Abdulaziz Alrasheed and Fatima
RSA Attacks By Abdulaziz Alrasheed and Fatima 1 Introduction Invented by Ron Rivest, Adi Shamir, and Len Adleman [1], the RSA cryptosystem was first revealed in the August 1977 issue of Scientific American.
More informationCryptography and Network Security Number Theory
Cryptography and Network Security Number Theory XiangYang Li Introduction to Number Theory Divisors b a if a=mb for an integer m b a and c b then c a b g and b h then b (mg+nh) for any int. m,n Prime
More informationFactoring & Primality
Factoring & Primality Lecturer: Dimitris Papadopoulos In this lecture we will discuss the problem of integer factorization and primality testing, two problems that have been the focus of a great amount
More informationPublicKey Cryptanalysis 1: Introduction and Factoring
PublicKey Cryptanalysis 1: Introduction and Factoring Nadia Heninger University of Pennsylvania July 21, 2013 Adventures in Cryptanalysis Part 1: Introduction and Factoring. What is publickey crypto
More informationCIS 5371 Cryptography. 8. Encryption 
CIS 5371 Cryptography p y 8. Encryption  Asymmetric Techniques Textbook encryption algorithms In this chapter, security (confidentiality) is considered in the following sense: Allornothing secrecy.
More informationCS549: Cryptography and Network Security
CS549: Cryptography and Network Security by XiangYang Li Department of Computer Science, IIT Cryptography and Network Security 1 Notice This lecture note (Cryptography and Network Security) is prepared
More informationCryptography and Network Security Chapter 8
Cryptography and Network Security Chapter 8 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 8 Introduction to Number Theory The Devil said to Daniel Webster:
More informationInteger Factorization
Master Thesis D I K U Department of Computer Science University of Copenhagen Fall 2005 This document is typeset using L A TEX 2ε. ii Abstract Many public key cryptosystems depend on
More informationSECURITY IMPROVMENTS TO THE DIFFIEHELLMAN SCHEMES
www.arpapress.com/volumes/vol8issue1/ijrras_8_1_10.pdf SECURITY IMPROVMENTS TO THE DIFFIEHELLMAN SCHEMES Malek Jakob Kakish Amman Arab University, Department of Computer Information Systems, P.O.Box 2234,
More informationNumber Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may
Number Theory Divisibility and Primes Definition. If a and b are integers and there is some integer c such that a = b c, then we say that b divides a or is a factor or divisor of a and write b a. Definition
More information1 Digital Signatures. 1.1 The RSA Function: The eth Power Map on Z n. Crypto: Primitives and Protocols Lecture 6.
1 Digital Signatures A digital signature is a fundamental cryptographic primitive, technologically equivalent to a handwritten signature. In many applications, digital signatures are used as building blocks
More informationRSA Question 2. Bob thinks that p and q are primes but p isn t. Then, Bob thinks Φ Bob :=(p1)(q1) = φ(n). Is this true?
RSA Question 2 Bob thinks that p and q are primes but p isn t. Then, Bob thinks Φ Bob :=(p1)(q1) = φ(n). Is this true? Bob chooses a random e (1 < e < Φ Bob ) such that gcd(e,φ Bob )=1. Then, d = e 1
More information3. Computational Complexity.
3. Computational Complexity. (A) Introduction. As we will see, most cryptographic systems derive their supposed security from the presumed inability of any adversary to crack certain (number theoretic)
More informationCommunications security
University of Roma Sapienza DIET Communications security Lecturer: Andrea Baiocchi DIET  University of Roma La Sapienza Email: andrea.baiocchi@uniroma1.it URL: http://net.infocom.uniroma1.it/corsi/index.htm
More informationOn Factoring Integers and Evaluating Discrete Logarithms
On Factoring Integers and Evaluating Discrete Logarithms A thesis presented by JOHN AARON GREGG to the departments of Mathematics and Computer Science in partial fulfillment of the honors requirements
More informationAdvanced Cryptography
Family Name:... First Name:... Section:... Advanced Cryptography Final Exam July 18 th, 2006 Start at 9:15, End at 12:00 This document consists of 12 pages. Instructions Electronic devices are not allowed.
More informationNumber Theory and Cryptography using PARI/GP
Number Theory and Cryptography using Minh Van Nguyen nguyenminh2@gmail.com 25 November 2008 This article uses to study elementary number theory and the RSA public key cryptosystem. Various commands will
More informationA Factoring and Discrete Logarithm based Cryptosystem
Int. J. Contemp. Math. Sciences, Vol. 8, 2013, no. 11, 511517 HIKARI Ltd, www.mhikari.com A Factoring and Discrete Logarithm based Cryptosystem Abdoul Aziz Ciss and Ahmed Youssef Ecole doctorale de Mathematiques
More informationStudy of algorithms for factoring integers and computing discrete logarithms
Study of algorithms for factoring integers and computing discrete logarithms First IndoFrench Workshop on Cryptography and Related Topics (IFW 2007) June 11 13, 2007 Paris, France Dr. Abhijit Das Department
More informationPublickey cryptography RSA
Publickey cryptography RSA NGUYEN Tuong Lan LIU Yi Master Informatique University Lyon 1 Objective: Our goal in the study is to understand the algorithm RSA, some existence attacks and implement in Java.
More informationPRIMES is in P. Manindra Agrawal Neeraj Kayal Nitin Saxena
PRIMES is in P Manindra Agrawal Neeraj Kayal Nitin Saxena Department of Computer Science & Engineering Indian Institute of Technology Kanpur Kanpur208016, INDIA Email: {manindra,kayaln,nitinsa}@iitk.ac.in
More informationA Comparison Of Integer Factoring Algorithms. Keyur Anilkumar Kanabar
A Comparison Of Integer Factoring Algorithms Keyur Anilkumar Kanabar Batchelor of Science in Computer Science with Honours The University of Bath May 2007 This dissertation may be made available for consultation
More informationCRYPTOGRAPHY AND NETWORK SECURITY Principles and Practice
CRYPTOGRAPHY AND NETWORK SECURITY Principles and Practice THIRD EDITION William Stallings Prentice Hall Pearson Education International CONTENTS CHAPTER 1 OVERVIEW 1 1.1 1.2 1.3 1.4 1.5 1.6 PART ONE CHAPTER
More informationEXAM questions for the course TTM4135  Information Security June 2010. Part 1
EXAM questions for the course TTM4135  Information Security June 2010 Part 1 This part consists of 6 questions all from one common topic. The number of maximal points for every correctly answered question
More informationPrimes in Sequences. Lee 1. By: Jae Young Lee. Project for MA 341 (Number Theory) Boston University Summer Term I 2009 Instructor: Kalin Kostadinov
Lee 1 Primes in Sequences By: Jae Young Lee Project for MA 341 (Number Theory) Boston University Summer Term I 2009 Instructor: Kalin Kostadinov Lee 2 Jae Young Lee MA341 Number Theory PRIMES IN SEQUENCES
More informationAn Introduction to the RSA Encryption Method
April 17, 2012 Outline 1 History 2 3 4 5 History RSA stands for Rivest, Shamir, and Adelman, the last names of the designers It was first published in 1978 as one of the first publickey crytographic systems
More informationThe Future of Digital Signatures. Johannes Buchmann
The Future of Digital Signatures Johannes Buchmann Digital Signatures Digital signatures document sign signature verify valid / invalid secret public No ITSecurity without digital signatures Software
More informationComputer and Network Security
MIT 6.857 Computer and Networ Security Class Notes 1 File: http://theory.lcs.mit.edu/ rivest/notes/notes.pdf Revision: December 2, 2002 Computer and Networ Security MIT 6.857 Class Notes by Ronald L. Rivest
More informationInteger Factorization using the Quadratic Sieve
Integer Factorization using the Quadratic Sieve Chad Seibert* Division of Science and Mathematics University of Minnesota, Morris Morris, MN 56567 seib0060@morris.umn.edu March 16, 2011 Abstract We give
More informationFactoring. Factoring 1
Factoring Factoring 1 Factoring Security of RSA algorithm depends on (presumed) difficulty of factoring o Given N = pq, find p or q and RSA is broken o Rabin cipher also based on factoring Factoring like
More information1720  Forward Secrecy: How to Secure SSL from Attacks by Government Agencies
1720  Forward Secrecy: How to Secure SSL from Attacks by Government Agencies Dave Corbett Technical Product Manager Implementing Forward Secrecy 1 Agenda Part 1: Introduction Why is Forward Secrecy important?
More informationCryptography: Authentication, Blind Signatures, and Digital Cash
Cryptography: Authentication, Blind Signatures, and Digital Cash Rebecca Bellovin 1 Introduction One of the most exciting ideas in cryptography in the past few decades, with the widest array of applications,
More informationDetermining the Optimal Combination of Trial Division and Fermat s Factorization Method
Determining the Optimal Combination of Trial Division and Fermat s Factorization Method Joseph C. Woodson Home School P. O. Box 55005 Tulsa, OK 74155 Abstract The process of finding the prime factorization
More information7! Cryptographic Techniques! A Brief Introduction
7! Cryptographic Techniques! A Brief Introduction 7.1! Introduction to Cryptography! 7.2! Symmetric Encryption! 7.3! Asymmetric (PublicKey) Encryption! 7.4! Digital Signatures! 7.5! Public Key Infrastructures
More informationPublic Key (asymmetric) Cryptography
PublicKey Cryptography UNIVERSITA DEGLI STUDI DI PARMA Dipartimento di Ingegneria dell Informazione Public Key (asymmetric) Cryptography Luca Veltri (mail.to: luca.veltri@unipr.it) Course of Network Security,
More informationA SOFTWARE COMPARISON OF RSA AND ECC
International Journal Of Computer Science And Applications Vol. 2, No. 1, April / May 29 ISSN: 97413 A SOFTWARE COMPARISON OF RSA AND ECC Vivek B. Kute Lecturer. CSE Department, SVPCET, Nagpur 9975549138
More informationSymmetric Key cryptosystem
SFWR C03: Computer Networks and Computer Security Mar 811 200 Lecturer: Kartik Krishnan Lectures 222 Symmetric Key cryptosystem Symmetric encryption, also referred to as conventional encryption or single
More informationThe science of encryption: prime numbers and mod n arithmetic
The science of encryption: prime numbers and mod n arithmetic Go check your email. You ll notice that the webpage address starts with https://. The s at the end stands for secure meaning that a process
More informationComputer Security: Principles and Practice
Computer Security: Principles and Practice Chapter 20 PublicKey Cryptography and Message Authentication First Edition by William Stallings and Lawrie Brown Lecture slides by Lawrie Brown PublicKey Cryptography
More informationLukasz Pater CMMS Administrator and Developer
Lukasz Pater CMMS Administrator and Developer EDMS 1373428 Agenda Introduction Why do we need asymmetric ciphers? Oneway functions RSA Cipher Message Integrity Examples Secure Socket Layer Single Sign
More informationSoftware Implementation of GongHarn Publickey Cryptosystem and Analysis
Software Implementation of GongHarn Publickey Cryptosystem and Analysis by Susana Sin A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Master
More informationNumber Theory and the RSA Public Key Cryptosystem
Number Theory and the RSA Public Key Cryptosystem Minh Van Nguyen nguyenminh2@gmail.com 05 November 2008 This tutorial uses to study elementary number theory and the RSA public key cryptosystem. A number
More informationTable of Contents. Bibliografische Informationen http://dnb.info/996514864. digitalisiert durch
1 Introduction to Cryptography and Data Security 1 1.1 Overview of Cryptology (and This Book) 2 1.2 Symmetric Cryptography 4 1.2.1 Basics 4 1.2.2 Simple Symmetric Encryption: The Substitution Cipher...
More informationInteger Factorization
Integer Factorization Lecture given at the Joh. GutenbergUniversität, Mainz, July 23, 1992 by ÖYSTEIN J. RÖDSETH University of Bergen, Department of Mathematics, Allégt. 55, N5007 Bergen, Norway 1 Introduction
More informationCRYPTOG NETWORK SECURITY
CRYPTOG NETWORK SECURITY PRINCIPLES AND PRACTICES FOURTH EDITION William Stallings Prentice Hall Upper Saddle River, NJ 07458 'jkfetmhki^^rij^jibwfcmf «MMr""'^.;
More informationRuntime and Implementation of Factoring Algorithms: A Comparison
Runtime and Implementation of Factoring Algorithms: A Comparison Justin Moore CSC290 Cryptology December 20, 2003 Abstract Factoring composite numbers is not an easy task. It is classified as a hard algorithm,
More informationTextbooks: Matt Bishop, Introduction to Computer Security, AddisonWesley, November 5, 2004, ISBN 0321247442.
CSET 4850 Computer Network Security (4 semester credit hours) CSET Elective IT Elective Current Catalog Description: Theory and practice of network security. Topics include firewalls, Windows, UNIX and
More informationEmbedding more security in digital signature system by using combination of public key cryptography and secret sharing scheme
International Journal of Computer Sciences and Engineering Open Access Research Paper Volume4, Issue3 EISSN: 23472693 Embedding more security in digital signature system by using combination of public
More informationFactoring Algorithms
Factoring Algorithms The p 1 Method and Quadratic Sieve November 17, 2008 () Factoring Algorithms November 17, 2008 1 / 12 Fermat s factoring method Fermat made the observation that if n has two factors
More informationNetwork Security. Computer Networking Lecture 08. March 19, 2012. HKU SPACE Community College. HKU SPACE CC CN Lecture 08 1/23
Network Security Computer Networking Lecture 08 HKU SPACE Community College March 19, 2012 HKU SPACE CC CN Lecture 08 1/23 Outline Introduction Cryptography Algorithms Secret Key Algorithm Message Digest
More informationTwo Integer Factorization Methods
Two Integer Factorization Methods Christopher Koch April 22, 2014 Abstract Integer factorization methods are algorithms that find the prime divisors of any positive integer. Besides studying trial division
More informationAnnouncements. CS243: Discrete Structures. More on Cryptography and Mathematical Induction. Agenda for Today. Cryptography
Announcements CS43: Discrete Structures More on Cryptography and Mathematical Induction Işıl Dillig Class canceled next Thursday I am out of town Homework 4 due Oct instead of next Thursday (Oct 18) Işıl
More information2 Primality and Compositeness Tests
Int. J. Contemp. Math. Sciences, Vol. 3, 2008, no. 33, 16351642 On Factoring R. A. Mollin Department of Mathematics and Statistics University of Calgary, Calgary, Alberta, Canada, T2N 1N4 http://www.math.ucalgary.ca/
More informationFactoring Algorithms
Institutionen för Informationsteknologi Lunds Tekniska Högskola Department of Information Technology Lund University Cryptology  Project 1 Factoring Algorithms The purpose of this project is to understand
More informationNUMBER THEORY AND CRYPTOGRAPHY
NUMBER THEORY AND CRYPTOGRAPHY KEITH CONRAD 1. Introduction Cryptography is the study of secret messages. For most of human history, cryptography was important primarily for military or diplomatic purposes
More informationCRYPTOGRAPHY IN NETWORK SECURITY
ELE548 Research Essays CRYPTOGRAPHY IN NETWORK SECURITY AUTHOR: SHENGLI LI INSTRUCTOR: DR. JIENCHUNG LO Date: March 5, 1999 Computer network brings lots of great benefits and convenience to us. We can
More informationOn Generalized Fermat Numbers 3 2n +1
Applied Mathematics & Information Sciences 4(3) (010), 307 313 An International Journal c 010 Dixie W Publishing Corporation, U. S. A. On Generalized Fermat Numbers 3 n +1 Amin Witno Department of Basic
More informationFACTORING LARGE NUMBERS, A GREAT WAY TO SPEND A BIRTHDAY
FACTORING LARGE NUMBERS, A GREAT WAY TO SPEND A BIRTHDAY LINDSEY R. BOSKO I would like to acknowledge the assistance of Dr. Michael Singer. His guidance and feedback were instrumental in completing this
More informationThe RSA Algorithm: A Mathematical History of the Ubiquitous Cryptological Algorithm
The RSA Algorithm: A Mathematical History of the Ubiquitous Cryptological Algorithm Maria D. Kelly December 7, 2009 Abstract The RSA algorithm, developed in 1977 by Rivest, Shamir, and Adlemen, is an algorithm
More informationInteger Factorization: Solution via Algorithm for Constrained Discrete Logarithm Problem
Journal of Computer Science 5 (9): 674679, 009 ISSN 15493636 009 Science Publications Integer Factorization: Solution via Algorithm for Constrained Discrete Logarithm Problem Boris S. Verkhovsky Department
More information