Stefan Kirstein, a) Michael Mertesdorf, and Monika Schönhoff b) Max-Planck-Institut für Kolloid und Grenzflächenforschung, Berlin, Germany

Size: px
Start display at page:

Download "Stefan Kirstein, a) Michael Mertesdorf, and Monika Schönhoff b) Max-Planck-Institut für Kolloid und Grenzflächenforschung, Berlin, Germany"

Transcription

1 JOURNAL OF APPLIED PHYSICS VOLUME 84, NUMBER 4 15 AUGUST 1998 The influence of a viscous fluid on the vibration dynamics of scanning near-field optical microscopy fiber probes and atomic force microscopy cantilevers Stefan Kirstein, a) Michael Mertesdorf, and Monika Schönhoff b) Max-Planck-Institut für Kolloid und Grenzflächenforschung, Berlin, Germany Received 15 December 1997; accepted for publication 18 May 1998 The influence of a viscous fluid on the dynamic behavior of a vibrating scanning near-field optical microscopy fiber tip is investigated both theoretically and experimentally. A continuum mechanical description of a cylindric cantilever is used to calculate the resonance frequencies and the widths of the resonance bands. The linearized Naviers Stokes equations are analytically solved and describe the interaction of the beam with the viscous fluid. The contribution of the liquid to the shift and the broadening of the resonance lines is summarized by two constants that can be derived from a master function and the kinetic Reynolds number. The theoretical values are compared with experimental data collected from an optical fiber which is used as a probe in a scanning near-field microscope. Agreement, with a relative error of less than 1%, is achieved. The theory is further developed for the application to atomic force microscopy cantilevers with a rectangular cross section. Experimental data taken from literature are in good agreement with the theory American Institute of Physics. S X I. INTRODUCTION Scanning probe techniques such as scanning near-field optical microscopy SNOM and atomic force microscopy AFM have attracted increasing interest for the investigation of biological systems since images can be taken from soft materials. This is well established for AFM using the socalled tapping mode. 1,2 In this method, the tip sample distance is recorded dynamically: the cantilever is excited to oscillate in one of its eigenmodes and the tip amplitude provides a feedback signal. The oscillation prevents the tip from sticking at the sample surface by the short contact time and the back-driving force of the cantilever due to the bending. The situation is very similar in the case of a SNOM setup consisting of a tapered optical fiber where the so-called shear-force detection scheme is used for distance control. 3,4 The fiber oscillates at its resonance frequency and the amplitude is damped when the tip approaches the surface. The only difference between this mode and the tapping mode is the geometrical arrangement: the AFM cantilever vibrates in a direction normal to the surface, whereas the SNOM fiber oscillates parallel to the scanning plane. The true damping mechanism is less clear in the latter case. 5,6 It is known, that the damping forces experienced by the tip are small enough not to damage the surface of soft materials. For example, near-field optical microscopy has been used to image polymer/dye complexes, 7 J aggregates in monomolecular Langmuir Blodgett films, 8 and to localize dye labeled antibodies bound to fragments of cell membranes. 9 Most biological systems however must be investigated within their native liquid environment. Both methods, the a Author to whom correspondence should be addressed; electronic mail: kirstein@mpikg.fta-berlin.de b Current address: Physical Chemistry 1, University of Lund, Sweden. tapping mode and the shear force detection, have already been successfully applied to take images of soft samples under water. 2,10,11 However, the success of these methods is based on the increased sensitivity of the tip sample distance control due to the resonance enhancement of the tip vibration, which is characterized by the quality factor of the cantilever. This value is substantially reduced by the viscosity of the liquid environment and accompanied by a large shift of the resonance frequency. Various theoretical descriptions of the dynamic behavior of AFM cantilever and optical fiber probes are given in the literature. However, most of them are not very accurate, since they either neglect the viscous damping due to a liquid medium, 12,13 use numerical analysis, 14 or estimate the effect analogous to a moving sphere All these theories need further parameters like an effective radius of a sphere or a geometrical factor which have to be extracted from experimental resonance curves measured in a liquid environment. The aim of this work is to give an illustrative, but also exact, description of both the frequency shift and the broadening of the resonance band of a scanning probe due to the presence of a viscous fluid. It will be demonstrated that both values can be calculated a priori from the knowledge of the resonance curve measured in air, the viscosity and density of the liquid, and the diameter and mass density of the fiber. First, we present a full analytical solution of the hydrodynamic problem of a vibrating cantilever with cylindric cross section as is the case for a SNOM fiber. Second, a simple approach towards an extension of this theory to describe the dynamic behavior of AFM cantilevers is presented. Third, we compare experimental resonance curves of an optical fiber measured in air and in distilled water to the theoretically derived data and we discuss the behavior of AFM cantilevers /98/84(4)/1782/9/$ American Institute of Physics

2 J. Appl. Phys., Vol. 84, No. 4, 15 August 1998 Kirstein, Mertesdorf, and Schönhoff 1783 operated in tapping mode with the help of literature data taken from Refs. 13 and 14. II. THEORETICAL DESCRIPTION A. Hydrodynamic problem for cylindric cross sections For a better understanding of the formulas used in Sec. IV we present a brief outline of the full hydrodynamic description of an infinite cylinder vibrating in a viscous fluid. This is a typical engineering problem and the detailed solution together with many applications is presented in Refs. 17 and 18. It is well known that a rigid body experiences resistance when it is moving in an ideal, incompressible fluid at variable velocity u/ t, even under the condition of potential flow. In this case, not only the body itself has to be accelerated but also a specific amount of the fluid which is sticking to the surface of the body and is moving with the same velocity. Hence, the structure component behaves as though an added mass oluid was attached to it. This results in an additional inertial force 2 u g i m a t 2, 1 where m a is referred to as the added mass. This force is in phase with the acceleration of the body, because every fluid element, even if it is far away from the surface, is accelerated instantaneously with the body. The added mass is proportional to the displaced mass of the fluid, m d, which is given by the volume of the body, V, and the density of the fluid, f : m a C m m d C m V, 2 where C m is the added mass coefficient. It can be shown, that for an ideal fluid, C m In a viscous fluid, the response of all the fluid elements is not necessarily instantaneous. Instead, a phase shift between the structure and the fluid motion has to be taken into account. This results in a second force, the fluid damping force, which is expressed by u g V C V t, 3 where C V is the fluid damping coefficient. The equation of motion of an arbitrarily shaped body moving in a quiescent viscous fluid is then obtained by adding the force g g i g V to the equation of motion of the body in vacuum. The problem can be completely solved if the two constants C m and C V are known. In the following we will restrict ourselves to the problem of a freely vibrating cylindrical cantilever. We first calculate the constants C m and C V for an infinite cylinder with a mass per unit length m oscillating with a small amplitude u u 0 exp(i t), and surrounded by an incompressible viscous fluid of density f, and viscosity. To simplify the boundary conditions we assume that the cantilever with diameter D is concentrically surrounded by a cylindrical vessel of diameter D 0 which is filled by the fluid, as outlined in Fig. 1. FIG. 1. A cylindrical cantilever vibrating in a viscous fluid that is enclosed by a cylindrical tube. Later we will consider the limit D 0 to obtain the solutions for large liquid cells. With these assumptions, the problem can be treated as two dimensional where the fluid is described by a scalar velocity potential (r, ) in cylindrical coordinates r and. The time dependent spatial distribution of the velocity potential is then described by the linearized Navier Stokes equation 17, t 2 0, 4 where is the kinematic viscosity of the fluid. The components of the velocity field in cylindric coordinates are derived from : u r 1 r, u r. If the inner cylinder is oscillating with constant frequency and amplitudes u then the fluid on the surface of the cylinder must exactly follow this movement. Therefore, at r D/2 the boundary conditions are u r u 0 cos exp i t u u 0 sin exp i t. 6 At r R D 0 /2 all velocity components have to vanish: u r 0, u 0. 7 Equations 4 7 are the complete mathematical description of the reaction of the fluid to the oscillation of the rigid rod. The solution of Eq. 4 is a complex expression of Bessel functions. It is listed for completeness in Appendix A. In principle, the solution only depends on the diameter ratio D/D 0 and a dimensionless parameter, the kinetic Reynolds number, defined as D 2 R k 4. 8 The total force g per unit length that acts on the cylinder is calculated from the pressure p on the cylinder surface, i.e., at R D/2: R, p R, f. 9 t All components along the whole surface are summed to obtain the resulting force: 2 g t p R, R cos d

3 1784 J. Appl. Phys., Vol. 84, No. 4, 15 August 1998 Kirstein, Mertesdorf, and Schönhoff For steady-state oscillations the calculation yields a remarkably simple result: d 2 u du g C m m d dt 2 C V dt M d a Re H sin t Im H cos t, 11 which allows to extract the expressions for C m and C V from the real and imaginary part of a complex master function H: C m Re H, 12 C V m d Im H, 13 m d f R The function H is a complicated rational function of Bessel functions and is given in the Appendix. It does not depend on time but on the diameter ratio D/D 0 and the kinetic Reynolds number R k. For many geometrical arrangements which are of practical relevance, more simple expressions for H can be derived: 1 For an ideal fluid, 0, and hence H D 0 2 D 2 D 2 0 D If the ideal fluid is infinitely extended 0 and D 0, H 1 and therefore C m 1 and C V 0. In this case the added mass equals the displaced mass m a m d R 2. 3 In an infinite viscous fluid v 0 and D 0, the function H can be approximated as H 1 4K 1 K 0, 16 where K 0 and K 1 are the modified Bessel functions of the zeroth, first order, and second kind, respectively. 4 For large kinetic Reynolds numbers (R k D 2 /4 1) and an infinite viscous fluid, H can be further simplified to H i. 17 2R k 2R k For most practical applications, Eqs. 16 and 17 provide results of satisfying accuracy. The real and imaginary part of H is plotted in Fig. 2 versus R k using the formula 16. The approximate expressions 17 are also shown for large values of R k. We want to emphasize here, that this theory is only valid for amplitudes of oscillations that are small compared to typical dimensions of the problem, such as the diameter of the rod or the distance between the surface of the rod and the limit of the surrounding liquid. B. Vibration dynamics of a cantilever If the coefficients C m and C V for the added mass and the viscous damping are known, the problem of a vibrating cantilever totally immersed into a viscous fluid is easily solved. In this case the equation of motion is given by EI 4 u z 4 C S C V u t m m a 2 u t 2 0, 18 FIG. 2. Real and imaginary part of the complex function H 16 vs kinetic Reynolds number R k D 2 /4 for a cylindrical body vibrating in an infinitely extended viscous fluid. where E is Young s modulus, I is the moment of area (I D 4 /64), C S is a structural damping coefficient which describes internal losses, and m is the mass per unit length. The z coordinate is along the main axis of the cantilever. The internal losses are due to dissipation of energy by the bending of the cantilever and are responsible for the damping in vacuum. In a more accurate description they have to be considered proportional to ( 4 u/ z 4 t) in Eq. 18. However, it is shown in the Appendix that this description is identical to ours for the case of small internal losses. The motion of the beam in vacuum is described by setting C V m a 0. The resonance frequencies of the damped cantilever are the complex solutions of Eq. 18 using u(t) u 0 exp(i t) and result in n f 4 n 2 f 0 2 i, 19 where 2 f 0 EI m m a L 4, 20 f C V C S 2 m m a, 21 and L is the total length of the cantilever. The coefficients n 2 are fixed by the boundary conditions as n 3.52, 22.4, 61.7,..., for n 1,2,3,..., respectively. Note, that besides the factor 4 n, Eq. 19 is identical to the wellknown result of a damped harmonic oscillator with EI/L 4 acting as the force constant. In any scanning probe application the cantilever is driven by an external force with variable frequency. Analogous to the case of a harmonic oscillator the frequency dependence of the amplitude u( ) of the cantilever is described by u 0 u 2 f The width of the resonance band is characterized by the quality factor Q, defined as

4 J. Appl. Phys., Vol. 84, No. 4, 15 August 1998 Kirstein, Mertesdorf, and Schönhoff 1785 Q f m m a C S C V 0, 23 where is the full width of the line taken at 1/& of the maximum value. For small the frequency shift due to this damping factor can be neglected. This is justified even for very low quality factors of less then The ratio of the resonance frequencies of the cantilever immersed into the fluid f /2 compared to the frequencies measured in vacuum or air, f v, can now easily be deduced from Eq. 19 as f v m m m a 1 1 C m f b, 24 where b is the mass density per unit length of the cantilever. Here we neglect the damping term. Similarly, the ratio of the quality factors is obtained from Eq. 23 as Q f C S f v 1 Q v C S C V 1 C V C S f v, 25 and C V Im H f Q C S b f v. 26 v It is important to note that the key number for the calculation of the resonance frequency and the quality factor of the oscillation in a viscous fluid is the kinetic Reynolds number R k. The latter depends on the vibration frequency 2 f, which should be identical to the unknown frequency. Therefore, a self-consistent calculation procedure must be performed: The resonance frequency measured in air f v is used as a first approach to calculate R k and the constant C m to obtain. This is used again for the evaluation of R k, etc. until self-consistency is approached. Two cycles give satisfying results for most cases. C. Cantilever with rectangular cross section FIG. 3. Principal sketch of a rectangular a and a V-shaped b AFM cantilever. The simple expressions 11 and 17 were explicitly derived for the cylindric cross section of the cantilever. It is obvious however that similar solutions can be derived for cantilevers with elliptical cross sections when elliptical coordinates are used. These solutions are then applicable to rectangular shapes, at least if they are very flat. Since it is beyond the scope of this paper to solve the Navier Stokes Eq. 4 in elliptical coordinates, we present the following approach. The solutions of the cylindric problem are used, but we modify the kinetic Reynolds number R k and the factors C m and C V to take into account the new geometry. Usually the AFM cantilever is oscillating in a direction perpendicular to the width W as indicated in Fig. 3. Both hydrodynamic forces, the inertial term g i, and the damping term g V, are related to the volume oluid that is moving together with the solid structure. It is obvious that this mass is increasing with the width of the cantilever. Therefore we assume that the forces are proportional to W. On the other hand, the solutions should be identical to the case of a cylinder if W T. Both conditions are fulfilled if the constants C m and C V are multiplied by the dimensionless parameter W/T leading to the following transformation: C m W T C m, C V W T C V. 27 The kinetic Reynolds number depends on the square of a typical size of the moving body. For the case of a cylinder this is the radius R D/2. In the case of an ellipsoid or a rectangle, this should be the dimension perpendicular to the direction of movement, which again is the width W. Therefore, we define the Reynolds number as R k W2. 28 We would like to note that expressions 27 and 28 are not necessarily exact but only based on reasonable assumptions. However, as we will show later, they lead to remarkably good results. III. EXPERIMENTAL SETUP The experiments are performed using a home-built SNOM setup as outlined schematically in Fig. 4. A tapered optical quartz fiber is fixed in a piezotube such that the tip protrudes 0.5 cm towards the sample. A sinusoidal voltage is applied to the piezo from the oscillator of a lock-in amplifier EG&G, For detection of the movement, the beam of a laser diode Schäfter and Kirchhoff, 670 nm emission is FIG. 4. Schematical drawing of the SNOM setup. Only the optical fiber, the dither piezo, the liquid cell, and the light path of the optical amplitude detection system are sketched.

5 1786 J. Appl. Phys., Vol. 84, No. 4, 15 August 1998 Kirstein, Mertesdorf, and Schönhoff FIG. 5. Dither amplitude of a SNOM fiber tip probe measured in air with a low excitation amplitude a and in air and in water with high excitation amplitude b. The most intensive resonance lines are clipped by the sensitivity range of the lock-in amplifier. focused on the tip of the fiber and the shadow of the beam is detected by a two-segmented photodiode LASER Components via the lock-in amplifier. Amplitudes below 1 nm can be detected by this method. A rectangular glass cavity is mounted on top of a glass substrate to form a cell for investigations within a liquid environment. The walls of the cell are precisely parallel to each other and do not essentially disturb the optical light path of the laser diode. To avoid any complications from varying liquid levels during the measurements the cell is filled until the tip is totally immersed into the liquid. A more detailed description of the whole instrument is given in Ref. 11. IV. RESULTS AND DISCUSSION A. Vibration spectra of an optical fiber in water In Fig. 5 a the tip vibration amplitude versus excitation frequency is shown for a typical tip. For the case of ambient air, three very sharp and distinct resonance peaks are visible together with a broad background signal which emerges above 250 khz. The resonance frequencies are located at 15.4, 91.5, and khz. These can be well described by the eigenmodes of a cylindric cantilever fixed at one end and freely vibrating at the other with Eq. 20 and the parameters E N/m, I 4 r 1 4 where r m half the diameter of the fiber, and m B r 2, where B 2.2 g/cm 3 is the mass density of quartz glass. Since the length of the tip is known only with an accuracy of 0.2 mm, we use it as an adjustable parameter. With a value of L 2.5 mm the first mode is calculated correctly, while the second and third amount to 96.6 and 271 khz, respectively. The discrepancies in the data are explained by the arbitrariness of the value chosen for the length L and neglecting the tapered region of the tip. In Ref. 12 it was shown that the tip shape has a significant influence on the resonance frequencies. Nevertheless, the spectrum of Fig. 5 a is a clear indication that the fiber is vibrating in its eigenmodes. When the tip is immersed into water the frequency spectrum usually is superimposed by other resonances as is shown in Fig. 5 b. Due to the damping of the fiber oscillation caused by the viscosity the dither amplitude of the piezotube has to be increased significantly in order to obtain the same tip amplitude. In our case, the drive voltage applied to the piezoelectrodes was increased by a factor of more than 5. Under these conditions, many well-pronounced resonance features appear and it is not at all obvious which of them belong to the resonant vibration modes of the fiber. This holds especially for the high frequency range above 200 khz. The situation can be clarified if the tip amplitude is recorded in air, also with high piezodrive voltage. The resulting spectrum is shown in Fig. 5 b by the dotted curve. From comparison of this curve with that one taken in water in the frequency range below 200 khz, one can see that some lines are not affected by the fluid. In contrast, the fiber modes in water are shifted towards significantly lower frequencies than those in air. The shift, as well as the broadening of the lines, must be due to the liquid environment of the tip. The lines which do not shift in frequency are due to resonances of either the piezotube or the instrumental setup. They strongly depend on the actual construction of the instrument. Above 250 khz many resonance lines appear in water that are not present in air, even at high piezodrive voltage. These resonances lead to very high amplitudes, which are clipped by the lock-in amplifier. Since in this frequency range the wavelength of sound is of the order of the size of our liquid cell, standing acoustic waves can be excited within the fluid. This subject will not be discussed here. For the following, we will concentrate on the first two eigenmodes of the fiber. B. Resonance line analysis of optical fiber In Figs. 6 and 7 the first and second resonance lines of the SNOM fiber tip are shown in a magnified view. In both cases, Eq. 22 has been used to fit the data measured in air. The resonance frequency f v, the quality factor Q v, the maximum amplitude a( n ), and an additional offset a 0 are used as free fitting parameters. The best fit is indicated in Figs. 6 and 7 by the straight line. From the Q value we deduce the internal or structural damping factor C S from the relation C S 2 f vm. 29 Q v The values are listed in Table I together with data obtained from the third eigenmode. The internal or structural damping coefficient C S shows frequency dependency. This is unexpected for modal damping 20 and may be caused by the approximation that the internal damping is proportional to the velocity, as is explained in the Appendix.

6 J. Appl. Phys., Vol. 84, No. 4, 15 August 1998 Kirstein, Mertesdorf, and Schönhoff 1787 FIG. 6. First resonance maximum f 1 of dither amplitude of the fiber tip. Top: data measured in air together with a best fit according to the amplitude function 22 straight line ; bottom: data measured with fiber immersed into distilled water together with calculated amplitude function. Only the maximum of the curve and an additional offset were adjusted to the experimental data in order to correct instrumental influences. FIG. 7. Second resonance maximum f 2 of the fiber tip. As in Fig. 5 the top curves show experimental data taken in air together with a best fit, the bottom curve shows the data measured in distilled water together with the calculated resonance line. We use values for f v and C S to calculate the resonance lines in water. Since the dimensions of the liquid cell are large compared to the diameter of the tip, we can apply the approximation of an infinite viscous fluid to our problem. The viscosity of water at 20 C is Pa s; as a result, the kinetic Reynolds number R k is above 300 for the lowest eigenfrequency and increases for the higher modes see Table I. This allows us to use Eq. 17 to calculate the added mass coefficient C m and the viscous damping coefficient C V for each eigenmode. From these factors we deduce the new frequencies and factors Q f in the fluid using Eqs. 24 and 25 as listed in Table I. Again we have calculated the frequency dependence of the tip amplitude in water using Eq. 22. The result is shown together with the experimental data in Figs. 6 and 7. Only the offset and the amplitude were adjusted to the experimental data. In principal, the amplitude should also be exactly given by the theory. However, the experimental conditions are different when measuring through the liquid cell. Additionally, a best fit of Eq. 22 to the experimental curves was made. The results are listed in brackets in Table I. As can be seen from the graphs and the data, the frequency shift, as well as the damping and hence the broadening of the resonance lines, are described to an accuracy of 1%. C. AFM cantilever The extension of our theory to cantilevers with rectangular cross section was tested with data from the literature. We refer to the measured values of the frequency shift presented by Elmer and Dreier 13 for rectangular AFM cantilevers and the data presented by Chen et al. 14 for V-shaped cantilevers. Unfortunately, no data were presented for the Q values of the cantilevers since they only derived theories for the resonance frequency. The first group has been using four different silicon cantilevers operating in air, water, and bromoform. The experimental data together with values calculated with their theory and our approach are listed in Table II. In their paper they have derived a theory for thin cantilevers, which holds for T W. Additionally, they assumed an infinitely extended beam with periodic boundary conditions and they have neglected the viscosity of the medium. TABLE I. Data of the first three eigenmodes of a SNOM fiber tip operated in air and in distilled water. The Q values and resonance frequencies noted in brackets are obtained from fits. The Q values of the second and third mode could not be measured unambiguously due to the background signal. n f v Q v R k C S C m C V Q f

7 1788 J. Appl. Phys., Vol. 84, No. 4, 15 August 1998 Kirstein, Mertesdorf, and Schönhoff TABLE II. Data of rectangular AFM cantilever operated in air, water ( f 1 g/cm 3 ), and bromoform ( f 2.82 g/cm 3 ). The frequencies are given in khz, the density of the silicon cantilevers is b 2.33 g/cm 3. The experimental data and the calculated values of the third column are taken from Elmer and Dreier Ref. 13 the frequencies are obtained from our theory. The data of the cantilever are: a W 44 m, T 2.18 m; b W 37 m, T 6 m; c W 37 m, T 5.75 m; d W 29 m, T 3 m. n Air f v exp exp Fluid Elmer a water ] ] ] ] ] b c bromoform d As a consequence of the periodic boundary conditions their theory provides only good values for large mode numbers n. For decreasing n the resonance frequencies are systematically overestimated with an increasing error up to 30% for n 1. The opposite behavior occurs with our theory. It provides excellent results for very low n but the relative error increases systematically with increasing n, e.g., for sample a in Table II, the error ranges from less than 1% for n 1 to more than 20% for n 7. This deviation of the calculated values from experimental data is not observed for the cylindrical cantilever. Much larger deviations can be seen for samples d and c which were operated in bromoform, but at least for sample d we believe that this is partially caused by the inaccuracy in the values of W and T. Otherwise it would be difficult to explain why the frequency is overestimated in sample c and underestimated in sample d although the ratio W/T is not much different. The same tendency is observed for the values given by Elmer. It is interesting to note that the theory of Elmer and Dreier gives an expression for the frequency ratio which is identical to Eq. 24, if the modified values of Eqs. 27 and 28 are used and C m is replaced by the factor 4 f ( n W/L) where L is the length of the cantilever. In their paper the mode number n was named n. There, the function f was calculated numerically and has the asymptotic behavior f (x) 1/2x for x and f (x) 0.2 for x 0. In our approach the factor C m also depends on frequency and hence, on the length and the mode number of the beam. The explicit expression of C m is TABLE III. Summary of experimental data and calculated values of the resonance frequency of V-shaped AFM cantilevers operated in media with different kinematic viscosity. The data of columns 1 3 are taken from Chen et al. Ref. 14. We have calculated with the following data: b 4.22 g/cm 3 weighted average of gold and Si 3 Ni 4, W 80.4 m, T 0.58 m. C m 1 4 2R k 1 f exp f Chen Air Hexane Water Ethanol Hexadecane n W 2 0 L. 30 It is clear that C m 1 for all values of R k and C m 1 for high values of R k and thus for large x. This difference in the asymptotic behavior explains the increasing discrepancy of the results with increasing mode number n. At low mode numbers our expression obviously gives a more realistic description. It is always above the maximum value of 0.8 given by Elmer and therefore leads to smaller values of the frequency. The width of the resonance line in water was estimated for the first sample a in Table II. Assuming Q v 500 for the vibration in air, we obtain Q f 5.9 in water which corresponds to a width of f 700 Hz, which is a reasonable value. The most crude approximation made here was the treatment of the kinetic Reynolds number in Eq. 28. In order to examine this assumption we tried to reproduce the data of Chen et al. obtained for V-shaped cantilevers operated in media with different viscosities. The data and the calculated values are listed in Table III. The frequency shift was calculated by Chen using the model of a moving sphere. The radius and an additional geometrical factor were adjusted to the observed effect in water. In the case of V-shaped cantilevers the deviations from the cylinder geometry are even stronger than in the case of the rectangular cantilevers. We have approximated the cross section of the cantilever by a single rectangle of size 2W T, where W is the width of one side of the triangle see Fig. 3. Obviously, the calculated resonance frequencies for the different liquids show large deviations from the experimental data. The differences increase for increasing kinematic viscosities. However, this could also be caused by the wrong approximation of the geometry of the cantilever. We would like to emphasize, that our data are obtained from the geometry of the cantilever and the known properties of the fluids without any further adjustment of additional parameters. With respect to that, the deviations are in an acceptable range. Therefore, even for V-shaped cantilevers the theory outlined here can be used to calculate an approximate value of the resonance frequency and the resonance broadening when it is operated in an viscous fluid.

8 J. Appl. Phys., Vol. 84, No. 4, 15 August 1998 Kirstein, Mertesdorf, and Schönhoff 1789 V. CONCLUSION The eigenfrequencies of a cylindrical fiber probe of a SNOM or an AFM cantilever are significantly lowered in a viscous medium compared to ambient air. Furthermore, the viscosity leads to broadening of the resonance peak in the frequency spectrum and hence to lowering of the Q value. Here we present a full analytical description for the behavior of cylindrical cantilevers, as was found in Ref. 17. All interactions of the cantilever with the liquid are summarized by two constants: the added mass coefficient C m, which accounts for the frequency shift, and the viscous damping coefficient C V, which explains the broadening of the resonance line in the presence of a viscous medium. These constants can be easily evaluated with the complex function H Fig. 2 from the kinetic Reynolds number R k which depends only on the diameter of the rod, the kinematic viscosity of the fluid, and the vibration frequency. Since the resonance frequency in water must be used for the evaluation of R k, a selfconsistent solution must be found. As was shown by comparison with experimental data this provides a simple method to determine quantitatively the fundamental parameters of the resonance behavior of SNOM fiber tips in liquids. The shift as well as the broadening was obtained to within a relative error of less than 1%. The theory can also be applied to rectangular and V- shaped AFM cantilevers, but with reasonable accuracy only for low eigenmodes. This was demonstrated by comparison with experimental data taken from the work of Elmer 13 and Chen. 14 The agreement was again with an error of less than 1% for rectangular cantilevers operated in water. Larger deviations were observed for bromoform and other liquids. However, even for the V-shaped cantilevers the description provides reasonable values for the frequency shifts which are nearly in the range of one order of magnitude. ACKNOWLEDGMENTS The idea to use the SNOM technique for imaging under water was mainly initiated by Hubert Motschmann within the framework of a joined project with Hüls AG, which we gratefully acknowledge. We thank Professor Möhwald and the Max-Planck-Gesellschaft for supporting this work. APPENDIX A: COMPLETE SOLUTION OF EQ. 4 The complete analytical solution of the Navier Stokes Eq. 4 reads as r, u 0 A 1 D 2 r A 2r A 3 DI 1 r A 4 DK 1 r sin exp i t, A1 where I 1 and K 1 are the modified Bessel functions of the first order and first and second kind, respectively. We introduce the abbreviations and i A2 D 2, D 0 2, D 0 D, A3 to write the constants A 1 A 4 which are determined by the boundary conditions 6 and 7 : A 1 2 I 0 K 0 I 0 K 0 and 2 I 1 K 0 I 0 K 1 2 I 0 K 1 I 1 K 0 4 I 1 K 1 I 1 K 1 /, A 2 2 I 1 K 0 I 0 K I 0 K 0 I 0 K I 1 K 0 I 0 K 1 /, A 3 2 K 0 4 K K 0 4K 1 /, A 4 2 I 0 4 I I 0 4I 1 /, I 0 K 0 I 0 K 0 2 I 0 K 1 I 1 K 0 I 1 K 0 A4 A5 A6 A7 I 0 K I 0 K 1 I 0 K 1 I 1 K 0 I 1 K 0. A8 Here again, I and K are the modified Bessel functions of the second kind. From this the explicit form of the master function H(,, ) is derived as H 2 2 I 0 K 0 I 0 K 0 4 I 1 K 0 I 0 K 1 4 I 0 K 1 I 1 K 0 8 I 1 K 1 I 1 K 1 / I 0 K 0 I 0 K 0 2 I 0 K 1 I 1 K 0 I 1 K 0 I 0 K I 0 K 1 I 0 K 1 I 1 K 0 I 1 K 0 1. A9

9 1790 J. Appl. Phys., Vol. 84, No. 4, 15 August 1998 Kirstein, Mertesdorf, and Schönhoff APPENDIX B: INTERNAL LOSSES The intrinsic loss of a vibrating beam is usually referred to as internal friction or imperfect elasticity. 12,21 It is taken into account by a velocity dependent part in the stress strain relation Eu du dt E u du B1 dt, where is the stress, is the internal frictional coefficient, and is the intrinsic loss factor. Therefore, the equation of motion of the cantilever Eq. 18 is modified to EI 4 z 4 u t m 2 u t 2 0, B2 and the solutions are found from the dispersion relation m 2 k 4 EI 1 i m EI 2 i 3, B3 where k 4 n 4 /L 4 for the case of one end fixed and the other end freely vibrating and the approximation holds for very small. In real systems 1 and therefore the approximate solution on the very right-hand side is applicable. The latter relation must be compared to the dispersion relation obtained from Eq. 18 which reads as k 4 m EI 2 i2. B4 This expression is identical to Eq. B3 if 2 / 2. Since we are only interested in the frequency dependence in the vicinity of the eigenmodes, it is reasonable to approximate 3 by 3 n 2. Under these circumstances, the solutions B3 and B4 of Eqs. 18 and B2 are identical. 1 M. Radmacher, R. Tillmann, M. Fritz, and H. Gaub, Science 257, P. Hansma et al., Appl. Phys. Lett. 64, R. Toledo-Crow, P. Yang, Y. Chen, and M. Vaez-Iravani, Appl. Phys. Lett. 60, E. Betzig, P. Finn, and J. Weiner, Appl. Phys. Lett. 60, M. Gregor, P. Blome, J. Schöfer, and R. Ulbrich, Appl. Phys. Lett. 68, F. Froelich and T. Milster, Appl. Phys. Lett. 70, P. J. Reid, D. A. Higgins, and P. F. Barbara, J. Phys. Chem. 100, K. Kajikawa, H. Hara, H. Sasabe, and W. Knoll, Colloids Surf., A 126, R. Dunn, G. Mets, L. Holtom, and X. Xie, J. Phys. Chem. 98, P. Moyer and S. Krämer, Appl. Phys. Lett. 68, M. Mertesdorf, M. S. Schönhoff, F. Lohr, and S. Kirstein, Surf. Interface Anal. 25, Y. Yang, D. Hehe, P. K. Wei, W. S. Famm, H. H. Gray, and J. W. P. Hsu, J. Appl. Phys. 81, F.-J. Elmer and M. Dreier, J. Appl. Phys. 81, G. Chen, R. Warmack, T. Thundat, and D. Allison, Rev. Sci. Instrum. 65, G. Chen, R. Warmack, A. Huang, and T. Thundat, J. Appl. Phys. 78, S. Inaba, K. Akaishi, T. Mori, and K. Hane, J. Appl. Phys. 73, S.-S. Chen, Flow-Induced Vibration of Circular Cylindrical Structures Hemisphere, Washington, New York, London, S. Chen, M. Wambsganss, and J. Jendrzejczyk, Trans. ASME, J. Appl. Mech. 43, L. Landau and E. Lifshitz, Lehrbuch der Theoretischen Physik, Band VI, Hydrodynamik Akademie, Berlin, L. Landau and E. Lifshitz, Lehrbuch der Theoretischen Physik, Band I, Klassische Mechanik Akademie, Berlin, L. Landau and E. Lifshitz, Lehrbuch der Theoretischen Physik, Band VII, Elstizitätstheorie Akademie, Berlin, 1991.

Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment

Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment Fluid Structure Interaction VI 3 Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment J. Hengstler & J. Dual Department of Mechanical and Process

More information

A. Ricci, E. Giuri. Materials and Microsystems Laboratory

A. Ricci, E. Giuri. Materials and Microsystems Laboratory Presented at the COMSOL Conference 2009 Milan FSI Analysis of Microcantilevers Vibrating in Fluid Environment Materials and Microsystems Laboratory Politecnico di Torino Outline Brief Presentation of Materials

More information

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

Transmission Line and Back Loaded Horn Physics

Transmission Line and Back Loaded Horn Physics Introduction By Martin J. King, 3/29/3 Copyright 23 by Martin J. King. All Rights Reserved. In order to differentiate between a transmission line and a back loaded horn, it is really important to understand

More information

Unsteady Pressure Measurements

Unsteady Pressure Measurements Quite often the measurements of pressures has to be conducted in unsteady conditions. Typical cases are those of -the measurement of time-varying pressure (with periodic oscillations or step changes) -the

More information

Reflection and Refraction

Reflection and Refraction Equipment Reflection and Refraction Acrylic block set, plane-concave-convex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,

More information

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Prelab Exercises: Hooke's Law and the Behavior of Springs

Prelab Exercises: Hooke's Law and the Behavior of Springs 59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically

More information

Rock Bolt Condition Monitoring Using Ultrasonic Guided Waves

Rock Bolt Condition Monitoring Using Ultrasonic Guided Waves Rock Bolt Condition Monitoring Using Ultrasonic Guided Waves Bennie Buys Department of Mechanical and Aeronautical Engineering University of Pretoria Introduction Rock Bolts and their associated problems

More information

Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications

Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications Saulius Marcinkevičius Optics, ICT, KTH 1 Outline Optical near field. Principle of scanning near field optical microscope

More information

Experimental results for the focal waveform and beam width in the focusing lens with a 100 ps filter

Experimental results for the focal waveform and beam width in the focusing lens with a 100 ps filter EM Implosion Memos Memo 51 July, 2010 Experimental results for the focal waveform and beam width in the focusing lens with a 100 ps filter Prashanth Kumar, Carl E. Baum, Serhat Altunc, Christos G. Christodoulou

More information

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22 BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =

More information

Viscous flow through pipes of various cross-sections

Viscous flow through pipes of various cross-sections IOP PUBLISHING Eur. J. Phys. 28 (2007 521 527 EUROPEAN JOURNAL OF PHYSICS doi:10.1088/0143-0807/28/3/014 Viscous flow through pipes of various cross-sections John Lekner School of Chemical and Physical

More information

Ferromagnetic resonance imaging of Co films using magnetic resonance force microscopy

Ferromagnetic resonance imaging of Co films using magnetic resonance force microscopy Ferromagnetic resonance imaging of Co films using magnetic resonance force microscopy B. J. Suh, P. C. Hammel, a) and Z. Zhang Condensed Matter and Thermal Physics, Los Alamos National Laboratory, Los

More information

AIR RESONANCE IN A PLASTIC BOTTLE Darrell Megli, Emeritus Professor of Physics, University of Evansville, Evansville, IN dm37@evansville.

AIR RESONANCE IN A PLASTIC BOTTLE Darrell Megli, Emeritus Professor of Physics, University of Evansville, Evansville, IN dm37@evansville. AIR RESONANCE IN A PLASTIC BOTTLE Darrell Megli, Emeritus Professor of Physics, University of Evansville, Evansville, IN dm37@evansville.edu It is well known that if one blows across the neck of an empty

More information

Near-field scanning optical microscopy (SNOM)

Near-field scanning optical microscopy (SNOM) Adviser: dr. Maja Remškar Institut Jožef Stefan January 2010 1 2 3 4 5 6 Fluorescence Raman and surface enhanced Raman 7 Conventional optical microscopy-limited resolution Two broad classes of techniques

More information

Lecture 4 Scanning Probe Microscopy (SPM)

Lecture 4 Scanning Probe Microscopy (SPM) Lecture 4 Scanning Probe Microscopy (SPM) General components of SPM; Tip --- the probe; Cantilever --- the indicator of the tip; Tip-sample interaction --- the feedback system; Scanner --- piezoelectric

More information

Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

More information

Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Static s Kinematics Dynamics Fluid Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

More information

MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA. Define and calculate 1st. moments of areas. Define and calculate 2nd moments of areas.

MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA. Define and calculate 1st. moments of areas. Define and calculate 2nd moments of areas. MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA The concepts of first and second moments of area fundamental to several areas of engineering including solid mechanics and fluid mechanics. Students who are

More information

CFD SUPPORTED EXAMINATION OF BUOY DESIGN FOR WAVE ENERGY CONVERSION

CFD SUPPORTED EXAMINATION OF BUOY DESIGN FOR WAVE ENERGY CONVERSION CFD SUPPORTED EXAMINATION OF BUOY DESIGN FOR WAVE ENERGY CONVERSION Nadir Yilmaz, Geoffrey E. Trapp, Scott M. Gagan, Timothy R. Emmerich Department of Mechanical Engineering, New Mexico Institute of Mining

More information

INVESTIGATION OF FALLING BALL VISCOMETRY AND ITS ACCURACY GROUP R1 Evelyn Chou, Julia Glaser, Bella Goyal, Sherri Wykosky

INVESTIGATION OF FALLING BALL VISCOMETRY AND ITS ACCURACY GROUP R1 Evelyn Chou, Julia Glaser, Bella Goyal, Sherri Wykosky INVESTIGATION OF FALLING BALL VISCOMETRY AND ITS ACCURACY GROUP R1 Evelyn Chou, Julia Glaser, Bella Goyal, Sherri Wykosky ABSTRACT: A falling ball viscometer and its associated equations were studied in

More information

Using light scattering method to find The surface tension of water

Using light scattering method to find The surface tension of water Experiment (8) Using light scattering method to find The surface tension of water The aim of work: The goals of this experiment are to confirm the relationship between angular frequency and wave vector

More information

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

More information

Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell

Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell B.K. Jung ; J. Ryue ; C.S. Hong 3 ; W.B. Jeong ; K.K. Shin

More information

NEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY WITH STM AND AFM PROBES

NEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY WITH STM AND AFM PROBES Vol. 93 (1997) A CTA PHYSICA POLONICA A No. 2 Proceedings of the 1st International Symposium on Scanning Probe Spectroscopy and Related Methods, Poznań 1997 NEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY

More information

ANALYTICAL METHODS FOR ENGINEERS

ANALYTICAL METHODS FOR ENGINEERS UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations

More information

Section 5.0 : Horn Physics. By Martin J. King, 6/29/08 Copyright 2008 by Martin J. King. All Rights Reserved.

Section 5.0 : Horn Physics. By Martin J. King, 6/29/08 Copyright 2008 by Martin J. King. All Rights Reserved. Section 5. : Horn Physics Section 5. : Horn Physics By Martin J. King, 6/29/8 Copyright 28 by Martin J. King. All Rights Reserved. Before discussing the design of a horn loaded loudspeaker system, it is

More information

8.2 Elastic Strain Energy

8.2 Elastic Strain Energy Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for

More information

Sound absorption and acoustic surface impedance

Sound absorption and acoustic surface impedance Sound absorption and acoustic surface impedance CHRISTER HEED SD2165 Stockholm October 2008 Marcus Wallenberg Laboratoriet för Ljud- och Vibrationsforskning Sound absorption and acoustic surface impedance

More information

RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA

RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA ABSTRACT Random vibration is becoming increasingly recognized as the most realistic method of simulating the dynamic environment of military

More information

Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena.

Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena. Dimensional Analysis and Similarity Dimensional analysis is very useful for planning, presentation, and interpretation of experimental data. As discussed previously, most practical fluid mechanics problems

More information

Fast-scanning near-field scanning optical microscopy. using a high-frequency dithering probe

Fast-scanning near-field scanning optical microscopy. using a high-frequency dithering probe Fast-scanning near-field scanning optical microscopy using a high-frequency dithering probe Yongho Seo and Wonho Jhe * Center for Near-field Atom-photon Technology and School of Physics, Seoul National

More information

AP PHYSICS C Mechanics - SUMMER ASSIGNMENT FOR 2016-2017

AP PHYSICS C Mechanics - SUMMER ASSIGNMENT FOR 2016-2017 AP PHYSICS C Mechanics - SUMMER ASSIGNMENT FOR 2016-2017 Dear Student: The AP physics course you have signed up for is designed to prepare you for a superior performance on the AP test. To complete material

More information

Apertureless Near-Field Optical Microscopy

Apertureless Near-Field Optical Microscopy VI Apertureless Near-Field Optical Microscopy In recent years, several types of apertureless near-field optical microscopes have been developed 1,2,3,4,5,6,7. In such instruments, light scattered from

More information

arxiv:astro-ph/0509450 v1 15 Sep 2005

arxiv:astro-ph/0509450 v1 15 Sep 2005 arxiv:astro-ph/0509450 v1 15 Sep 2005 TESTING THERMO-ACOUSTIC SOUND GENERATION IN WATER WITH PROTON AND LASER BEAMS K. GRAF, G. ANTON, J. HÖSSL, A. KAPPES, T. KARG, U. KATZ, R. LAHMANN, C. NAUMANN, K.

More information

Solved with COMSOL Multiphysics 4.3

Solved with COMSOL Multiphysics 4.3 Vibrating String Introduction In the following example you compute the natural frequencies of a pre-tensioned string using the 2D Truss interface. This is an example of stress stiffening ; in fact the

More information

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials. Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity

More information

Sound Power Measurement

Sound Power Measurement Sound Power Measurement A sound source will radiate different sound powers in different environments, especially at low frequencies when the wavelength is comparable to the size of the room 1. Fortunately

More information

SIZE OF A MOLECULE FROM A VISCOSITY MEASUREMENT

SIZE OF A MOLECULE FROM A VISCOSITY MEASUREMENT Experiment 8, page 1 Version of April 25, 216 Experiment 446.8 SIZE OF A MOLECULE FROM A VISCOSITY MEASUREMENT Theory Viscous Flow. Fluids attempt to minimize flow gradients by exerting a frictional force,

More information

Vibrations of a Free-Free Beam

Vibrations of a Free-Free Beam Vibrations of a Free-Free Beam he bending vibrations of a beam are described by the following equation: y EI x y t 4 2 + ρ A 4 2 (1) y x L E, I, ρ, A are respectively the Young Modulus, second moment of

More information

Chapter 28 Fluid Dynamics

Chapter 28 Fluid Dynamics Chapter 28 Fluid Dynamics 28.1 Ideal Fluids... 1 28.2 Velocity Vector Field... 1 28.3 Mass Continuity Equation... 3 28.4 Bernoulli s Principle... 4 28.5 Worked Examples: Bernoulli s Equation... 7 Example

More information

The Basics of FEA Procedure

The Basics of FEA Procedure CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

More information

Axial Sensitivity Of A Cracked Probe Of A Scanning Near- Field Optical Microscope

Axial Sensitivity Of A Cracked Probe Of A Scanning Near- Field Optical Microscope Proceedings of the World Congress on New Technologies (NewTech 05) Barcelona, Spain July 5-7, 05 Paper No. 38 Axial Sensitivity Of A Cracked Probe Of A Scanning Near- Field Optical Microscope Yu-Ching

More information

PHYSICAL QUANTITIES AND UNITS

PHYSICAL QUANTITIES AND UNITS 1 PHYSICAL QUANTITIES AND UNITS Introduction Physics is the study of matter, its motion and the interaction between matter. Physics involves analysis of physical quantities, the interaction between them

More information

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

More information

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier Tunnel Effect: - particle with kinetic energy E strikes a barrier with height U 0 > E and width L - classically the particle cannot overcome the barrier - quantum mechanically the particle can penetrated

More information

Contents. Microfluidics - Jens Ducrée Physics: Fluid Dynamics 1

Contents. Microfluidics - Jens Ducrée Physics: Fluid Dynamics 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

DYNAMIC ANALYSIS ON STEEL FIBRE

DYNAMIC ANALYSIS ON STEEL FIBRE International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 179 184, Article ID: IJCIET_07_02_015 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

1 Introduction. 1.1 Historical Perspective

1 Introduction. 1.1 Historical Perspective j1 1 Introduction 1.1 Historical Perspective The invention of scanning probe microscopy is considered one of the major advances in materials science since 1950 [1, 2]. Scanning probe microscopy includes

More information

Experiment 3 Pipe Friction

Experiment 3 Pipe Friction EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional

More information

XI / PHYSICS FLUIDS IN MOTION 11/PA

XI / PHYSICS FLUIDS IN MOTION 11/PA Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

More information

It has long been a goal to achieve higher spatial resolution in optical imaging and

It has long been a goal to achieve higher spatial resolution in optical imaging and Nano-optical Imaging using Scattering Scanning Near-field Optical Microscopy Fehmi Yasin, Advisor: Dr. Markus Raschke, Post-doc: Dr. Gregory Andreev, Graduate Student: Benjamin Pollard Department of Physics,

More information

Determination of source parameters from seismic spectra

Determination of source parameters from seismic spectra Topic Determination of source parameters from seismic spectra Authors Michael Baumbach, and Peter Bormann (formerly GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany); E-mail: pb65@gmx.net

More information

The Viscosity of Fluids

The Viscosity of Fluids Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

More information

Abaqus/CFD Sample Problems. Abaqus 6.10

Abaqus/CFD Sample Problems. Abaqus 6.10 Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel

More information

A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW. 1998 ASME Fluids Engineering Division Summer Meeting

A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW. 1998 ASME Fluids Engineering Division Summer Meeting TELEDYNE HASTINGS TECHNICAL PAPERS INSTRUMENTS A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW Proceedings of FEDSM 98: June -5, 998, Washington, DC FEDSM98 49 ABSTRACT The pressure

More information

Geometric Optics Converging Lenses and Mirrors Physics Lab IV

Geometric Optics Converging Lenses and Mirrors Physics Lab IV Objective Geometric Optics Converging Lenses and Mirrors Physics Lab IV In this set of lab exercises, the basic properties geometric optics concerning converging lenses and mirrors will be explored. The

More information

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007 PUMPED Nd:YAG LASER Last Revision: August 21, 2007 QUESTION TO BE INVESTIGATED: How can an efficient atomic transition laser be constructed and characterized? INTRODUCTION: This lab exercise will allow

More information

Section 2.0 : Construction and Measurement of a Simple Test Transmission Line

Section 2.0 : Construction and Measurement of a Simple Test Transmission Line Section 2.0 : Construction and Measurement of a Simple Test Transmission Line After deciding to use a Focal 8V 4412 mid-bass driver for my first transmission line design, I started looking for a simple

More information

Section 16: Neutral Axis and Parallel Axis Theorem 16-1

Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Geometry of deformation We will consider the deformation of an ideal, isotropic prismatic beam the cross section is symmetric about y-axis All parts

More information

INTERFERENCE OF SOUND WAVES

INTERFERENCE OF SOUND WAVES 1/2016 Sound 1/8 INTERFERENCE OF SOUND WAVES PURPOSE: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves and to observe interference phenomena with ultrasonic sound waves.

More information

Looking for the Origin of Power Laws in Electric Field Assisted Tunneling

Looking for the Origin of Power Laws in Electric Field Assisted Tunneling Looking for the Origin of Power Laws in Electric Field Assisted Tunneling H. Cabrera, D.A. Zanin, L.G. De Pietro, A. Vindigni, U. Ramsperger and D. Pescia Laboratory for Solid State Physics, ETH Zurich

More information

Acousto-optic modulator

Acousto-optic modulator 1 of 3 Acousto-optic modulator F An acousto-optic modulator (AOM), also called a Bragg cell, uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency).

More information

AS COMPETITION PAPER 2008

AS COMPETITION PAPER 2008 AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question

More information

Collision of a small bubble with a large falling particle

Collision of a small bubble with a large falling particle EPJ Web of Conferences 67, 212 (214) DOI: 1.11/ epjconf/ 21467212 C Owned by the authors, published by EDP Sciences, 214 Collision of a small bubble with a large falling particle Jiri Vejrazka 1,a, Martin

More information

AP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity.

AP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity. 1. A fire truck is moving at a fairly high speed, with its siren emitting sound at a specific pitch. As the fire truck recedes from you which of the following characteristics of the sound wave from the

More information

A METHOD OF PRECISE CALIBRATION FOR PIEZOELECTRICAL ACTUATORS

A METHOD OF PRECISE CALIBRATION FOR PIEZOELECTRICAL ACTUATORS Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Cilt 9, Sayı, 24 A METHOD OF PRECISE CALIBRATION FOR PIEZOELECTRICAL ACTUATORS Timur CANEL * Yüksel BEKTÖRE ** Abstract: Piezoelectrical actuators

More information

Aim : To study how the time period of a simple pendulum changes when its amplitude is changed.

Aim : To study how the time period of a simple pendulum changes when its amplitude is changed. Aim : To study how the time period of a simple pendulum changes when its amplitude is changed. Teacher s Signature Name: Suvrat Raju Class: XIID Board Roll No.: Table of Contents Aim..................................................1

More information

Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

More information

CREOL, College of Optics & Photonics, University of Central Florida

CREOL, College of Optics & Photonics, University of Central Florida OSE6650 - Optical Properties of Nanostructured Materials Optical Properties of Nanostructured Materials Fall 2013 Class 3 slide 1 Challenge: excite and detect the near field Thus far: Nanostructured materials

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *0123456789* PHYSICS 9702/02 Paper 2 AS Level Structured Questions For Examination from 2016 SPECIMEN

More information

Contents. Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 1

Contents. Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

Basic Principles in Microfluidics

Basic Principles in Microfluidics Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces

More information

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Jon H. Hardesty, PhD and Bassam Attili, PhD Collin College Department of Chemistry Introduction: In the last lab

More information

CHAPTER 3 MODAL ANALYSIS OF A PRINTED CIRCUIT BOARD

CHAPTER 3 MODAL ANALYSIS OF A PRINTED CIRCUIT BOARD 45 CHAPTER 3 MODAL ANALYSIS OF A PRINTED CIRCUIT BOARD 3.1 INTRODUCTION This chapter describes the methodology for performing the modal analysis of a printed circuit board used in a hand held electronic

More information

4 SENSORS. Example. A force of 1 N is exerted on a PZT5A disc of diameter 10 mm and thickness 1 mm. The resulting mechanical stress is:

4 SENSORS. Example. A force of 1 N is exerted on a PZT5A disc of diameter 10 mm and thickness 1 mm. The resulting mechanical stress is: 4 SENSORS The modern technical world demands the availability of sensors to measure and convert a variety of physical quantities into electrical signals. These signals can then be fed into data processing

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids 1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

More information

5. Measurement of a magnetic field

5. Measurement of a magnetic field H 5. Measurement of a magnetic field 5.1 Introduction Magnetic fields play an important role in physics and engineering. In this experiment, three different methods are examined for the measurement of

More information

Determination of g using a spring

Determination of g using a spring INTRODUCTION UNIVERSITY OF SURREY DEPARTMENT OF PHYSICS Level 1 Laboratory: Introduction Experiment Determination of g using a spring This experiment is designed to get you confident in using the quantitative

More information

Introduction to COMSOL. The Navier-Stokes Equations

Introduction to COMSOL. The Navier-Stokes Equations Flow Between Parallel Plates Modified from the COMSOL ChE Library module rev 10/13/08 Modified by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 2008 Introduction to COMSOL The following

More information

Universitätsstrasse 1, D-40225 Düsseldorf, Germany 3 Current address: Institut für Festkörperforschung,

Universitätsstrasse 1, D-40225 Düsseldorf, Germany 3 Current address: Institut für Festkörperforschung, Lane formation in oppositely charged colloidal mixtures - supplementary information Teun Vissers 1, Adam Wysocki 2,3, Martin Rex 2, Hartmut Löwen 2, C. Patrick Royall 1,4, Arnout Imhof 1, and Alfons van

More information

Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations

Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.

More information

Fraunhofer Diffraction

Fraunhofer Diffraction Physics 334 Spring 1 Purpose Fraunhofer Diffraction The experiment will test the theory of Fraunhofer diffraction at a single slit by comparing a careful measurement of the angular dependence of intensity

More information

Structural Axial, Shear and Bending Moments

Structural Axial, Shear and Bending Moments Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants

More information

Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm

Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm Progress In Electromagnetics Research Symposium Proceedings, Taipei, March 5 8, 3 359 Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm Yoshito Sonoda, Takashi Samatsu, and

More information

Laser-induced surface phonons and their excitation of nanostructures

Laser-induced surface phonons and their excitation of nanostructures CHINESE JOURNAL OF PHYSICS VOL. 49, NO. 1 FEBRUARY 2011 Laser-induced surface phonons and their excitation of nanostructures Markus Schmotz, 1, Dominik Gollmer, 1 Florian Habel, 1 Stephen Riedel, 1 and

More information

E/M Experiment: Electrons in a Magnetic Field.

E/M Experiment: Electrons in a Magnetic Field. E/M Experiment: Electrons in a Magnetic Field. PRE-LAB You will be doing this experiment before we cover the relevant material in class. But there are only two fundamental concepts that you need to understand.

More information

Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale

Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale Outline Background Research Design Detection of Near-Field Signal Submonolayer Chemical Sensitivity Conclusions

More information

Plate waves in phononic crystals slabs

Plate waves in phononic crystals slabs Acoustics 8 Paris Plate waves in phononic crystals slabs J.-J. Chen and B. Bonello CNRS and Paris VI University, INSP - 14 rue de Lourmel, 7515 Paris, France chen99nju@gmail.com 41 Acoustics 8 Paris We

More information

GRID AND PRISM SPECTROMETERS

GRID AND PRISM SPECTROMETERS FYSA230/2 GRID AND PRISM SPECTROMETERS 1. Introduction Electromagnetic radiation (e.g. visible light) experiences reflection, refraction, interference and diffraction phenomena when entering and passing

More information

SIESMIC SLOSHING IN CYLINDRICAL TANKS WITH FLEXIBLE BAFFLES

SIESMIC SLOSHING IN CYLINDRICAL TANKS WITH FLEXIBLE BAFFLES SIESMIC SLOSHING IN CYLINDRICAL TANKS WITH FLEXIBLE BAFFLES Kayahan AKGUL 1, Yasin M. FAHJAN 2, Zuhal OZDEMIR 3 and Mhamed SOULI 4 ABSTRACT Sloshing has been one of the major concerns for engineers in

More information

Atomic Force Microscopy Observation and Characterization of a CD Stamper, Lycopodium Spores, and Step-Height Standard Diffraction Grating

Atomic Force Microscopy Observation and Characterization of a CD Stamper, Lycopodium Spores, and Step-Height Standard Diffraction Grating Atomic Force Microscopy Observation and Characterization of a CD Stamper, Lycopodium Spores, and Step-Height Standard Diffraction Grating Michael McMearty and Frit Miot Special Thanks to Brendan Cross

More information

Experiment 5. Lasers and laser mode structure

Experiment 5. Lasers and laser mode structure Northeastern University, PHYS5318 Spring 2014, 1 1. Introduction Experiment 5. Lasers and laser mode structure The laser is a very important optical tool that has found widespread use in science and industry,

More information

Keysight Technologies How to Choose your MAC Lever. Technical Overview

Keysight Technologies How to Choose your MAC Lever. Technical Overview Keysight Technologies How to Choose your MAC Lever Technical Overview Introduction Atomic force microscopy (AFM) is a sub-nanometer scale imaging and measurement tool that can be used to determine a sample

More information

Copyright 2011 Casa Software Ltd. www.casaxps.com

Copyright 2011 Casa Software Ltd. www.casaxps.com Table of Contents Variable Forces and Differential Equations... 2 Differential Equations... 3 Second Order Linear Differential Equations with Constant Coefficients... 6 Reduction of Differential Equations

More information

Journal bearings/sliding bearings

Journal bearings/sliding bearings Journal bearings/sliding bearings Operating conditions: Advantages: - Vibration damping, impact damping, noise damping - not sensitive for vibrations, low operating noise level - dust tight (if lubricated

More information

ELECTRON SPIN RESONANCE Last Revised: July 2007

ELECTRON SPIN RESONANCE Last Revised: July 2007 QUESTION TO BE INVESTIGATED ELECTRON SPIN RESONANCE Last Revised: July 2007 How can we measure the Landé g factor for the free electron in DPPH as predicted by quantum mechanics? INTRODUCTION Electron

More information