Linear Inequality in Two Variables

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Linear Inequality in Two Variables"

Transcription

1 90 (7-) Chapter 7 Sstems of Linear Equations and Inequalities In this section 7.4 GRAPHING LINEAR INEQUALITIES IN TWO VARIABLES You studied linear equations and inequalities in one variable in Chapter. In this section we etend the ideas of linear equations in two variables to stud linear inequalities in two variables. Definition Graph of a Linear Inequalit Using a Test Point to Graph an Inequalit Applications Definition Linear inequalities in two variables have the same form as linear equations in two variables. An inequalit smbol is used in place of the equal sign. Linear Inequalit in Two Variables If A, B, and C are real numbers with A and B not both zero, then A B C is called a linear inequalit in two variables. In place of, we can also use,, or. The inequalities 4 8,, and 9 0 are linear inequalities. Not all of these are in the form of the definition, but the could all be rewritten in that form. An ordered pair is a solution to an inequalit in two variables if the ordered pair satisfies the inequalit. E X A M P L E Satisfing a linear inequalit Determine whether each point satisfies the inequalit 6. a) (4, ) b) (, 0) c) (, ) stud tip a) To determine whether (4, ) is a solution to the inequalit, we replace b 4 and b in the inequalit 6: Write about what ou read in the tet. Sum things up in our own words. Write out important facts on note cards. When ou have a few spare minutes in between classes review our note cards. Tr to get the information on the cards into our memor. (4) () Incorrect So (4, ) does not satisf the inequalit 6. b) Replace b and b 0: () (0) Correct So the point (, 0) satisfies the inequalit 6. c) Replace b and b : () ( ) Correct So the point (, ) satisfies the inequalit 6.

2 7.4 Graphing Linear Inequalities in Two Variables (7-) 9 Graph of a Linear Inequalit The graph of a linear inequalit in two variables consists of all points in the rectangular coordinate sstem that satisf the inequalit. For eample, the graph of the inequalit consists of all points where the -coordinate is larger than the -coordinate plus. Consider the point (, 5) on the line. The -coordinate of (, 5) is equal to the -coordinate plus. If we choose a point with a larger -coordinate, such as (, 6), it satisfies the inequalit and it is above the line. In fact, an point above the line satisfies. Likewise, all points below the line satisf the inequalit. See Fig helpful hint Wh do we keep drawing graphs? When we solve 7, we don t bother to draw a graph showing, because the solution set is so simple. However, the solution set to a linear inequalit is a ver large set of ordered pairs. Graphing gives us a wa to visualize the solution set. > + Above the line (, 6) = + (, 5) < + Below the line FIGURE 7.6 To graph the inequalit, we shade all points above the line. To indicate that the line is not included in the graph of, we use a dashed line. The procedure for graphing linear inequalities is summarized as follows. Strateg for Graphing a Linear Inequalit in Two Variables. Solve the inequalit for, then graph m b. m b is the region above the line. m b is the line itself. m b is the region below the line.. If the inequalit involves onl, then graph the vertical line k. k is the region to the right of the line. k is the line itself. k is the region to the left of the line.

3 9 (7-4) Chapter 7 Sstems of Linear Equations and Inequalities E X A M P L E Graphing a linear inequalit Graph each inequalit. a) b) c) 6 a) The set of points satisfing this inequalit is the region below the line. To show this region, we first graph the boundar line. The slope of the line is, and the -intercept is (0, ). We draw the line dashed because it is not part of the graph of. In Fig. 7.7 the graph is the shaded region. + > < + FIGURE 7.7 FIGURE 7.8 FIGURE 7.9 b) Because the inequalit smbol is, ever point on or above the line satisfies this inequalit. We use the fact that the slope of this line is and the -intercept is (0, ) to draw the graph of the line. To show that the line is included in the graph, we make it a solid line and shade the region above. See Fig c) First solve for : 6 6 Divide b and reverse the inequalit. To graph this inequalit, we first graph the line with slope and -intercept (0, ).We use a dashed line for the boundar because it is not included, and we shade the region above the line. Remember, less than means below the line and greater than means above the line onl when the inequalit is solved for. See Fig. 7.9 for the graph. E X A M P L E Horizontal and vertical boundar lines Graph each inequalit. a) 4 b)

4 7.4 Graphing Linear Inequalities in Two Variables (7-5) 9 a) The line 4 is the horizontal line with -intercept (0, 4). We draw a solid horizontal line and shade below it as in Fig b) The line is a vertical line through (, 0). An point to the right of this line has an -coordinate larger than. The graph is shown in Fig > FIGURE 7.0 FIGURE 7. Using a Test Point to Graph an Inequalit The graph of a linear equation such as 6 separates the coordinate plane into two regions. One region satisfies the inequalit 6, and the other region satisfies the inequalit 6. We can tell which region satisfies which inequalit b testing a point in one region. With this method it is not necessar to solve the inequalit for. E X A M P L E 4 helpful hint Some people alwas like to choose (0, 0) as the test point for lines that do not go through (0, 0). The arithmetic for testing (0, 0) is generall easier than for an other point. Using a test point Graph the inequalit 6. First graph the equation 6 using the -intercept (, 0) and the -intercept (0, ) as shown in Fig. 7.. Select a point on one side of the line, sa (0, ), to test in the inequalit. Because (0) () 6 is false, the region on the other side of the line satisfies the inequalit. The graph of 6 is shown in Fig. 7.. Test point (0, ) > 6 FIGURE 7. FIGURE 7.

5 94 (7-6) Chapter 7 Sstems of Linear Equations and Inequalities Applications The values of variables used in applications are often restricted to nonnegative numbers. So solutions to inequalities in these applications are graphed in the first quadrant onl. E X A M P L E 5 Manufacturing tables The Ozark Furniture Compan can obtain at most 8000 board feet of oak lumber for making two tpes of tables. It takes 50 board feet to make a round table and 80 board feet to make a rectangular table. Write an inequalit that limits the possible number of tables of each tpe that can be made. Draw a graph showing all possibilities for the number of tables that can be made. If is the number of round tables and is the number of rectangular tables, then and satisf the inequalit Now find the intercepts for the line : Draw the line through (0, 00) and (60, 0). Because (0, 0) satisfies the inequalit, the number of tables must be below the line. Since the number of tables cannot be negative, the number of tables made must be below the line and in the first quadrant as shown in Fig Assuming that Ozark will not make a fraction of a table, onl points in Fig. 7.4 with whole-number coordinates are practical FIGURE 7.4 WARM-UPS True or false? Eplain our answer.. The point (, 4) satisfies the inequalit. True. The point (, ) satisfies the inequalit. True. The graph of the inequalit 9 is the region above the line 9. True 4. The graph of the inequalit is the region below the line. False 5. The graph of is a single point on the -ais. False 6. The graph of 5 is the region below the horizontal line 5. False

6 7.4 Graphing Linear Inequalities in Two Variables (7-7) 95 WARM-UPS (continued) 7. The graph of is the region to the left of the vertical line. True 8. In graphing the inequalit we use a dashed boundar line. False 9. The point (0, 0) is on the graph of the inequalit. True 0. The point (0, 0) lies above the line. False 7. 4 EXERCISES Reading and Writing After reading this section, write out the answers to these questions. Use complete sentences.. What is a linear inequalit in two variables? A linear inequalit has the same form as a linear equation ecept that an inequalit smbol is used.. How can ou tell if an ordered pair satisfies a linear inequalit in two variables? An ordered pair satisfies a linear inequalit if the inequalit is correct when the variables are replaced b the coordinates of the ordered pair.. How do ou determine whether to draw the boundar line of the graph of a linear inequalit dashed or solid? If the inequalit smbol includes equalit, then the boundar line is solid; otherwise it is dashed. 4. How do ou decide which side of the boundar line to shade? We shade the side that satisfies the inequalit. 5. What is the test point method? In the test point method we test a point to see which side of the boundar line satisfies the inequalit. 6. What is the advantage of the test point method? With the test point method ou can use the inequalit in an form. Determine which of the points following each inequalit satisf that inequalit. See Eample (, ), (, 9), (8, ) (, 9) 8. (, 6), (0, ), (, 0) (, 6) 9. 5 (, 0), (, ), (, 5) (, 0), (, ) 0. 6 (, 0), (, 9), ( 4, ) (, 0), (, 9). 4 (, ), (7, ), (0, 5) (, ), (0, 5). (, ), (, 4), (0, ) (, 4) Graph each inequalit. See Eamples and

7 96 (7-8) Chapter 7 Sstems of Linear Equations and Inequalities Graph each inequalit. Use the test point method of Eample

8 7.4 Graphing Linear Inequalities in Two Variables (7-9) FIGURE FOR EXERCISE 50 rocker requires board feet of maple. write an inequalit that limits the possible number of maple rockers of each tpe that can be made, and graph the inequalit in the first quadrant Solve each problem. See Eample Storing the tables. Ozark Furniture Compan must store its oak tables before shipping. A round table is packaged in a carton with a volume of 5 cubic feet (ft ), and a rectangular table is packaged in a carton with a volume of 5 ft. The warehouse has at most 850 ft of space available for these tables. Write an inequalit that limits the possible number of tables of each tpe that can be stored, and graph the inequalit in the first quadrant Enzme concentration. A food chemist tests enzmes for their abilit to break down pectin in fruit juices (Dennis Callas, Snapshots of Applications in Mathematics). Ecess pectin makes juice cloud. In one test, the chemist measures the concentration of the enzme, c, in milligrams per milliliter and the fraction of light absorbed b the liquid, a. If a 0.07c 0.0, then the enzme is working as it should. Graph the inequalit for 0 c Maple rockers. Ozark Furniture Compan can obtain at most 000 board feet of maple lumber for making its classic and modern maple rocking chairs. A classic maple rocker requires 5 board feet of maple, and a modern

9 98 (7-0) Chapter 7 Sstems of Linear Equations and Inequalities GETTING MORE INVOLVED 5. Discussion. When asked to graph the inequalit, a student found that (0, 5) and (8, 0) both satisfied. The student then drew a dashed line through these two points and shaded the region below the line. What is wrong with this method? Do all of the points graphed b this student satisf the inequalit? 5. Writing. Compare and contrast the two methods presented in this section for graphing linear inequalities. What are the advantages and disadvantages of each method? How do ou choose which method to use? In this section The to a Sstem of Inequalities Graphing a Sstem of Inequalities E X A M P L E stud tip Read the tet and recite to ourself what ou have read. Ask questions and answer them out loud. Listen to our answers to see if the are complete and correct. Would other students understand our answers? 7.5 GRAPHING SYSTEMS OF LINEAR INEQUALITIES In Section 7.4 ou learned how to solve a linear inequalit. In this section ou will solve sstems of linear inequalities. The to a Sstem of Inequalities A point is a solution to a sstem of equations if it satisfies both equations. Similarl, a point is a solution to a sstem of inequalities if it satisfies both inequalities. Satisfing a sstem of inequalities Determine whether each point is a solution to the sstem of inequalities: 6 a) (, ) b) (4, ) c) (5, ) a) The point (, ) is a solution to the sstem if it satisfies both inequalities. Let and in each inequalit: 6 ( ) () 6 ( ) Because both inequalities are satisfied, the point (, ) is a solution to the sstem. b) Let 4 and in each inequalit: 6 (4) ( ) 6 (4) 6 7 Because onl one inequalit is satisfied, the point (4, ) is not a solution to the sstem. c) Let 5 and in each inequalit: 6 (5) () 6 (5) 6 9 Because neither inequalit is satisfied, the point (5, ) is not a solution to the sstem.

GRAPHING SYSTEMS OF LINEAR INEQUALITIES

GRAPHING SYSTEMS OF LINEAR INEQUALITIES 444 (8 5) Chapter 8 Sstems of Linear Equations and Inequalities GETTING MORE INVOLVED 5. Discussion. When asked to graph the inequalit, a student found that (0, 5) and (8, 0) both satisfied. The student

More information

Section 7.1 Graphing Linear Inequalities in Two Variables

Section 7.1 Graphing Linear Inequalities in Two Variables Section 7.1 Graphing Linear Inequalities in Two Variables Eamples of linear inequalities in two variables include + 6, and 1 A solution of a linear inequalit is an ordered pair that satisfies the

More information

Graphing Linear Inequalities in Two Variables

Graphing Linear Inequalities in Two Variables 5.4 Graphing Linear Inequalities in Two Variables 5.4 OBJECTIVES 1. Graph linear inequalities in two variables 2. Graph a region defined b linear inequalities What does the solution set look like when

More information

Linear Inequalities, Systems, and Linear Programming

Linear Inequalities, Systems, and Linear Programming 8.8 Linear Inequalities, Sstems, and Linear Programming 481 8.8 Linear Inequalities, Sstems, and Linear Programming Linear Inequalities in Two Variables Linear inequalities with one variable were graphed

More information

12.2 Graphing Systems of Linear Inequalities

12.2 Graphing Systems of Linear Inequalities Name Class Date 1. Graphing Sstems of Linear Inequalities Essential Question: How do ou solve a sstem of linear inequalities? Resource Locker Eplore Determining Solutions of Sstems of Linear Inequalities

More information

MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60

MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60 MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60 A Summar of Concepts Needed to be Successful in Mathematics The following sheets list the ke concepts which are taught in the specified math course. The sheets

More information

More Equations and Inequalities

More Equations and Inequalities Section. Sets of Numbers and Interval Notation 9 More Equations and Inequalities 9 9. Compound Inequalities 9. Polnomial and Rational Inequalities 9. Absolute Value Equations 9. Absolute Value Inequalities

More information

P1. Plot the following points on the real. P2. Determine which of the following are solutions

P1. Plot the following points on the real. P2. Determine which of the following are solutions Section 1.5 Rectangular Coordinates and Graphs of Equations 9 PART II: LINEAR EQUATIONS AND INEQUALITIES IN TWO VARIABLES 1.5 Rectangular Coordinates and Graphs of Equations OBJECTIVES 1 Plot Points in

More information

Inequalities and Absolute Values. Assignment Guide: EOO = every other odd, 1, 5, 9, 13, EOP = every other pair, 1, 2, 5, 6, 9, 10,

Inequalities and Absolute Values. Assignment Guide: EOO = every other odd, 1, 5, 9, 13, EOP = every other pair, 1, 2, 5, 6, 9, 10, Chapter 4 Inequalities and Absolute Values Assignment Guide: E = ever other odd,, 5, 9, 3, EP = ever other pair,, 2, 5, 6, 9, 0, Lesson 4. Page 75-77 Es. 4-20. 23-28, 29-39 odd, 40-43, 49-52, 59-73 odd

More information

The Graph of a Linear Equation

The Graph of a Linear Equation 4.1 The Graph of a Linear Equation 4.1 OBJECTIVES 1. Find three ordered pairs for an equation in two variables 2. Graph a line from three points 3. Graph a line b the intercept method 4. Graph a line that

More information

Filling in Coordinate Grid Planes

Filling in Coordinate Grid Planes Filling in Coordinate Grid Planes A coordinate grid is a sstem that can be used to write an address for an point within the grid. The grid is formed b two number lines called and that intersect at the

More information

Coordinate Geometry. Positive gradients: Negative gradients:

Coordinate Geometry. Positive gradients: Negative gradients: 8 Coordinate Geometr Negative gradients: m < 0 Positive gradients: m > 0 Chapter Contents 8:0 The distance between two points 8:0 The midpoint of an interval 8:0 The gradient of a line 8:0 Graphing straight

More information

LINEAR PROGRAMMING: THE GRAPHICAL METHOD

LINEAR PROGRAMMING: THE GRAPHICAL METHOD r Chapter LINEAR PROGRAMMING: THE GRAPHICAL METHOD. Graphing Linear Inequalities Your Turn 8 6 + 8 6 8 Your Turn 6 +. Eercises. + First graph the boundar line + = using the points (, ) and (, ). Since

More information

Essential Question How can you graph a system of linear inequalities?

Essential Question How can you graph a system of linear inequalities? 5.7 Sstems of Linear Inequalities Essential Question How can ou graph a sstem of linear inequalities? Graphing Linear Inequalities Work with a partner. Match each linear inequalit with its graph. Eplain

More information

Reasoning with Equations and Inequalities

Reasoning with Equations and Inequalities Instruction Goal: To provide opportunities for students to develop concepts and skills related to solving sstems of linear inequalities, including real-world problems through graphing two and three variables

More information

SLOPE OF A LINE 3.2. section. helpful. hint. Slope Using Coordinates to Find 6% GRADE 6 100 SLOW VEHICLES KEEP RIGHT

SLOPE OF A LINE 3.2. section. helpful. hint. Slope Using Coordinates to Find 6% GRADE 6 100 SLOW VEHICLES KEEP RIGHT . Slope of a Line (-) 67. 600 68. 00. SLOPE OF A LINE In this section In Section. we saw some equations whose graphs were straight lines. In this section we look at graphs of straight lines in more detail

More information

Unit 1 Study Guide Systems of Linear Equations and Inequalities. Part 1: Determine if an ordered pair is a solution to a system

Unit 1 Study Guide Systems of Linear Equations and Inequalities. Part 1: Determine if an ordered pair is a solution to a system Unit Stud Guide Sstems of Linear Equations and Inequalities 6- Solving Sstems b Graphing Part : Determine if an ordered pair is a solution to a sstem e: (, ) Eercises: substitute in for and - in for in

More information

The slope m of the line passes through the points (x 1,y 1 ) and (x 2,y 2 ) e) (1, 3) and (4, 6) = 1 2. f) (3, 6) and (1, 6) m= 6 6

The slope m of the line passes through the points (x 1,y 1 ) and (x 2,y 2 ) e) (1, 3) and (4, 6) = 1 2. f) (3, 6) and (1, 6) m= 6 6 Lines and Linear Equations Slopes Consider walking on a line from left to right. The slope of a line is a measure of its steepness. A positive slope rises and a negative slope falls. A slope of zero means

More information

Lines and Linear Equations. Slopes

Lines and Linear Equations. Slopes Lines and Linear Equations Slopes Consider walking on a line from left to right. The slope of a line is a measure of its steepness. A positive slope rises and a negative slope falls. A slope of zero means

More information

5.3 Graphing Cubic Functions

5.3 Graphing Cubic Functions Name Class Date 5.3 Graphing Cubic Functions Essential Question: How are the graphs of f () = a ( - h) 3 + k and f () = ( 1_ related to the graph of f () = 3? b ( - h) 3 ) + k Resource Locker Eplore 1

More information

Alex and Morgan were asked to graph the equation y = 2x + 1

Alex and Morgan were asked to graph the equation y = 2x + 1 Which is better? Ale and Morgan were asked to graph the equation = 2 + 1 Ale s make a table of values wa Morgan s use the slope and -intercept wa First, I made a table. I chose some -values, then plugged

More information

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its

More information

GRAPHS OF RATIONAL FUNCTIONS

GRAPHS OF RATIONAL FUNCTIONS 0 (0-) Chapter 0 Polnomial and Rational Functions. f() ( 0) ( 0). f() ( 0) ( 0). f() ( 0) ( 0). f() ( 0) ( 0) 0. GRAPHS OF RATIONAL FUNCTIONS In this section Domain Horizontal and Vertical Asmptotes Oblique

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Chapter 5 Polnomial and Rational Functions Section 5.1 Polnomial Functions Section summaries The general form of a polnomial function is f() = a n n + a n 1 n 1 + +a 1 + a 0. The degree of f() is the largest

More information

EQUATIONS OF LINES IN SLOPE- INTERCEPT AND STANDARD FORM

EQUATIONS OF LINES IN SLOPE- INTERCEPT AND STANDARD FORM . Equations of Lines in Slope-Intercept and Standard Form ( ) 8 In this Slope-Intercept Form Standard Form section Using Slope-Intercept Form for Graphing Writing the Equation for a Line Applications (0,

More information

Let (x 1, y 1 ) (0, 1) and (x 2, y 2 ) (x, y). x 0. y 1. y 1 2. x x Multiply each side by x. y 1 x. y x 1 Add 1 to each side. Slope-Intercept Form

Let (x 1, y 1 ) (0, 1) and (x 2, y 2 ) (x, y). x 0. y 1. y 1 2. x x Multiply each side by x. y 1 x. y x 1 Add 1 to each side. Slope-Intercept Form 8 (-) Chapter Linear Equations in Two Variables and Their Graphs In this section Slope-Intercept Form Standard Form Using Slope-Intercept Form for Graphing Writing the Equation for a Line Applications

More information

Lesson 8.3 Exercises, pages

Lesson 8.3 Exercises, pages Lesson 8. Eercises, pages 57 5 A. For each function, write the equation of the corresponding reciprocal function. a) = 5 - b) = 5 c) = - d) =. Sketch broken lines to represent the vertical and horizontal

More information

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review D0 APPENDIX D Precalculus Review APPENDIX D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane Just as ou can represent real numbers b

More information

Section 7.2 Linear Programming: The Graphical Method

Section 7.2 Linear Programming: The Graphical Method Section 7.2 Linear Programming: The Graphical Method Man problems in business, science, and economics involve finding the optimal value of a function (for instance, the maimum value of the profit function

More information

13 Graphs, Equations and Inequalities

13 Graphs, Equations and Inequalities 13 Graphs, Equations and Inequalities 13.1 Linear Inequalities In this section we look at how to solve linear inequalities and illustrate their solutions using a number line. When using a number line,

More information

LINEAR FUNCTIONS. Form Equation Note Standard Ax + By = C A and B are not 0. A > 0

LINEAR FUNCTIONS. Form Equation Note Standard Ax + By = C A and B are not 0. A > 0 LINEAR FUNCTIONS As previousl described, a linear equation can be defined as an equation in which the highest eponent of the equation variable is one. A linear function is a function of the form f ( )

More information

1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered

1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered Conic Sections. Distance Formula and Circles. More on the Parabola. The Ellipse and Hperbola. Nonlinear Sstems of Equations in Two Variables. Nonlinear Inequalities and Sstems of Inequalities In Chapter,

More information

Solving x < a. Section 4.4 Absolute Value Inequalities 391

Solving x < a. Section 4.4 Absolute Value Inequalities 391 Section 4.4 Absolute Value Inequalities 391 4.4 Absolute Value Inequalities In the last section, we solved absolute value equations. In this section, we turn our attention to inequalities involving absolute

More information

8.7 Systems of Non-Linear Equations and Inequalities

8.7 Systems of Non-Linear Equations and Inequalities 8.7 Sstems of Non-Linear Equations and Inequalities 67 8.7 Sstems of Non-Linear Equations and Inequalities In this section, we stud sstems of non-linear equations and inequalities. Unlike the sstems of

More information

Solving inequalities. Jackie Nicholas Jacquie Hargreaves Janet Hunter

Solving inequalities. Jackie Nicholas Jacquie Hargreaves Janet Hunter Mathematics Learning Centre Solving inequalities Jackie Nicholas Jacquie Hargreaves Janet Hunter c 6 Universit of Sdne Mathematics Learning Centre, Universit of Sdne Solving inequalities In these nots

More information

4.9 Graph and Solve Quadratic

4.9 Graph and Solve Quadratic 4.9 Graph and Solve Quadratic Inequalities Goal p Graph and solve quadratic inequalities. Your Notes VOCABULARY Quadratic inequalit in two variables Quadratic inequalit in one variable GRAPHING A QUADRATIC

More information

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1 Chapter 1 INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4 This opening section introduces the students to man of the big ideas of Algebra 2, as well as different was of thinking and various problem solving strategies.

More information

Why should we learn this? One real-world connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY

Why should we learn this? One real-world connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY Wh should we learn this? The Slope of a Line Objectives: To find slope of a line given two points, and to graph a line using the slope and the -intercept. One real-world connection is to find the rate

More information

Do NOT use a calculator. ( i ) x + 11 = 57 ( ii ) x - 13 = 14. ( iii ) 5x = 115 ( iv ) 5x + 8 = 33. ( v ) 4 x - 7 = 33 ( vi ) 8x + 3 = 7

Do NOT use a calculator. ( i ) x + 11 = 57 ( ii ) x - 13 = 14. ( iii ) 5x = 115 ( iv ) 5x + 8 = 33. ( v ) 4 x - 7 = 33 ( vi ) 8x + 3 = 7 INEQUALITIES These lesson notes are available from www.pilean.com The ma be freel duplicated and distributed but copright remains with the author. Martin Hansen Chapter.. Solving Simple Equations & Inequalities

More information

Pre Calculus Math 40S: Explained!

Pre Calculus Math 40S: Explained! Pre Calculus Math 0S: Eplained! www.math0s.com 0 Logarithms Lesson PART I: Eponential Functions Eponential functions: These are functions where the variable is an eponent. The first tpe of eponential graph

More information

Graphing Linear Equations

Graphing Linear Equations 6.3 Graphing Linear Equations 6.3 OBJECTIVES 1. Graph a linear equation b plotting points 2. Graph a linear equation b the intercept method 3. Graph a linear equation b solving the equation for We are

More information

Section 0.2 Set notation and solving inequalities

Section 0.2 Set notation and solving inequalities Section 0.2 Set notation and solving inequalities (5/31/07) Overview: Inequalities are almost as important as equations in calculus. Man functions domains are intervals, which are defined b inequalities.

More information

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form SECTION 11.3 Solving Quadratic Equations b Graphing 11.3 OBJECTIVES 1. Find an ais of smmetr 2. Find a verte 3. Graph a parabola 4. Solve quadratic equations b graphing 5. Solve an application involving

More information

To Be or Not To Be a Linear Equation: That Is the Question

To Be or Not To Be a Linear Equation: That Is the Question To Be or Not To Be a Linear Equation: That Is the Question Linear Equation in Two Variables A linear equation in two variables is an equation that can be written in the form A + B C where A and B are not

More information

4.1 Piecewise-Defined Functions

4.1 Piecewise-Defined Functions Section 4.1 Piecewise-Defined Functions 335 4.1 Piecewise-Defined Functions In preparation for the definition of the absolute value function, it is etremel important to have a good grasp of the concept

More information

Reteaching Masters. To jump to a location in this book. 1. Click a bookmark on the left. To print a part of the book. 1. Click the Print button.

Reteaching Masters. To jump to a location in this book. 1. Click a bookmark on the left. To print a part of the book. 1. Click the Print button. Reteaching Masters To jump to a location in this book. Click a bookmark on the left. To print a part of the book. Click the Print button.. When the Print window opens, tpe in a range of pages to print.

More information

In this section, we ll review plotting points, slope of a line and different forms of an equation of a line.

In this section, we ll review plotting points, slope of a line and different forms of an equation of a line. Math 1313 Section 1.2: Straight Lines In this section, we ll review plotting points, slope of a line and different forms of an equation of a line. Graphing Points and Regions Here s the coordinate plane:

More information

Essential Question How can you describe the graph of the equation Ax + By = C? Number of adult tickets. adult

Essential Question How can you describe the graph of the equation Ax + By = C? Number of adult tickets. adult 3. Graphing Linear Equations in Standard Form Essential Question How can ou describe the graph of the equation A + B = C? Using a Table to Plot Points Work with a partner. You sold a total of $16 worth

More information

Linear Equations in Two Variables

Linear Equations in Two Variables Section. Sets of Numbers and Interval Notation 0 Linear Equations in Two Variables. The Rectangular Coordinate Sstem and Midpoint Formula. Linear Equations in Two Variables. Slope of a Line. Equations

More information

LESSON EIII.E EXPONENTS AND LOGARITHMS

LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS OVERVIEW Here s what ou ll learn in this lesson: Eponential Functions a. Graphing eponential functions b. Applications of eponential

More information

SECTION 2-5 Combining Functions

SECTION 2-5 Combining Functions 2- Combining Functions 16 91. Phsics. A stunt driver is planning to jump a motorccle from one ramp to another as illustrated in the figure. The ramps are 10 feet high, and the distance between the ramps

More information

Functions. Chapter A B C D E F G H I J. The reciprocal function x

Functions. Chapter A B C D E F G H I J. The reciprocal function x Chapter 1 Functions Contents: A B C D E F G H I J Relations and functions Function notation, domain and range Composite functions, f± g Sign diagrams Inequalities (inequations) The modulus function 1 The

More information

SECTION 7-4 Algebraic Vectors

SECTION 7-4 Algebraic Vectors 7-4 lgebraic Vectors 531 SECTIN 7-4 lgebraic Vectors From Geometric Vectors to lgebraic Vectors Vector ddition and Scalar Multiplication Unit Vectors lgebraic Properties Static Equilibrium Geometric vectors

More information

Systems of Equations. from Campus to Careers Fashion Designer

Systems of Equations. from Campus to Careers Fashion Designer Sstems of Equations from Campus to Careers Fashion Designer Radius Images/Alam. Solving Sstems of Equations b Graphing. Solving Sstems of Equations Algebraicall. Problem Solving Using Sstems of Two Equations.

More information

2.4 Inequalities with Absolute Value and Quadratic Functions

2.4 Inequalities with Absolute Value and Quadratic Functions 08 Linear and Quadratic Functions. Inequalities with Absolute Value and Quadratic Functions In this section, not onl do we develop techniques for solving various classes of inequalities analticall, we

More information

Solving Special Systems of Linear Equations

Solving Special Systems of Linear Equations 5. Solving Special Sstems of Linear Equations Essential Question Can a sstem of linear equations have no solution or infinitel man solutions? Using a Table to Solve a Sstem Work with a partner. You invest

More information

EXPLORE EXPLAIN 1. Representing an Interval on a Number Line INTEGRATE TECHNOLOGY. INTEGRATE MATHEMATICAL PROCESSES Focus on Modeling

EXPLORE EXPLAIN 1. Representing an Interval on a Number Line INTEGRATE TECHNOLOGY. INTEGRATE MATHEMATICAL PROCESSES Focus on Modeling Locker LESSON 1.1 Domain, Range, and End Behavior Teas Math Standards The student is epected to: A.7.1 Write the domain and range of a function in interval notation, inequalities, and set notation. Mathematical

More information

Anytime plan TalkMore plan

Anytime plan TalkMore plan CONDENSED L E S S O N 6.1 Solving Sstems of Equations In this lesson ou will represent situations with sstems of equations use tables and graphs to solve sstems of linear equations A sstem of equations

More information

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes The Circle 2.6 Introduction A circle is one of the most familiar geometrical figures and has been around a long time! In this brief Section we discuss the basic coordinate geometr of a circle - in particular

More information

Rational Functions, Equations, and Inequalities

Rational Functions, Equations, and Inequalities Chapter 5 Rational Functions, Equations, and Inequalities GOALS You will be able to Graph the reciprocal functions of linear and quadratic functions Identif the ke characteristics of rational functions

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Chapter 6 Eponential and Logarithmic Functions Section summaries Section 6.1 Composite Functions Some functions are constructed in several steps, where each of the individual steps is a function. For eample,

More information

A Library of Parent Functions. Linear and Squaring Functions. Writing a Linear Function. Write the linear function f for which f 1 3 and f 4 0.

A Library of Parent Functions. Linear and Squaring Functions. Writing a Linear Function. Write the linear function f for which f 1 3 and f 4 0. 0_006.qd 66 /7/0 Chapter.6 8:0 AM Page 66 Functions and Their Graphs A Librar of Parent Functions What ou should learn Identif and graph linear and squaring functions. Identif and graph cubic, square root,

More information

The Slope-Intercept Form

The Slope-Intercept Form 7.1 The Slope-Intercept Form 7.1 OBJECTIVES 1. Find the slope and intercept from the equation of a line. Given the slope and intercept, write the equation of a line. Use the slope and intercept to graph

More information

{ } Sec 3.1 Systems of Linear Equations in Two Variables

{ } Sec 3.1 Systems of Linear Equations in Two Variables Sec.1 Sstems of Linear Equations in Two Variables Learning Objectives: 1. Deciding whether an ordered pair is a solution.. Solve a sstem of linear equations using the graphing, substitution, and elimination

More information

C1: Coordinate geometry of straight lines

C1: Coordinate geometry of straight lines B_Chap0_08-05.qd 5/6/04 0:4 am Page 8 CHAPTER C: Coordinate geometr of straight lines Learning objectives After studing this chapter, ou should be able to: use the language of coordinate geometr find the

More information

Simultaneous. linear equations. and inequations

Simultaneous. linear equations. and inequations Simultaneous linear equations and inequations A Graphical solution of simultaneous linear equations B Solving simultaneous linear equations using substitution C Solving simultaneous linear equations using

More information

4.1 Solving a System of Linear Inequalities

4.1 Solving a System of Linear Inequalities 4.1 Solving a System of Linear Inequalities Question 1: How do you graph a linear inequality? Question : How do you graph a system of linear inequalities? In Chapter, we were concerned with systems of

More information

REVIEW OF ANALYTIC GEOMETRY

REVIEW OF ANALYTIC GEOMETRY REVIEW OF ANALYTIC GEOMETRY The points in a plane can be identified with ordered pairs of real numbers. We start b drawing two perpendicular coordinate lines that intersect at the origin O on each line.

More information

3 Functions and Graphs

3 Functions and Graphs 54617_CH03_155-224.QXP 9/14/10 1:04 PM Page 155 3 Functions and Graphs In This Chapter 3.1 Functions and Graphs 3.2 Smmetr and Transformations 3.3 Linear and Quadratic Functions 3.4 Piecewise-Defined Functions

More information

Chapter 3: Section 3-2 Graphing Linear Inequalities

Chapter 3: Section 3-2 Graphing Linear Inequalities Chapter : Section Graphing Linear Inequalities D. S. Malik Creighton Universit, Omaha, NE D. S. Malik Creighton Universit, Omaha, NE Chapter () : Section Graphing Linear Inequalities / 9 Geometric Approach

More information

2.5 Library of Functions; Piecewise-defined Functions

2.5 Library of Functions; Piecewise-defined Functions SECTION.5 Librar of Functions; Piecewise-defined Functions 07.5 Librar of Functions; Piecewise-defined Functions PREPARING FOR THIS SECTION Before getting started, review the following: Intercepts (Section.,

More information

Solve the linear programming problem graphically: Minimize w 4. subject to. on the vertical axis.

Solve the linear programming problem graphically: Minimize w 4. subject to. on the vertical axis. Do a similar example with checks along the wa to insure student can find each corner point, fill out the table, and pick the optimal value. Example 3 Solve the Linear Programming Problem Graphicall Solve

More information

3 Rectangular Coordinate System and Graphs

3 Rectangular Coordinate System and Graphs 060_CH03_13-154.QXP 10/9/10 10:56 AM Page 13 3 Rectangular Coordinate Sstem and Graphs In This Chapter 3.1 The Rectangular Coordinate Sstem 3. Circles and Graphs 3.3 Equations of Lines 3.4 Variation Chapter

More information

Systems of linear equations (simultaneous equations)

Systems of linear equations (simultaneous equations) Before starting this topic ou should review how to graph equations of lines. The link below will take ou to the appropriate location on the Academic Skills site. http://www.scu.edu.au/academicskills/numerac/inde.php/1

More information

Q (x 1, y 1 ) m = y 1 y 0

Q (x 1, y 1 ) m = y 1 y 0 . Linear Functions We now begin the stud of families of functions. Our first famil, linear functions, are old friends as we shall soon see. Recall from Geometr that two distinct points in the plane determine

More information

1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model

1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model . Piecewise Functions YOU WILL NEED graph paper graphing calculator GOAL Understand, interpret, and graph situations that are described b piecewise functions. LEARN ABOUT the Math A cit parking lot uses

More information

SECTION 2.2. Distance and Midpoint Formulas; Circles

SECTION 2.2. Distance and Midpoint Formulas; Circles SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation

More information

Graph each function. Compare to the parent graph. State the domain and range. 1. SOLUTION:

Graph each function. Compare to the parent graph. State the domain and range. 1. SOLUTION: - Root Functions Graph each function. Compare to the parent graph. State the domain and range...5.. 5. 6 is multiplied b a value greater than, so the graph is a vertical stretch of. Another wa to identif

More information

Section 1.4 Graphs of Linear Inequalities

Section 1.4 Graphs of Linear Inequalities Section 1.4 Graphs of Linear Inequalities A Linear Inequality and its Graph A linear inequality has the same form as a linear equation, except that the equal symbol is replaced with any one of,,

More information

Florida Algebra I EOC Online Practice Test

Florida Algebra I EOC Online Practice Test Florida Algebra I EOC Online Practice Test 1 Directions: This practice test contains 65 multiple-choice questions. Choose the best answer for each question. Detailed answer eplanations appear at the end

More information

6.3 Parametric Equations and Motion

6.3 Parametric Equations and Motion SECTION 6.3 Parametric Equations and Motion 475 What ou ll learn about Parametric Equations Parametric Curves Eliminating the Parameter Lines and Line Segments Simulating Motion with a Grapher... and wh

More information

COORDINATE PLANES, LINES, AND LINEAR FUNCTIONS

COORDINATE PLANES, LINES, AND LINEAR FUNCTIONS a p p e n d i f COORDINATE PLANES, LINES, AND LINEAR FUNCTIONS RECTANGULAR COORDINATE SYSTEMS Just as points on a coordinate line can be associated with real numbers, so points in a plane can be associated

More information

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes The Circle 2.6 Introduction A circle is one of the most familiar geometrical figures. In this brief Section we discuss the basic coordinate geometr of a circle - in particular the basic equation representing

More information

Ordered Pairs. Graphing Lines and Linear Inequalities, Solving System of Linear Equations. Cartesian Coordinates System.

Ordered Pairs. Graphing Lines and Linear Inequalities, Solving System of Linear Equations. Cartesian Coordinates System. Ordered Pairs Graphing Lines and Linear Inequalities, Solving System of Linear Equations Peter Lo All equations in two variables, such as y = mx + c, is satisfied only if we find a value of x and a value

More information

I think that starting

I think that starting . Graphs of Functions 69. GRAPHS OF FUNCTIONS One can envisage that mathematical theor will go on being elaborated and etended indefinitel. How strange that the results of just the first few centuries

More information

Identify a pattern and find the next three numbers in the pattern. 5. 5(2s 2 1) 2 3(s 1 2); s 5 4

Identify a pattern and find the next three numbers in the pattern. 5. 5(2s 2 1) 2 3(s 1 2); s 5 4 Chapter 1 Test Do ou know HOW? Identif a pattern and find the net three numbers in the pattern. 1. 5, 1, 3, 7, c. 6, 3, 16, 8, c Each term is more than the previous Each term is half of the previous term;

More information

Math 152, Intermediate Algebra Practice Problems #1

Math 152, Intermediate Algebra Practice Problems #1 Math 152, Intermediate Algebra Practice Problems 1 Instructions: These problems are intended to give ou practice with the tpes Joseph Krause and level of problems that I epect ou to be able to do. Work

More information

Functions and Graphs CHAPTER INTRODUCTION. The function concept is one of the most important ideas in mathematics. The study

Functions and Graphs CHAPTER INTRODUCTION. The function concept is one of the most important ideas in mathematics. The study Functions and Graphs CHAPTER 2 INTRODUCTION The function concept is one of the most important ideas in mathematics. The stud 2-1 Functions 2-2 Elementar Functions: Graphs and Transformations 2-3 Quadratic

More information

Solving Absolute Value Equations and Inequalities Graphically

Solving Absolute Value Equations and Inequalities Graphically 4.5 Solving Absolute Value Equations and Inequalities Graphicall 4.5 OBJECTIVES 1. Draw the graph of an absolute value function 2. Solve an absolute value equation graphicall 3. Solve an absolute value

More information

Graphing Quadratic Equations

Graphing Quadratic Equations .4 Graphing Quadratic Equations.4 OBJECTIVE. Graph a quadratic equation b plotting points In Section 6.3 ou learned to graph first-degree equations. Similar methods will allow ou to graph quadratic equations

More information

EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

More information

Solving Systems Using Tables and Graphs

Solving Systems Using Tables and Graphs - Think About a Plan Solving Sstems Using Tables and Graphs Sports You can choose between two tennis courts at two universit campuses to learn how to pla tennis. One campus charges $ per hour. The other

More information

Transformations of Function Graphs

Transformations of Function Graphs - - - 0 - - - - - - - Locker LESSON.3 Transformations of Function Graphs Teas Math Standards The student is epected to: A..C Analze the effect on the graphs of f () = when f () is replaced b af (), f (b),

More information

COORDINATE PLANES, LINES, AND LINEAR FUNCTIONS

COORDINATE PLANES, LINES, AND LINEAR FUNCTIONS G COORDINATE PLANES, LINES, AND LINEAR FUNCTIONS RECTANGULAR COORDINATE SYSTEMS Just as points on a coordinate line can be associated with real numbers, so points in a plane can be associated with pairs

More information

EXERCISES PPractice and Problem Solving

EXERCISES PPractice and Problem Solving EXERCISES PPractice and Problem Solving For more practice, see Etra Practice. A Practice b Eample Eample (page 78) Is the given ordered pair a solution of the sstem?. (, 9). (, 0). (-, 0) # 7-9 - $. -

More information

1.2 GRAPHS OF EQUATIONS

1.2 GRAPHS OF EQUATIONS 000_00.qd /5/05 : AM Page SECTION. Graphs of Equations. GRAPHS OF EQUATIONS Sketch graphs of equations b hand. Find the - and -intercepts of graphs of equations. Write the standard forms of equations of

More information

LINEAR INEQUALITIES. less than, < 2x + 5 x 3 less than or equal to, greater than, > 3x 2 x 6 greater than or equal to,

LINEAR INEQUALITIES. less than, < 2x + 5 x 3 less than or equal to, greater than, > 3x 2 x 6 greater than or equal to, LINEAR INEQUALITIES When we use the equal sign in an equation we are stating that both sides of the equation are equal to each other. In an inequality, we are stating that both sides of the equation are

More information

C3: Functions. Learning objectives

C3: Functions. Learning objectives CHAPTER C3: Functions Learning objectives After studing this chapter ou should: be familiar with the terms one-one and man-one mappings understand the terms domain and range for a mapping understand the

More information

y y y 5

y y y 5 Sstems of Linear Inequalities SUGGESTED LEARNING STRATEGIES: Marking the Tet, Quickwrite, Create Representations. Graph each inequalit on the number lines and grids provided. M Notes ACTIVITY.7 Inequalit

More information