Forecasting the Demand of Emergency Supplies: Based on the CBR Theory and BP Neural Network

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Forecasting the Demand of Emergency Supplies: Based on the CBR Theory and BP Neural Network"

Transcription

1 700 Proceedngs of the 8th Internatonal Conference on Innovaton & Management Forecastng the Demand of Emergency Supples: Based on the CBR Theory and BP Neural Network Fu Deqang, Lu Yun, L Changbng School of economcs and Management, Chongqng Unversty of Post and Telecommuncaton, Chongqng, Chna, (E-mal: Abstract: In recent years, the unconventonal emergence ncdents occurred frequently, whch are serously harmful to people s lves and property. So how to predct resource requrements after dsasters tmely becomes an mportant ssue. Ths paper presents an accurate predcton method based on CBR and BP neural network. Frstly, a set of base cases of the emergency demand should be found out. Then the law of emergency supples base cases can be obtaned accordng to BP neural network, at last, to prove the value of the forecast method, the demand of goal case can be predcted by usng the law. Key words: Emergency supples; Forecast; Case-based reasonng; BP neural network 1 Introducton Recently, the unconventonal emergence ncdent occurred frequently whch s serously harmful to people s lves and property. The researches of emergency supples demand forecastng play an mportant role n mprovng the emergency response effectveness and mnmzng the dsaster losses. Emergency supples means once emergence ncdent occurs, the smlar or alternatve resources whch can be moblzed. Currently, many scholars have conducted studes to forecast the demand of emergency supples. Guo Rupeng [1] combned the fuzzy reasonng wth the case-based reasonng and establshed the emergency supples demand model accordng to the characterstcs of the materal requrement. Ln Janxn [2], who establshed the mathematcal model to forecast the emergency transport demand dstrbuton problem, proposed an mproved emergency transport demand curve functon. Fu Zhyan [3] predcted the demand of emergency supples usng case-based reasonng model. Certan contrbutons have been made from ther studes. In concluson, now many scholars have done relevant researches of emergency supples demand forecastng from dfferent angles. The emergency events are characterstc of non-routne, sudden, and uncertanty; however, the prevous research dd not hghlght these characters, so these methods are of low practcalty. Ths paper presents an accurate predcton method based on CBR and BP neural network, and selects emergency supples samples whch are used n BP neural network tranng. Because smlar emergency supples demand processes are bound to have smlar demand law, frst, puttng forward a set of based cases whch are smlar wth the goal emergency supples demand, then fndng out the demand law of based cases by usng BP neural network, and fnally apply the law to predct the goal case of emergency demand. 2 Modelng 2.1 The framework of model The framework of emergency supples demand forecastng manly conssts of 3 modules: 1)Smlar case retreval module 2)Access to the law of demand module 3)Emergency supples demand forecastng module The functon of module 1) s to dentfy one case whch s smlar to the goal case n the case database; the functon of module 2)s to gan the projectve reconstructon between the characters of emergency supples and the demand; the functon of module 3)s apply the law from module2) to predct the demand of the goal case emergency supples by enterng the goal case character message nto the law. 2.2 Fundamentals Used n the Forecastng of Emergency Supples Demand CBR (Case-based reasonng) Ths work s supported by key Laboratory of Electronc commerce and Modern Logstcs, Chongqng Educaton Commsson

2 Proceedngs of the 8th Internatonal Conference on Innovaton & Management 701 CBR s knd of methodology whch not only can mtate human reasonng and thought process, but also can buld ntellgent computer systems. It can smulate thought processes of experts, such as assocaton, ntuton, analogy, nducton, learnng and memory and so on, the core dea s that when solvng problem, prevous experence and acqured knowledge of smlar problems can be used to reason the new case, and adjust the soluton accordng to the dfferences of old and new, then the new soluton of the problem wll become a new case. The new case can be added nto the case database. As the growth of the case database, the experence of the system wll be more abundant. Ths paper consders the emergency supples demand as dependent varables. Frst of all, case database of emergency supples should be establshed. There are n cases, and suppose the number case s denoted by C, ( =1,2, n),namely, the base case set s C, C={C 1,C 2,,C n }. Therefore, assumng that there are m characters, and they are hghly assocated wth the demand of emergency supples. The character set s denoted by X, X={x 1,x 2,,x m }. Accordng to the dfferent needs of emergency resources, demand for emergency supples can be dvded nto 3 categores, manpower needs, materal needs, and fnancal needs. The demand of the goal case s denoted by D. Because smlar emergency supples demand always be based on the smlar demand law, n smlar cases can be chose as tranng sample. 2.3 BP Neural Network Network structure BP neural network s a knd of error back propagaton learnng algorthm. It s composed of the nput layer, the hdden layer, output layer and the connectons between dfferent neurons, the layers of neurons s connected by weghts and thresholds. BP neural network s used to create the mappng between emergency supples demand and the character parameters, thereby emergency supples demand forecastng process can be solved by BP neural network. The process of emergency supples demand forecastng of BP neural network manly conssts of 3 parts: (1) Data collecton, enter the hstorcal demand data nto case database (2) Use emergency supples character data and the correspondng demand data to tran network. (3) Apply the network tranng results to forecastng the demand of emergency supples accordng to the character parameters Mathematcal Expresson BP neural network can be seen as a knd of nonlnear mappng from nput to output, that s: n m D: F = F, f( x) = Y, For a sample set: nput X R n, output Y R m, then there exsts a mappng. gx ( ) = y( = 1, 2,... n), Now map f s requested, so n some sense (usually the number of least squares), f s the best approxmaton of g. BP neural network s smlar to complex functon through several complex of smple functon. BP learnng algorthm s a very mportant and classcal learnng algorthm, whch can be used to acheve multlayer feed forward BP neural network weghts adjustment [4]. The gudng deology of the network learnng formula s that for the amendment of the network weghts (w j,t l ) and the threshold θ, the error functon E fall along the gradent drecton. 3-BP network node s expressed as: nput node x j, hdden node y, output node O l, the network weght of nput nodes and hdden nodes are w j, and hdden nodes and output nodes are T l. When the expected output of output nodes s T l, the BP model formula and ts dervaton s as follows: (1)The formula of output O l of output nodes Input of nput nodes: x j Output of hdden nodes: y = f( wj θ) j (1) Among them, the connecton weghts w j, the nodes thresholds θ, Output of output nodes: O = f( Tjy θ) (2)

3 702 Proceedngs of the 8th Internatonal Conference on Innovaton & Management Among them, the connecton weghts T j, the nodes thresholds θ l (2)The correcton formula of output layer (hdden nodes to output nodes) s the expected output of output nodes T l; All of the sample error: Among them, one sample error: n (3) k 1 k E = e < ε (4) n n ( k) ( k) k = k e t o Among them, k s sample number; n s output nodes number. Error formula: Weghts correcton: δ = ( T O ) O( l O ) (5) l l l l Tl ( k+ l) = Tl ( k) + ηδl y (6) Whch, k s the teraton number; η s the learnng rate, η decdes the changes whch are produced n each tranng cycle. And t s generally rangng from 0.01 to 0.8; (3)Thresholds correcton: θl( k+ l) = θl( k) + ηδ l (7) The correcton formula of the hdden layer(nput nodes to hdden nodes) Error formula: Weghts correcton: Thresholds correcton: δ = y (1 y ) δ T (8) l l w ( k+ l) = w ( k) + η δ x (9) j j j θ ( k+ 1) = θ ( k) + ηδ (10) j Ths algorthm s an teratve process, each round wll adjust the weght agan untl the error of expected output and calculated output s less than an allowable value. Then end the learnng tranng, buld the model shown as Fgure 1. δ 1 δ l δ n Input layer T 1 T l T n Hdden layer Fgure 1 Back-propagaton Dagram 3 Examples 3.1 Index Select Takng the earthquake emergency supples demand forecastng for example, there are 30 cases n the case database shown as the Table 1, C,=(1,2,,30). Selectng the follow 4 chef characters of the earthquake emergency supples as the neurons of nput layer, X={x 1,x 2,x 3,x 4 }={Magntude, depth, densty of populaton, Number of affected people}, and output s the demand of earthquake emergency supples. Takng C(=1,2...,15) as learnng sample set, and use X as smulaton nput of network to

4 Proceedngs of the 8th Internatonal Conference on Innovaton & Management 703 learnng and tran. Takeng C(=16,17,...,30) as the test sample to examne the accuracy of neural network learnng, and compar the predcted values wth the actual values untl the errors are adjusted to a certan range, then forecast the demand of earthquake emergency supples usng the traned network. 3 categores emergency resources demand are all converted by yuan. Table 1 Case Database demand x 1 (rchter scale) x 2 (Km) x 3 (one person per Sq.Km) x 4 (10 thousand) (10 thousand yuan) C C C C C C Selectng sgmod functon as the transfer functon between the nput layer and the hdden layer,and lnear functon between the hdden layer and output layer. There s only 1 hdden layer, and the experental number of hdden nodes s 7. Fcture 2 s the dagram of the 3-layer BP neural network structure. x 1 x 2 x 3 x 4 O Input layer Hdden layer Output layer Fgure 2 3-layer BP Neural Network Structure Dagram 3.2 Tranng and Result Analyss Usng Matlab 7.0 to do BP neural network emulate tranng, and the max learnng rato s 0.3, the mnmum s 0.0. After teratve processes, the average error comes to the reasonable range, less than 5%. Fgure 3 s the network tranng parameter dagram. Fgure 3 Network Tranng Parameter SSW Dagram Under ths crcumstance, Suppose D, X D = (7.3, 8, 24, 100). Emergency supples demand of D can be predcted. The predcted value s 3429, and the actual value s 3290, the error s 4.2%. 4 Conclusons Accordng to above analyss, the method of Forecastng Emergency Supples Demand Based on the CBR Theory and BP Neural Network s feasble; the error between the predcted value and the actual value s under reasonable control. However, n order to make the forecastng more accuracy, the number of the case should be greater, and then a more well law can be obtaned. Reference [1] Guo Rupeng. Research on the Methods and of Emergency Materal Moblzaton Decson-makng [D]. Bejng: Bejng Insttute of Technology, 2006:34-40 (In Chnese) [2] Ln Janxn, We Xanlan, Wu Hayan. Tme-varaton Demand Forecast of Emergent Traffc Evacuaton Based on S-curve[J]. Journal of Transport Informaton and Safety,2009,27(3):92-96 (In Chnese) [3] Fu Zhyan, Chen Jan. Research on Emergency Materal Demand Forecast Model n Dsaster [J].

5 704 Proceedngs of the 8th Internatonal Conference on Innovaton & Management Logstcs Sc-Tech, 2009:11-13 (In Chnese) [4] Yn Chao, Qan Shengsan,Zeng Yonggang, ZhouYuan. Research for the Estmaton of Capacty Demand of Knowledge-producton Based on the CBR Theory and BP Neural Network [J]. Scence-Technology and Management, 2010:45-48 (In Chnese)

Forecasting the Direction and Strength of Stock Market Movement

Forecasting the Direction and Strength of Stock Market Movement Forecastng the Drecton and Strength of Stock Market Movement Jngwe Chen Mng Chen Nan Ye cjngwe@stanford.edu mchen5@stanford.edu nanye@stanford.edu Abstract - Stock market s one of the most complcated systems

More information

LETTER IMAGE RECOGNITION

LETTER IMAGE RECOGNITION LETTER IMAGE RECOGNITION 1. Introducton. 1. Introducton. Objectve: desgn classfers for letter mage recognton. consder accuracy and tme n takng the decson. 20,000 samples: Startng set: mages based on 20

More information

The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis

The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis The Development of Web Log Mnng Based on Improve-K-Means Clusterng Analyss TngZhong Wang * College of Informaton Technology, Luoyang Normal Unversty, Luoyang, 471022, Chna wangtngzhong2@sna.cn Abstract.

More information

Nonlinear data mapping by neural networks

Nonlinear data mapping by neural networks Nonlnear data mappng by neural networks R.P.W. Dun Delft Unversty of Technology, Netherlands Abstract A revew s gven of the use of neural networks for nonlnear mappng of hgh dmensonal data on lower dmensonal

More information

Study on CET4 Marks in China s Graded English Teaching

Study on CET4 Marks in China s Graded English Teaching Study on CET4 Marks n Chna s Graded Englsh Teachng CHE We College of Foregn Studes, Shandong Insttute of Busness and Technology, P.R.Chna, 264005 Abstract: Ths paper deploys Logt model, and decomposes

More information

A hybrid global optimization algorithm based on parallel chaos optimization and outlook algorithm

A hybrid global optimization algorithm based on parallel chaos optimization and outlook algorithm Avalable onlne www.ocpr.com Journal of Chemcal and Pharmaceutcal Research, 2014, 6(7):1884-1889 Research Artcle ISSN : 0975-7384 CODEN(USA) : JCPRC5 A hybrd global optmzaton algorthm based on parallel

More information

An Evaluation of the Extended Logistic, Simple Logistic, and Gompertz Models for Forecasting Short Lifecycle Products and Services

An Evaluation of the Extended Logistic, Simple Logistic, and Gompertz Models for Forecasting Short Lifecycle Products and Services An Evaluaton of the Extended Logstc, Smple Logstc, and Gompertz Models for Forecastng Short Lfecycle Products and Servces Charles V. Trappey a,1, Hsn-yng Wu b a Professor (Management Scence), Natonal Chao

More information

What is Candidate Sampling

What is Candidate Sampling What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble

More information

Improved SVM in Cloud Computing Information Mining

Improved SVM in Cloud Computing Information Mining Internatonal Journal of Grd Dstrbuton Computng Vol.8, No.1 (015), pp.33-40 http://dx.do.org/10.1457/jgdc.015.8.1.04 Improved n Cloud Computng Informaton Mnng Lvshuhong (ZhengDe polytechnc college JangSu

More information

Logistic Regression. Lecture 4: More classifiers and classes. Logistic regression. Adaboost. Optimization. Multiple class classification

Logistic Regression. Lecture 4: More classifiers and classes. Logistic regression. Adaboost. Optimization. Multiple class classification Lecture 4: More classfers and classes C4B Machne Learnng Hlary 20 A. Zsserman Logstc regresson Loss functons revsted Adaboost Loss functons revsted Optmzaton Multple class classfcaton Logstc Regresson

More information

Research into a RFID Neural Network Localization Algorithm

Research into a RFID Neural Network Localization Algorithm , pp. 95-304 http://dx.do.org/10.1457/jfgcn.016.9.5.8 Research nto a RFID Neural Network Localzaton Algorthm Jangang Jn Software Technology Vocatonal College, North Chna Unversty of Water Resources and

More information

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. Sequential Optimizing Investing Strategy with Neural Networks

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. Sequential Optimizing Investing Strategy with Neural Networks MATHEMATICAL ENGINEERING TECHNICAL REPORTS Sequental Optmzng Investng Strategy wth Neural Networks Ryo ADACHI and Akmch TAKEMURA METR 2010 03 February 2010 DEPARTMENT OF MATHEMATICAL INFORMATICS GRADUATE

More information

The Application of Fractional Brownian Motion in Option Pricing

The Application of Fractional Brownian Motion in Option Pricing Vol. 0, No. (05), pp. 73-8 http://dx.do.org/0.457/jmue.05.0..6 The Applcaton of Fractonal Brownan Moton n Opton Prcng Qng-xn Zhou School of Basc Scence,arbn Unversty of Commerce,arbn zhouqngxn98@6.com

More information

An Interest-Oriented Network Evolution Mechanism for Online Communities

An Interest-Oriented Network Evolution Mechanism for Online Communities An Interest-Orented Network Evoluton Mechansm for Onlne Communtes Cahong Sun and Xaopng Yang School of Informaton, Renmn Unversty of Chna, Bejng 100872, P.R. Chna {chsun,yang}@ruc.edu.cn Abstract. Onlne

More information

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12 14 The Ch-squared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed

More information

Research on Credit Risk Evaluation for Small and Medium-sized Enterprises in Supply Chain Based on BP Neural Network Xiaoping Zhang a, Chen Chen b

Research on Credit Risk Evaluation for Small and Medium-sized Enterprises in Supply Chain Based on BP Neural Network Xiaoping Zhang a, Chen Chen b Internatonal Conference on Computatonal Scence and Engneerng (ICCSE 2015) Research on Credt Rsk Evaluaton for Small and Medum-szed Enterprses n Supply Chan Based on BP Neural Network Xaopng Zhang a, Chen

More information

Invoicing and Financial Forecasting of Time and Amount of Corresponding Cash Inflow

Invoicing and Financial Forecasting of Time and Amount of Corresponding Cash Inflow Dragan Smć Svetlana Smć Vasa Svrčevć Invocng and Fnancal Forecastng of Tme and Amount of Correspondng Cash Inflow Artcle Info:, Vol. 6 (2011), No. 3, pp. 014-021 Receved 13 Janyary 2011 Accepted 20 Aprl

More information

Performance Management and Evaluation Research to University Students

Performance Management and Evaluation Research to University Students 631 A publcaton of CHEMICAL ENGINEERING TRANSACTIONS VOL. 46, 2015 Guest Edtors: Peyu Ren, Yancang L, Hupng Song Copyrght 2015, AIDIC Servz S.r.l., ISBN 978-88-95608-37-2; ISSN 2283-9216 The Italan Assocaton

More information

Identifying Workloads in Mixed Applications

Identifying Workloads in Mixed Applications , pp.395-400 http://dx.do.org/0.4257/astl.203.29.8 Identfyng Workloads n Mxed Applcatons Jeong Seok Oh, Hyo Jung Bang, Yong Do Cho, Insttute of Gas Safety R&D, Korea Gas Safety Corporaton, Shghung-Sh,

More information

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic Lagrange Multplers as Quanttatve Indcators n Economcs Ivan Mezník Insttute of Informatcs, Faculty of Busness and Management, Brno Unversty of TechnologCzech Republc Abstract The quanttatve role of Lagrange

More information

NEURO-FUZZY INFERENCE SYSTEM FOR E-COMMERCE WEBSITE EVALUATION

NEURO-FUZZY INFERENCE SYSTEM FOR E-COMMERCE WEBSITE EVALUATION NEURO-FUZZY INFERENE SYSTEM FOR E-OMMERE WEBSITE EVALUATION Huan Lu, School of Software, Harbn Unversty of Scence and Technology, Harbn, hna Faculty of Appled Mathematcs and omputer Scence, Belarusan State

More information

THE APPLICATION OF DATA MINING TECHNIQUES AND MULTIPLE CLASSIFIERS TO MARKETING DECISION

THE APPLICATION OF DATA MINING TECHNIQUES AND MULTIPLE CLASSIFIERS TO MARKETING DECISION Internatonal Journal of Electronc Busness Management, Vol. 3, No. 4, pp. 30-30 (2005) 30 THE APPLICATION OF DATA MINING TECHNIQUES AND MULTIPLE CLASSIFIERS TO MARKETING DECISION Yu-Mn Chang *, Yu-Cheh

More information

7.5. Present Value of an Annuity. Investigate

7.5. Present Value of an Annuity. Investigate 7.5 Present Value of an Annuty Owen and Anna are approachng retrement and are puttng ther fnances n order. They have worked hard and nvested ther earnngs so that they now have a large amount of money on

More information

Fault tolerance in cloud technologies presented as a service

Fault tolerance in cloud technologies presented as a service Internatonal Scentfc Conference Computer Scence 2015 Pavel Dzhunev, PhD student Fault tolerance n cloud technologes presented as a servce INTRODUCTION Improvements n technques for vrtualzaton and performance

More information

1. Introduction. Graham Kendall School of Computer Science and IT ASAP Research Group University of Nottingham Nottingham, NG8 1BB gxk@cs.nott.ac.

1. Introduction. Graham Kendall School of Computer Science and IT ASAP Research Group University of Nottingham Nottingham, NG8 1BB gxk@cs.nott.ac. The Co-evoluton of Tradng Strateges n A Mult-agent Based Smulated Stock Market Through the Integraton of Indvdual Learnng and Socal Learnng Graham Kendall School of Computer Scence and IT ASAP Research

More information

Modeling and Simulation of Multi-Agent System of China's Real Estate Market Based on Bayesian Network Decision-Making

Modeling and Simulation of Multi-Agent System of China's Real Estate Market Based on Bayesian Network Decision-Making Int. J. on Recent Trends n Engneerng and Technology, Vol. 11, No. 1, July 2014 Modelng and Smulaton of Mult-Agent System of Chna's Real Estate Market Based on Bayesan Network Decson-Makng Yang Shen, Shan

More information

Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008

Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008 Rsk-based Fatgue Estmate of Deep Water Rsers -- Course Project for EM388F: Fracture Mechancs, Sprng 2008 Chen Sh Department of Cvl, Archtectural, and Envronmental Engneerng The Unversty of Texas at Austn

More information

Face Verification Problem. Face Recognition Problem. Application: Access Control. Biometric Authentication. Face Verification (1:1 matching)

Face Verification Problem. Face Recognition Problem. Application: Access Control. Biometric Authentication. Face Verification (1:1 matching) Face Recognton Problem Face Verfcaton Problem Face Verfcaton (1:1 matchng) Querymage face query Face Recognton (1:N matchng) database Applcaton: Access Control www.vsage.com www.vsoncs.com Bometrc Authentcaton

More information

Lecture 2: Single Layer Perceptrons Kevin Swingler

Lecture 2: Single Layer Perceptrons Kevin Swingler Lecture 2: Sngle Layer Perceptrons Kevn Sngler kms@cs.str.ac.uk Recap: McCulloch-Ptts Neuron Ths vastly smplfed model of real neurons s also knon as a Threshold Logc Unt: W 2 A Y 3 n W n. A set of synapses

More information

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of

More information

Quality Adjustment of Second-hand Motor Vehicle Application of Hedonic Approach in Hong Kong s Consumer Price Index

Quality Adjustment of Second-hand Motor Vehicle Application of Hedonic Approach in Hong Kong s Consumer Price Index Qualty Adustment of Second-hand Motor Vehcle Applcaton of Hedonc Approach n Hong Kong s Consumer Prce Index Prepared for the 14 th Meetng of the Ottawa Group on Prce Indces 20 22 May 2015, Tokyo, Japan

More information

Research on Evaluation of Customer Experience of B2C Ecommerce Logistics Enterprises

Research on Evaluation of Customer Experience of B2C Ecommerce Logistics Enterprises 3rd Internatonal Conference on Educaton, Management, Arts, Economcs and Socal Scence (ICEMAESS 2015) Research on Evaluaton of Customer Experence of B2C Ecommerce Logstcs Enterprses Yle Pe1, a, Wanxn Xue1,

More information

Calculating the high frequency transmission line parameters of power cables

Calculating the high frequency transmission line parameters of power cables < ' Calculatng the hgh frequency transmsson lne parameters of power cables Authors: Dr. John Dcknson, Laboratory Servces Manager, N 0 RW E B Communcatons Mr. Peter J. Ncholson, Project Assgnment Manager,

More information

An artificial Neural Network approach to monitor and diagnose multi-attribute quality control processes. S. T. A. Niaki*

An artificial Neural Network approach to monitor and diagnose multi-attribute quality control processes. S. T. A. Niaki* Journal of Industral Engneerng Internatonal July 008, Vol. 4, No. 7, 04 Islamc Azad Unversty, South Tehran Branch An artfcal Neural Network approach to montor and dagnose multattrbute qualty control processes

More information

ORDER ALLOCATION FOR SERVICE SUPPLY CHAIN BASE ON THE CUSTOMER BEST DELIVERY TIME UNDER THE BACKGROUND OF BIG DATA

ORDER ALLOCATION FOR SERVICE SUPPLY CHAIN BASE ON THE CUSTOMER BEST DELIVERY TIME UNDER THE BACKGROUND OF BIG DATA Internatonal Journal of Computer Scence and Applcatons, Technomathematcs Research Foundaton Vol. 13, No. 1, pp. 84 92, 2016 ORDER ALLOCATION FOR SERVICE SUPPLY CHAIN BASE ON THE CUSTOMER BEST DELIVERY

More information

Australian Forex Market Analysis Using Connectionist Models

Australian Forex Market Analysis Using Connectionist Models Australan Forex Market Analyss Usng Connectonst Models A. Abraham, M. U. Chowdhury* and S. Petrovc-Lazarevc** School of Computng and Informaton Technology, Monash Unversty (Gppsland Campus), Churchll,

More information

HYPOTHESIS TESTING OF PARAMETERS FOR ORDINARY LINEAR CIRCULAR REGRESSION

HYPOTHESIS TESTING OF PARAMETERS FOR ORDINARY LINEAR CIRCULAR REGRESSION HYPOTHESIS TESTING OF PARAMETERS FOR ORDINARY LINEAR CIRCULAR REGRESSION Abdul Ghapor Hussn Centre for Foundaton Studes n Scence Unversty of Malaya 563 KUALA LUMPUR E-mal: ghapor@umedumy Abstract Ths paper

More information

Communication Networks II Contents

Communication Networks II Contents 8 / 1 -- Communcaton Networs II (Görg) -- www.comnets.un-bremen.de Communcaton Networs II Contents 1 Fundamentals of probablty theory 2 Traffc n communcaton networs 3 Stochastc & Marovan Processes (SP

More information

Application of an Improved BP Neural Network Model in Enterprise Network Security Forecasting

Application of an Improved BP Neural Network Model in Enterprise Network Security Forecasting 161 A publcaton of VOL. 46, 15 CHEMICAL ENGINEERING TRANSACTIONS Guest Edtors: Peyu Ren, Yancang L, Hupng Song Copyrght 15, AIDIC Servz S.r.l., ISBN 978-88-9568-37-; ISSN 83-916 The Italan Assocaton of

More information

The Analysis of Outliers in Statistical Data

The Analysis of Outliers in Statistical Data THALES Project No. xxxx The Analyss of Outlers n Statstcal Data Research Team Chrysses Caron, Assocate Professor (P.I.) Vaslk Karot, Doctoral canddate Polychrons Economou, Chrstna Perrakou, Postgraduate

More information

Genetic algorithm for searching for critical slip surface in gravity dams based on stress fields CHEN Jianyun 1, WANG Shu 2, XU Qiang 3, LI Jing 4

Genetic algorithm for searching for critical slip surface in gravity dams based on stress fields CHEN Jianyun 1, WANG Shu 2, XU Qiang 3, LI Jing 4 Advanced Materals Research Onlne: 203-09-04 ISSN: 662-8985, Vol. 790, pp 46-49 do:0.4028/www.scentfc.net/amr.790.46 203 Trans Tech Publcatons, Swtzerland Genetc algorthm for searchng for crtcal slp surface

More information

IDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS

IDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS IDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS Chrs Deeley* Last revsed: September 22, 200 * Chrs Deeley s a Senor Lecturer n the School of Accountng, Charles Sturt Unversty,

More information

Performance attribution for multi-layered investment decisions

Performance attribution for multi-layered investment decisions Performance attrbuton for mult-layered nvestment decsons 880 Thrd Avenue 7th Floor Ne Yor, NY 10022 212.866.9200 t 212.866.9201 f qsnvestors.com Inna Oounova Head of Strategc Asset Allocaton Portfolo Management

More information

8 Algorithm for Binary Searching in Trees

8 Algorithm for Binary Searching in Trees 8 Algorthm for Bnary Searchng n Trees In ths secton we present our algorthm for bnary searchng n trees. A crucal observaton employed by the algorthm s that ths problem can be effcently solved when the

More information

Analysis of Premium Liabilities for Australian Lines of Business

Analysis of Premium Liabilities for Australian Lines of Business Summary of Analyss of Premum Labltes for Australan Lnes of Busness Emly Tao Honours Research Paper, The Unversty of Melbourne Emly Tao Acknowledgements I am grateful to the Australan Prudental Regulaton

More information

Bayesian Network Based Causal Relationship Identification and Funding Success Prediction in P2P Lending

Bayesian Network Based Causal Relationship Identification and Funding Success Prediction in P2P Lending Proceedngs of 2012 4th Internatonal Conference on Machne Learnng and Computng IPCSIT vol. 25 (2012) (2012) IACSIT Press, Sngapore Bayesan Network Based Causal Relatonshp Identfcaton and Fundng Success

More information

"Research Note" APPLICATION OF CHARGE SIMULATION METHOD TO ELECTRIC FIELD CALCULATION IN THE POWER CABLES *

Research Note APPLICATION OF CHARGE SIMULATION METHOD TO ELECTRIC FIELD CALCULATION IN THE POWER CABLES * Iranan Journal of Scence & Technology, Transacton B, Engneerng, ol. 30, No. B6, 789-794 rnted n The Islamc Republc of Iran, 006 Shraz Unversty "Research Note" ALICATION OF CHARGE SIMULATION METHOD TO ELECTRIC

More information

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..

More information

A Hybrid Model for Forecasting Sales in Turkish Paint Industry

A Hybrid Model for Forecasting Sales in Turkish Paint Industry Internatonal Journal of Computatonal Intellgence Systems, Vol.2, No. 3 (October, 2009), 277-287 A Hybrd Model for Forecastng Sales n Turksh Pant Industry Alp Ustundag * Department of Industral Engneerng,

More information

SIX WAYS TO SOLVE A SIMPLE PROBLEM: FITTING A STRAIGHT LINE TO MEASUREMENT DATA

SIX WAYS TO SOLVE A SIMPLE PROBLEM: FITTING A STRAIGHT LINE TO MEASUREMENT DATA SIX WAYS TO SOLVE A SIMPLE PROBLEM: FITTING A STRAIGHT LINE TO MEASUREMENT DATA E. LAGENDIJK Department of Appled Physcs, Delft Unversty of Technology Lorentzweg 1, 68 CJ, The Netherlands E-mal: e.lagendjk@tnw.tudelft.nl

More information

A COLLABORATIVE TRADING MODEL BY SUPPORT VECTOR REGRESSION AND TS FUZZY RULE FOR DAILY STOCK TURNING POINTS DETECTION

A COLLABORATIVE TRADING MODEL BY SUPPORT VECTOR REGRESSION AND TS FUZZY RULE FOR DAILY STOCK TURNING POINTS DETECTION A COLLABORATIVE TRADING MODEL BY SUPPORT VECTOR REGRESSION AND TS FUZZY RULE FOR DAILY STOCK TURNING POINTS DETECTION JHENG-LONG WU, PEI-CHANN CHANG, KAI-TING CHANG Department of Informaton Management,

More information

FORECASTING TELECOMMUNICATION NEW SERVICE DEMAND BY ANALOGY METHOD AND COMBINED FORECAST

FORECASTING TELECOMMUNICATION NEW SERVICE DEMAND BY ANALOGY METHOD AND COMBINED FORECAST Yugoslav Journal of Operatons Research 5 (005), Number, 97-07 FORECAING ELECOMMUNICAION NEW ERVICE DEMAND BY ANALOGY MEHOD AND COMBINED FORECA Feng-Jenq LIN Department of Appled Economcs Natonal I-Lan

More information

1 Approximation Algorithms

1 Approximation Algorithms CME 305: Dscrete Mathematcs and Algorthms 1 Approxmaton Algorthms In lght of the apparent ntractablty of the problems we beleve not to le n P, t makes sense to pursue deas other than complete solutons

More information

Feature selection for intrusion detection. Slobodan Petrović NISlab, Gjøvik University College

Feature selection for intrusion detection. Slobodan Petrović NISlab, Gjøvik University College Feature selecton for ntruson detecton Slobodan Petrovć NISlab, Gjøvk Unversty College Contents The feature selecton problem Intruson detecton Traffc features relevant for IDS The CFS measure The mrmr measure

More information

L10: Linear discriminants analysis

L10: Linear discriminants analysis L0: Lnear dscrmnants analyss Lnear dscrmnant analyss, two classes Lnear dscrmnant analyss, C classes LDA vs. PCA Lmtatons of LDA Varants of LDA Other dmensonalty reducton methods CSCE 666 Pattern Analyss

More information

A Secure Password-Authenticated Key Agreement Using Smart Cards

A Secure Password-Authenticated Key Agreement Using Smart Cards A Secure Password-Authentcated Key Agreement Usng Smart Cards Ka Chan 1, Wen-Chung Kuo 2 and Jn-Chou Cheng 3 1 Department of Computer and Informaton Scence, R.O.C. Mltary Academy, Kaohsung 83059, Tawan,

More information

Online Learning from Experts: Minimax Regret

Online Learning from Experts: Minimax Regret E0 370 tatstcal Learnng Theory Lecture 2 Nov 24, 20) Onlne Learnng from Experts: Mn Regret Lecturer: hvan garwal crbe: Nkhl Vdhan Introducton In the last three lectures we have been dscussng the onlne

More information

A Load-Balancing Algorithm for Cluster-based Multi-core Web Servers

A Load-Balancing Algorithm for Cluster-based Multi-core Web Servers Journal of Computatonal Informaton Systems 7: 13 (2011) 4740-4747 Avalable at http://www.jofcs.com A Load-Balancng Algorthm for Cluster-based Mult-core Web Servers Guohua YOU, Yng ZHAO College of Informaton

More information

RESEARCH ON DUAL-SHAKER SINE VIBRATION CONTROL. Yaoqi FENG 1, Hanping QIU 1. China Academy of Space Technology (CAST) yaoqi.feng@yahoo.

RESEARCH ON DUAL-SHAKER SINE VIBRATION CONTROL. Yaoqi FENG 1, Hanping QIU 1. China Academy of Space Technology (CAST) yaoqi.feng@yahoo. ICSV4 Carns Australa 9- July, 007 RESEARCH ON DUAL-SHAKER SINE VIBRATION CONTROL Yaoq FENG, Hanpng QIU Dynamc Test Laboratory, BISEE Chna Academy of Space Technology (CAST) yaoq.feng@yahoo.com Abstract

More information

Plant Leaves Recognition and Classification Model Based on Image Features and Neural Network

Plant Leaves Recognition and Classification Model Based on Image Features and Neural Network IJCSI Internatonal Journal of Computer Scence Issues, Vol. 11, Issue, No 1, March 014 www.ijcsi.org 100 Plant Leaves Recognton and Classfcaton Model Based on Image Features and Neural Network Hong Fang

More information

On the Optimal Control of a Cascade of Hydro-Electric Power Stations

On the Optimal Control of a Cascade of Hydro-Electric Power Stations On the Optmal Control of a Cascade of Hydro-Electrc Power Statons M.C.M. Guedes a, A.F. Rbero a, G.V. Smrnov b and S. Vlela c a Department of Mathematcs, School of Scences, Unversty of Porto, Portugal;

More information

1 Example 1: Axis-aligned rectangles

1 Example 1: Axis-aligned rectangles COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture # 6 Scrbe: Aaron Schld February 21, 2013 Last class, we dscussed an analogue for Occam s Razor for nfnte hypothess spaces that, n conjuncton

More information

An Enhanced Super-Resolution System with Improved Image Registration, Automatic Image Selection, and Image Enhancement

An Enhanced Super-Resolution System with Improved Image Registration, Automatic Image Selection, and Image Enhancement An Enhanced Super-Resoluton System wth Improved Image Regstraton, Automatc Image Selecton, and Image Enhancement Yu-Chuan Kuo ( ), Chen-Yu Chen ( ), and Chou-Shann Fuh ( ) Department of Computer Scence

More information

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by 6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng

More information

Stochastic Protocol Modeling for Anomaly Based Network Intrusion Detection

Stochastic Protocol Modeling for Anomaly Based Network Intrusion Detection Stochastc Protocol Modelng for Anomaly Based Network Intruson Detecton Juan M. Estevez-Tapador, Pedro Garca-Teodoro, and Jesus E. Daz-Verdejo Department of Electroncs and Computer Technology Unversty of

More information

Descriptive Models. Cluster Analysis. Example. General Applications of Clustering. Examples of Clustering Applications

Descriptive Models. Cluster Analysis. Example. General Applications of Clustering. Examples of Clustering Applications CMSC828G Prncples of Data Mnng Lecture #9 Today s Readng: HMS, chapter 9 Today s Lecture: Descrptve Modelng Clusterng Algorthms Descrptve Models model presents the man features of the data, a global summary

More information

Comparison of support-vector machines and back propagation neural networks in forecasting the six major Asian stock markets

Comparison of support-vector machines and back propagation neural networks in forecasting the six major Asian stock markets Int. J. Electronc Fnance, Vol., No., 006 49 Comparson of support-vector machnes and back propagaton neural networks n forecastng the sx major Asan stock markets Wun-Hua Chen and Jen-Yng Shh Graduate Insttute

More information

Study on the Prediction of Real estate Price Index based on HHGA-RBF Neural Network Algorithm

Study on the Prediction of Real estate Price Index based on HHGA-RBF Neural Network Algorithm pp.109-118 http://dx.do.org/10.14257/unesst.2015.8.7.11 Study on the Predcton of Real estate Prce Index based on HHGA-RBF eural etor Algorthm Huan Ma 1 Mng Chen 1 and Jane Zhang 1 1 Softare Engneerng College

More information

Assessing Student Learning Through Keyword Density Analysis of Online Class Messages

Assessing Student Learning Through Keyword Density Analysis of Online Class Messages Assessng Student Learnng Through Keyword Densty Analyss of Onlne Class Messages Xn Chen New Jersey Insttute of Technology xc7@njt.edu Brook Wu New Jersey Insttute of Technology wu@njt.edu ABSTRACT Ths

More information

The Network flow Motoring System based on Particle Swarm Optimized

The Network flow Motoring System based on Particle Swarm Optimized The Network flow Motorng System based on Partcle Swarm Optmzed Neural Network Adult Educaton College, Hebe Unversty of Archtecture, Zhangjakou Hebe 075000, Chna Abstract The compatblty of the commercal

More information

Study on Model of Risks Assessment of Standard Operation in Rural Power Network

Study on Model of Risks Assessment of Standard Operation in Rural Power Network Study on Model of Rsks Assessment of Standard Operaton n Rural Power Network Qngj L 1, Tao Yang 2 1 Qngj L, College of Informaton and Electrcal Engneerng, Shenyang Agrculture Unversty, Shenyang 110866,

More information

INVESTIGATION OF VEHICULAR USERS FAIRNESS IN CDMA-HDR NETWORKS

INVESTIGATION OF VEHICULAR USERS FAIRNESS IN CDMA-HDR NETWORKS 21 22 September 2007, BULGARIA 119 Proceedngs of the Internatonal Conference on Informaton Technologes (InfoTech-2007) 21 st 22 nd September 2007, Bulgara vol. 2 INVESTIGATION OF VEHICULAR USERS FAIRNESS

More information

Modelling of Web Domain Visits by Radial Basis Function Neural Networks and Support Vector Machine Regression

Modelling of Web Domain Visits by Radial Basis Function Neural Networks and Support Vector Machine Regression Modellng of Web Doman Vsts by Radal Bass Functon Neural Networks and Support Vector Machne Regresson Vladmír Olej, Jana Flpová Insttute of System Engneerng and Informatcs Faculty of Economcs and Admnstraton,

More information

Can Auto Liability Insurance Purchases Signal Risk Attitude?

Can Auto Liability Insurance Purchases Signal Risk Attitude? Internatonal Journal of Busness and Economcs, 2011, Vol. 10, No. 2, 159-164 Can Auto Lablty Insurance Purchases Sgnal Rsk Atttude? Chu-Shu L Department of Internatonal Busness, Asa Unversty, Tawan Sheng-Chang

More information

Aryabhata s Root Extraction Methods. Abhishek Parakh Louisiana State University Aug 31 st 2006

Aryabhata s Root Extraction Methods. Abhishek Parakh Louisiana State University Aug 31 st 2006 Aryabhata s Root Extracton Methods Abhshek Parakh Lousana State Unversty Aug 1 st 1 Introducton Ths artcle presents an analyss of the root extracton algorthms of Aryabhata gven n hs book Āryabhatīya [1,

More information

PROCESS CHANGING MODEL of STRIP CONTINUOUS HEAT TREATMENT FURNACE and its APPLICATION

PROCESS CHANGING MODEL of STRIP CONTINUOUS HEAT TREATMENT FURNACE and its APPLICATION Proceedngs of the 1st Internatonal Conference on Computers & Industral Engneerng PROCE CHANGING MODEL of RIP CONINUOU HEA REAMEN FURNACE and ts APPLICAION Dou Rufeng, Wen Zh, Zhou Gang, Lu Xunlang, Lou

More information

) of the Cell class is created containing information about events associated with the cell. Events are added to the Cell instance

) of the Cell class is created containing information about events associated with the cell. Events are added to the Cell instance Calbraton Method Instances of the Cell class (one nstance for each FMS cell) contan ADC raw data and methods assocated wth each partcular FMS cell. The calbraton method ncludes event selecton (Class Cell

More information

The circuit shown on Figure 1 is called the common emitter amplifier circuit. The important subsystems of this circuit are:

The circuit shown on Figure 1 is called the common emitter amplifier circuit. The important subsystems of this circuit are: polar Juncton Transstor rcuts Voltage and Power Amplfer rcuts ommon mtter Amplfer The crcut shown on Fgure 1 s called the common emtter amplfer crcut. The mportant subsystems of ths crcut are: 1. The basng

More information

Graph Theory and Cayley s Formula

Graph Theory and Cayley s Formula Graph Theory and Cayley s Formula Chad Casarotto August 10, 2006 Contents 1 Introducton 1 2 Bascs and Defntons 1 Cayley s Formula 4 4 Prüfer Encodng A Forest of Trees 7 1 Introducton In ths paper, I wll

More information

A Genetic Programming Based Stock Price Predictor together with Mean-Variance Based Sell/Buy Actions

A Genetic Programming Based Stock Price Predictor together with Mean-Variance Based Sell/Buy Actions Proceedngs of the World Congress on Engneerng 28 Vol II WCE 28, July 2-4, 28, London, U.K. A Genetc Programmng Based Stock Prce Predctor together wth Mean-Varance Based Sell/Buy Actons Ramn Rajaboun and

More information

Sciences Shenyang, Shenyang, China.

Sciences Shenyang, Shenyang, China. Advanced Materals Research Vols. 314-316 (2011) pp 1315-1320 (2011) Trans Tech Publcatons, Swtzerland do:10.4028/www.scentfc.net/amr.314-316.1315 Solvng the Two-Obectve Shop Schedulng Problem n MTO Manufacturng

More information

Heuristic Static Load-Balancing Algorithm Applied to CESM

Heuristic Static Load-Balancing Algorithm Applied to CESM Heurstc Statc Load-Balancng Algorthm Appled to CESM 1 Yur Alexeev, 1 Sher Mckelson, 1 Sven Leyffer, 1 Robert Jacob, 2 Anthony Crag 1 Argonne Natonal Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439,

More information

A heuristic task deployment approach for load balancing

A heuristic task deployment approach for load balancing Xu Gaochao, Dong Yunmeng, Fu Xaodog, Dng Yan, Lu Peng, Zhao Ja Abstract A heurstc task deployment approach for load balancng Gaochao Xu, Yunmeng Dong, Xaodong Fu, Yan Dng, Peng Lu, Ja Zhao * College of

More information

IMPACT ANALYSIS OF A CELLULAR PHONE

IMPACT ANALYSIS OF A CELLULAR PHONE 4 th ASA & μeta Internatonal Conference IMPACT AALYSIS OF A CELLULAR PHOE We Lu, 2 Hongy L Bejng FEAonlne Engneerng Co.,Ltd. Bejng, Chna ABSTRACT Drop test smulaton plays an mportant role n nvestgatng

More information

A Computer Technique for Solving LP Problems with Bounded Variables

A Computer Technique for Solving LP Problems with Bounded Variables Dhaka Unv. J. Sc. 60(2): 163-168, 2012 (July) A Computer Technque for Solvng LP Problems wth Bounded Varables S. M. Atqur Rahman Chowdhury * and Sanwar Uddn Ahmad Department of Mathematcs; Unversty of

More information

Characterization of Assembly. Variation Analysis Methods. A Thesis. Presented to the. Department of Mechanical Engineering. Brigham Young University

Characterization of Assembly. Variation Analysis Methods. A Thesis. Presented to the. Department of Mechanical Engineering. Brigham Young University Characterzaton of Assembly Varaton Analyss Methods A Thess Presented to the Department of Mechancal Engneerng Brgham Young Unversty In Partal Fulfllment of the Requrements for the Degree Master of Scence

More information

PAS: A Packet Accounting System to Limit the Effects of DoS & DDoS. Debish Fesehaye & Klara Naherstedt University of Illinois-Urbana Champaign

PAS: A Packet Accounting System to Limit the Effects of DoS & DDoS. Debish Fesehaye & Klara Naherstedt University of Illinois-Urbana Champaign PAS: A Packet Accountng System to Lmt the Effects of DoS & DDoS Debsh Fesehaye & Klara Naherstedt Unversty of Illnos-Urbana Champagn DoS and DDoS DDoS attacks are ncreasng threats to our dgtal world. Exstng

More information

Searching for Interacting Features for Spam Filtering

Searching for Interacting Features for Spam Filtering Searchng for Interactng Features for Spam Flterng Chuanlang Chen 1, Yun-Chao Gong 2, Rongfang Be 1,, and X. Z. Gao 3 1 Department of Computer Scence, Bejng Normal Unversty, Bejng 100875, Chna 2 Software

More information

Planning for Marketing Campaigns

Planning for Marketing Campaigns Plannng for Marketng Campagns Qang Yang and Hong Cheng Department of Computer Scence Hong Kong Unversty of Scence and Technology Clearwater Bay, Kowloon, Hong Kong, Chna (qyang, csch)@cs.ust.hk Abstract

More information

Gold Price Prediction Method Based on Improved PSO-BP

Gold Price Prediction Method Based on Improved PSO-BP , pp.253-260 http://d.do.org/10.14257/unesst.2015.8.11.25 Gold Prce Predcton Method Based on Improved PSO-BP Yan Wang 1,a,*, Lguo Zhang 2, Yongfu Lu 2 and Jun Guo 1 1 Dept. of computer, North Chna Electrc

More information

Fragility Based Rehabilitation Decision Analysis

Fragility Based Rehabilitation Decision Analysis .171. Fraglty Based Rehabltaton Decson Analyss Cagdas Kafal Graduate Student, School of Cvl and Envronmental Engneerng, Cornell Unversty Research Supervsor: rcea Grgoru, Professor Summary A method s presented

More information

Financial market forecasting using a two-step kernel learning method for the support vector regression

Financial market forecasting using a two-step kernel learning method for the support vector regression Ann Oper Res (2010) 174: 103 120 DOI 10.1007/s10479-008-0357-7 Fnancal market forecastng usng a two-step kernel learnng method for the support vector regresson L Wang J Zhu Publshed onlne: 28 May 2008

More information

Lesson 2 Chapter Two Three Phase Uncontrolled Rectifier

Lesson 2 Chapter Two Three Phase Uncontrolled Rectifier Lesson 2 Chapter Two Three Phase Uncontrolled Rectfer. Operatng prncple of three phase half wave uncontrolled rectfer The half wave uncontrolled converter s the smplest of all three phase rectfer topologes.

More information

Different Methods of Long-Term Electric Load Demand Forecasting; A Comprehensive Review

Different Methods of Long-Term Electric Load Demand Forecasting; A Comprehensive Review Dfferent Methods of Long-Term Electrc Load Demand Forecastng; A Comprehensve Revew L. Ghods* and M. Kalantar* Abstract: Long-term demand forecastng presents the frst step n plannng and developng future

More information

Network Security Situation Evaluation Method for Distributed Denial of Service

Network Security Situation Evaluation Method for Distributed Denial of Service Network Securty Stuaton Evaluaton Method for Dstrbuted Denal of Servce Jn Q,2, Cu YMn,2, Huang MnHuan,2, Kuang XaoHu,2, TangHong,2 ) Scence and Technology on Informaton System Securty Laboratory, Bejng,

More information

A Hierarchical Anomaly Network Intrusion Detection System using Neural Network Classification

A Hierarchical Anomaly Network Intrusion Detection System using Neural Network Classification IDC IDC A Herarchcal Anomaly Network Intruson Detecton System usng Neural Network Classfcaton ZHENG ZHANG, JUN LI, C. N. MANIKOPOULOS, JAY JORGENSON and JOSE UCLES ECE Department, New Jersey Inst. of Tech.,

More information

Statistical Methods to Develop Rating Models

Statistical Methods to Develop Rating Models Statstcal Methods to Develop Ratng Models [Evelyn Hayden and Danel Porath, Österrechsche Natonalbank and Unversty of Appled Scences at Manz] Source: The Basel II Rsk Parameters Estmaton, Valdaton, and

More information

Time Series Analysis in Studies of AGN Variability. Bradley M. Peterson The Ohio State University

Time Series Analysis in Studies of AGN Variability. Bradley M. Peterson The Ohio State University Tme Seres Analyss n Studes of AGN Varablty Bradley M. Peterson The Oho State Unversty 1 Lnear Correlaton Degree to whch two parameters are lnearly correlated can be expressed n terms of the lnear correlaton

More information

Auto Regressive Tree Modeling for Parametric Optimization in Fuzzy Logic Control System

Auto Regressive Tree Modeling for Parametric Optimization in Fuzzy Logic Control System World Academy of Scence, Engneerng and Technology Internatonal Journal of Computer, Electrcal, Automaton, Control and Informaton Engneerng Vol:3, o:, 2009 Auto Regressve Tree Modelng for Parametrc Optmzaton

More information

An empirical study for credit card approvals in the Greek banking sector

An empirical study for credit card approvals in the Greek banking sector An emprcal study for credt card approvals n the Greek bankng sector Mara Mavr George Ioannou Bergamo, Italy 17-21 May 2004 Management Scences Laboratory Department of Management Scence & Technology Athens

More information