# Solved with COMSOL Multiphysics 4.3

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Vibrating String Introduction In the following example you compute the natural frequencies of a pre-tensioned string using the 2D Truss interface. This is an example of stress stiffening ; in fact the transverse stiffness of truss elements is directly proportional to the tensile force. Strings made of piano wire have an extremely high yield limit, thus enabling a wide range of pre-tension forces. The results are compared with the analytical solution. Model Definition The finite element idealization will consist of a single line. The diameter of the wire is irrelevant for the solution of this particular problem, but it must still be given. GEOMETRY String length, L = 0.5 m Cross section diameter 1.0 mm; A = mm 2 MATERIAL Young s modulus, E = 210 GPa Poisson s ratio, ν = 0.31 Mass density, ρ = 7850 kg/m 3 CONSTRAINTS Both ends of the wire are fixed. LOAD The wire is pre-tensioned to σ ni = 1520 MPa. Results and Discussion The analytical solution for the natural frequencies of the vibrating string is (Ref. 1) 2012 COMSOL 1 VIBRATING STRING

2 f k = k L σ ni ρ (1) The pre-tensioning stress σ ni in this example is tuned so that the first natural frequency will be Concert A; 440 Hz. In Table 1 the computed results are compared with the results from Equation 1. The agreement is very good. The accuracy will decrease with increasing complexity of the mode shape, since the possibility for the relatively coarse mesh to describe such a shape is limited. The mode shapes for the first three modes are shown in Figure 1 through Figure 3. TABLE 1: COMPARISON BETWEEN ANALYTICAL AND COMPUTED NATURAL FREQUENCIES MODE NUMBER ANALYTICAL FREQUENCY [HZ] COMSOL RESULT [HZ] 2 VIBRATING STRING 2012 COMSOL

3 Figure 1: First eigenmode. Figure 2: Second eigenmode COMSOL 3 VIBRATING STRING

4 Figure 3: Third eigenmode. Notes About the COMSOL Implementation In this model the stresses are known in advance, so it is possible to use an initial stress condition. This is shown in the first study. In a general case, the prestress is given by some external loading, and is thus the result of a previous step in the solution. Such a study would consist of two steps: One stationary step for computing the prestressed state, and one step for the eigenfrequency. The special study type Prestressed Analysis, Eigenfrequency can be used to set up such a sequence. This is shown in the second study in this example. Since an unstressed membrane has no stiffness in the transverse direction, it will generally be difficult to get an analysis to converge without taking special measures. One such method is shown in the second study: A spring foundation is added during initial loading, and is then removed. You must switch on geometrical nonlinearity in the study in order to capture effects of prestress. This is done automatically when a study of the type Prestressed Analysis, Eigenfrequency is used. 4 VIBRATING STRING 2012 COMSOL

5 Reference 1. Knobel R., An Introduction to the Mathematical Theory of Waves, The American Mathematical Society, Model Library path: Structural_Mechanics_Module/Verification_Models/ vibrating_string Modeling Instructions MODEL WIZARD 1 Go to the Model Wizard window. 2 Click the 2D button. 3 Click Next. 4 In the Add physics tree, select Structural Mechanics>Truss (truss). 5 Click Next. 6 Find the Studies subsection. In the tree, select Preset Studies>Eigenfrequency. 7 Click Finish. GEOMETRY 1 Bézier Polygon 1 1 In the Model Builder window, under Model 1 right-click Geometry 1 and choose Bézier Polygon. 2 In the Bézier Polygon settings window, locate the Polygon Segments section. 3 Find the Added segments subsection. Click the Add Linear button. 4 Find the Control points subsection. In row 2, set x to Click the Build All button. MATERIALS Material 1 1 In the Model Builder window, under Model 1 right-click Materials and choose Material. 2 In the Material settings window, locate the Material Contents section COMSOL 5 VIBRATING STRING

6 3 In the table, enter the following settings: PROPERTY NAME VALUE Young's modulus E 210e9 Poisson's ratio nu 0.31 Density rho 7850 TRUSS Cross Section Data 1 1 In the Model Builder window, expand the Model 1>Truss node, then click Cross Section Data 1. 2 In the Cross Section Data settings window, locate the Basic Section Properties section. 3 In the A edit field, type pi/4*0.001^2. Pinned 1 1 In the Model Builder window, right-click Truss and choose Pinned. 2 In the Pinned settings window, locate the Point Selection section. 3 From the Selection list, choose All points. The straight edge constraint must be removed because the vibration gives the string a curved shape. 4 In the Model Builder window, under Model 1>Truss right-click Straight Edge Constraint 1 and choose Disable. Initial Stress and Strain 1 1 In the Model Builder window, right-click Model 1>Truss>Linear Elastic Material 1 and choose the boundary condition Initial Stress and Strain. 2 In the Initial Stress and Strain settings window, locate the Initial Stress and Strain section. 3 In the σ ni edit field, type 1520e6. MESH 1 Size 1 In the Model Builder window, under Model 1 right-click Mesh 1 and choose Edit Physics-Induced Sequence. 2 In the Model Builder window, under Model 1>Mesh 1 click Size. 3 In the Size settings window, locate the Element Size section. 6 VIBRATING STRING 2012 COMSOL

7 4 Click the Custom button. 5 Locate the Element Size Parameters section. In the Maximum element size edit field, type This setting gives 10 elements for the mesh that COMSOL Multiphysics generates when you solve the model. The stiffness caused by the prestress is a nonlinear effect, so geometric nonlinearity must be switched on. STUDY 1 Step 1: Eigenfrequency 1 In the Model Builder window, under Study 1 click Step 1: Eigenfrequency. 2 In the Eigenfrequency settings window, locate the Study Settings section. 3 Select the Include geometric nonlinearity check box. 4 In the Model Builder window, right-click Study 1 and choose Compute. RESULTS 1 Click the Zoom Extents button on the Graphics toolbar. The default plot shows the displacement for the first eigenmode. Mode Shape (truss) 1 In the Model Builder window, under Results click Mode Shape (truss). 2 In the 2D Plot Group settings window, locate the Data section. 3 From the Eigenfrequency list, choose This corresponds to the second eigenmode. 4 Click the Plot button. 5 Click the Zoom Extents button on the Graphics toolbar. 6 From the Eigenfrequency list, choose This is the third eigenmode. 7 Click the Plot button. 8 Click the Zoom Extents button on the Graphics toolbar. Now, prepare a second study where the prestress is instead computed from an external load. The pinned condition in the right end must then be replaced by a force COMSOL 7 VIBRATING STRING

8 TRUSS Pinned 2 1 In the Model Builder window, under Model 1 right-click Truss and choose Pinned. 2 Select Point 1 only. Prescribed Displacement 1 1 In the Model Builder window, right-click Truss and choose Prescribed Displacement. 2 Select Point 2 only. 3 In the Prescribed Displacement settings window, locate the Prescribed Displacement section. 4 Select the Prescribed in y direction check box. Point Load 1 1 In the Model Builder window, right-click Truss and choose Point Load. 2 Select Point 2 only. 3 In the Point Load settings window, locate the Force section. 4 Specify the F p vector as 1520[MPa]*truss.area x 0 y Add a spring with an arbitrary small stiffness in order to suppress the out-of-plane singularity of the unstressed wire. Spring Foundation 1 1 In the Model Builder window, right-click Truss and choose the boundary condition More>Spring Foundation. 2 Select Boundary 1 only. 3 In the Spring Foundation settings window, locate the Spring section. 4 Specify the k L vector as 0 x 10 y ROOT In the Model Builder window, right-click the root node and choose Add Study. 8 VIBRATING STRING 2012 COMSOL

9 MODEL WIZARD 1 Go to the Model Wizard window. 2 Find the Studies subsection. In the tree, select Preset Studies>Prestressed Analysis, Eigenfrequency. 3 Click Finish. Switch off the initial stress and double-sided pinned condition, which should not be part of the second study. In the eigenfrequency step, the stabilizing spring support must also be removed. STUDY 2 Step 1: Stationary 1 In the Model Builder window, under Study 2 click Step 1: Stationary. 2 In the Stationary settings window, locate the Physics and Variables Selection section. 3 Select the Modify physics tree and variables for study step check box. 4 In the Physics and variables selection tree, select Model 1>Truss>Linear Elastic Material 1>Initial Stress and Strain 1 and Model 1>Truss>Pinned 1. 5 Click Disable. Step 2: Eigenfrequency 1 In the Model Builder window, under Study 2 click Step 2: Eigenfrequency. 2 In the Eigenfrequency settings window, locate the Physics and Variables Selection section. 3 Select the Modify physics tree and variables for study step check box. 4 In the Physics and variables selection tree, select Model 1>Truss>Linear Elastic Material 1>Initial Stress and Strain 1, Model 1>Truss>Pinned 1, and Model 1>Truss>Spring Foundation 1. 5 Click Disable. 6 In the Model Builder window, right-click Study 2 and choose Compute. RESULTS Mode Shape (truss) 1 The eigenfrequencies computed using this more general approach are close to those computed using in the previous step COMSOL 9 VIBRATING STRING

10 To make Study 1 behave as when it was first created, the features added for Study 2 must be disabled. STUDY 1 Step 1: Eigenfrequency 1 In the Model Builder window, expand the Study 1 node, then click Step 1: Eigenfrequency. 2 In the Eigenfrequency settings window, locate the Physics and Variables Selection section. 3 Select the Modify physics tree and variables for study step check box. 4 In the Physics and variables selection tree, select Model 1>Truss>Pinned 2, Model 1>Truss>Prescribed Displacement 1, Model 1>Truss>Point Load 1, and Model 1>Truss>Spring Foundation 1. 5 Click Disable. 10 VIBRATING STRING 2012 COMSOL

### Solved with COMSOL Multiphysics 4.3a

Pratt Truss Bridge Introduction This example is inspired by a classic bridge type called a Pratt truss bridge. You can identify a Pratt truss by its diagonal members, which (except for the very end ones)

### The waveguide adapter consists of a rectangular part smoothly transcending into an elliptical part as seen in Figure 1.

Waveguide Adapter Introduction This is a model of an adapter for microwave propagation in the transition between a rectangular and an elliptical waveguide. Such waveguide adapters are designed to keep

### Laminar Flow in a Baffled Stirred Mixer

Laminar Flow in a Baffled Stirred Mixer Introduction This exercise exemplifies the use of the rotating machinery feature in the CFD Module. The Rotating Machinery interface allows you to model moving rotating

### Particle Trajectories in a Laminar Static Mixer

Particle Trajectories in a Laminar Static Mixer Introduction In static mixers, also called motionless or in-line mixers, a fluid is pumped through a pipe containing stationary blades. This mixing technique

### T u n a b l e M E M S C a p a c i t o r

T u n a b l e M E M S C a p a c i t o r Introduction In an electrostatically tunable parallel plate capacitor you can modify the distance between the two plates when the applied voltage changes. For tuning

### Heat Transfer by Free Convection

Heat Transfer by Free Convection Introduction This example describes a fluid flow problem with heat transfer in the fluid. An array of heating tubes is submerged in a vessel with fluid flow entering at

### Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1

Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1 In this tutorial, we will use the SolidWorks Simulation finite element analysis (FEA) program to analyze the response

### Structural Mechanics Module

Structural Mechanics Module User s Guide VERSION 4.3b Structural Mechanics Module User s Guide 1998 2013 COMSOL Protected by U.S. Patents 7,519,518; 7,596,474; and 7,623,991. Patents pending. This Documentation

### NonLinear Materials. Introduction. Preprocessing: Defining the Problem

NonLinear Materials Introduction This tutorial was completed using ANSYS 7.0 The purpose of the tutorial is to describe how to include material nonlinearities in an ANSYS model. For instance, the case

### Week 9 - Lecture Linear Structural Analysis. ME Introduction to CAD/CAE Tools

Week 9 - Lecture Linear Structural Analysis Lecture Topics Finite Element Analysis (FEA) Overview FEA Parameters FEA Best Practices FEA Software Introduction Linear Structure Analysis Product Lifecycle

### ABAQUS Tutorial. 3D Modeling

Spring 2011 01/21/11 ABAQUS Tutorial 3D Modeling This exercise intends to demonstrate the steps you would follow in creating and analyzing a simple solid model using ABAQUS CAE. Introduction A solid undergoes

### Finite Element Analysis (FEA) Tutorial. Project 2: 2D Plate with a Hole Problem

Finite Element Analysis (FEA) Tutorial Project 2: 2D Plate with a Hole Problem Problem Analyze the following plate with hole using FEA tool ABAQUS P w d P Dimensions: t = 3 mm w = 50 mm d = mm L = 0 mm

### Comsol Multiphysics. Physics Builder User s Guide VERSION 4.3 BETA

Comsol Multiphysics Physics Builder User s Guide VERSION 4.3 BETA Physics Builder User s Guide 1998 2012 COMSOL Protected by U.S. Patents 7,519,518; 7,596,474; and 7,623,991. Patents pending. This Documentation

### 1. Start the NX CAD software. From the start menu, select Start All Programs UGS NX 8.0 NX 8.0 or double click the icon on the desktop.

Lab Objectives Become familiar with Siemens NX finite element analysis using the NX Nastran solver. Perform deflection and stress analyses of planar truss structures. Use modeling and FEA tools to input

### 11 Vibration Analysis

11 Vibration Analysis 11.1 Introduction A spring and a mass interact with one another to form a system that resonates at their characteristic natural frequency. If energy is applied to a spring mass system,

### Introduction to COMSOL. The Navier-Stokes Equations

Flow Between Parallel Plates Modified from the COMSOL ChE Library module rev 10/13/08 Modified by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 2008 Introduction to COMSOL The following

### Turbulent Flow Through a Shell-and-Tube Heat Exchanger

Turbulent Flow Through a Shell-and-Tube Heat Exchanger Introduction This model describes a part of a shell-and-tube heat exchanger (see Figure 1), where hot water enters from above. The cooling medium,

### Non-Linear Analysis of Bolted Extended End-Plate Steel Beam-To Column Connection Cut Ainul Mardziah Amir,Redzuan Abdullah

Non-Linear Analysis of Bolted Extended End-Plate Steel Beam-To Column Connection Cut Ainul Mardziah Amir,Redzuan Abdullah Faculty of Civil Engineering, Universiti Teknologi Malaysia, Malaysia redzuan@utm.my

### 10 Space Truss and Space Frame Analysis

10 Space Truss and Space Frame Analysis 10.1 Introduction One dimensional models can be very accurate and very cost effective in the proper applications. For example, a hollow tube may require many thousands

### Module 4: Buckling of 2D Simply Supported Beam

Module 4: Buckling of D Simply Supported Beam Table of Contents Page Number Problem Description Theory Geometry 4 Preprocessor 7 Element Type 7 Real Constants and Material Properties 8 Meshing 9 Solution

### Axisymmetry Tutorial. A few representations of simple axisymmetric models are shown below. Axisymmetry Tutorial 6-1 0, 18 28, MPa 0, 12.

Axisymmetry Tutorial 6-1 Axisymmetry Tutorial 0, 18 28, 18 0, 12 10 MPa 10 MPa 0, 6 0, 0 4, 0 x = 0 (axis of symmetry) user-defined external boundary 4, 24 12, 24 20, 24 28, 24 This tutorial will illustrate

### Using Finite Element software post processing graphics capabilities to enhance interpretation of Finite Element analyses results

Using Finite Element software post processing graphics capabilities to enhance interpretation of Finite Element analyses results Cyrus K. Hagigat College of Engineering The University of Toledo Session

### EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES

EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES Yang-Cheng Wang Associate Professor & Chairman Department of Civil Engineering Chinese Military Academy Feng-Shan 83000,Taiwan Republic

### Linear Static Analysis of a Cantilever Beam Using Beam Library (SI Units)

APPENDIX A Linear Static Analysis of a Cantilever Beam Using Beam Library (SI Units) Objectives: Create a geometric representation of a cantilever beam. Use the geometry model to define an MSC.Nastran

### ABAQUS for CATIA V5 Tutorials

ABAQUS for CATIA V5 Tutorials AFC V2 Nader G. Zamani University of Windsor Shuvra Das University of Detroit Mercy SDC PUBLICATIONS Schroff Development Corporation www.schroff.com www.schroff-europe.com

### Introduction to Basics of FEA and

Introduction to Basics of FEA and Pro/MECHANICA 25.353 Lecture Series G. Gary Wang Department of Mechanical and Manufacturing Engineering The University of Manitoba What is Pro/MECHANICA Pro/MECHANICA

### Creating a 2D Geometry Model

Creating a 2D Geometry Model This section describes how to build a 2D cross section of a heat sink and introduces 2D geometry operations in COMSOL. At this time, you do not model the physics that describe

### Embankment Consolidation

Embankment Consolidation 36-1 Embankment Consolidation In this tutorial, RS2 is used for a coupled analysis of a road embankment subject to loading from typical daily traffic. Model Start the RS2 9.0 Model

### COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS

International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 7, Issue 2, March-April 2016, pp. 30 52, Article ID: IJARET_07_02_004 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=7&itype=2

### Solved with COMSOL Multiphysics 4.0a. COPYRIGHT 2010 COMSOL AB.

Permanent Magnet Introduction This example shows how to model the magnetic field surrounding a permanent magnet. It also computes the force with which it acts on a nearby iron rod. Thanks to the symmetry

### MASTER DEGREE PROJECT

MASTER DEGREE PROJECT Finite Element Analysis of a Washing Machine Cylinder Thesis in Applied Mechanics one year Master Degree Program Performed : Spring term, 2010 Level Author Supervisor s Examiner :

### cubus Space frame analysis Theory of 1st and 2nd Order Dynamic with Response Spectra Nonlinear Calculations Stability Prestressing Hellas Ltd

Space frame analysis Theory of 1st and 2nd Order Dynamic with Response Spectra Nonlinear Calculations Stability Prestressing Statik-5 is a comprehensive tool for the design and analysis of plane and spatial

### An Overview of the Finite Element Analysis

CHAPTER 1 An Overview of the Finite Element Analysis 1.1 Introduction Finite element analysis (FEA) involves solution of engineering problems using computers. Engineering structures that have complex geometry

CM 3110 COMSOL INSTRUCTIONS Faith Morrison and Maria Tafur Department of Chemical Engineering Michigan Technological University, Houghton, MI USA 22 November 2012 Zhichao Wang edits 21 November 2013 revised

### MATERIALS SELECTION FOR SPECIFIC USE

MATERIALS SELECTION FOR SPECIFIC USE-1 Sub-topics 1 Density What determines density and stiffness? Material properties chart Design problems LOADING 2 STRENGTH AND STIFFNESS Stress is applied to a material

### Nonlinear Material Elastic Perfectly Plastic Material Response

Nonlinear Material Elastic Perfectly Plastic Material Response Model an alloy steel plate with a thickness of 0.25 inch. Analytical Solution: If 15,000 lbs is applied at the right edge when the left edge

### Navier-Stokes Equation Solved in Comsol 4.1. Copyright Bruce A. Finlayson, 2010 See also Introduction to Chemical Engineering Computing, Wiley (2006).

Introduction to Chemical Engineering Computing Copyright, Bruce A. Finlayson, 2004 1 Navier-Stokes Equation Solved in Comsol 4.1. Copyright Bruce A. Finlayson, 2010 See also Introduction to Chemical Engineering

### Course in. Nonlinear FEM

Course in Introduction Outline Lecture 1 Introduction Lecture 2 Geometric nonlinearity Lecture 3 Material nonlinearity Lecture 4 Material nonlinearity continued Lecture 5 Geometric nonlinearity revisited

### Mesh Discretization Error and Criteria for Accuracy of Finite Element Solutions

Mesh Discretization Error and Criteria for Accuracy of Finite Element Solutions Chandresh Shah Cummins, Inc. Abstract Any finite element analysis performed by an engineer is subject to several types of

### Types of Elements

chapter : Modeling and Simulation 439 142 20 600 Then from the first equation, P 1 = 140(0.0714) = 9.996 kn. 280 = MPa =, psi The structure pushes on the wall with a force of 9.996 kn. (Note: we could

### ANALYTICAL AND EXPERIMENTAL EVALUATION OF SPRING BACK EFFECTS IN A TYPICAL COLD ROLLED SHEET

International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 119-130, Article ID: IJMET_07_01_013 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

### DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE

DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE ÖZDEMİR Y. I, AYVAZ Y. Posta Adresi: Department of Civil Engineering, Karadeniz Technical University, 68 Trabzon, TURKEY E-posta: yaprakozdemir@hotmail.com

### Tutorial for Assignment #2 Gantry Crane Analysis By ANSYS (Mechanical APDL) V.13.0

Tutorial for Assignment #2 Gantry Crane Analysis By ANSYS (Mechanical APDL) V.13.0 1 Problem Description Design a gantry crane meeting the geometry presented in Figure 1 on page #325 of the course textbook

### EXAMPLE 7. EXAMPLE FOR 2D PLANE STRESS

EXAMPLE 7. EXAMPLE FOR 2D PLANE STRESS Author: Dr. István Oldal Oldal István, SZIE www.tankonyvtar.hu 2 Finite Element Method 7. EXAMPLE FOR 2D PLANE STRESS 7.1. Analysis of a strap plate Let us determine

### Free Convection in a Light Bulb

Free Convection in a Light Bulb Introduction This model simulates the nonisothermal flow of argon gas inside a light bulb. The purpose of the model is to show the coupling between energy transport through

### INTRODUCTION TO COMSOL Multiphysics

INTRODUCTION TO COMSOL Multiphysics Introduction to COMSOL Multiphysics 1998 2015 COMSOL Protected by U.S. Patents listed on www.comsol.com/patents, and U.S. Patents 7,519,518; 7,596,474; 7,623,991; 8,457,932;

### CATIA V5 Analysis STUDENT GUIDE. CATIA V5 Analysis. Student Handbook Version 5 Release Hours. Copyright DASSAULT SYSTEMES 3

CATIA V5 Analysis Student Handbook Version 5 Release 19 16 Hours Copyright DASSAULT SYSTEMES 3 Copyright DASSAULT SYSTEMES ALL RIGHTS RESERVED No part of this publication may be reproduced, translated,

### Steady Flow: Laminar and Turbulent in an S-Bend

STAR-CCM+ User Guide 6663 Steady Flow: Laminar and Turbulent in an S-Bend This tutorial demonstrates the flow of an incompressible gas through an s-bend of constant diameter (2 cm), for both laminar and

### Application of Joints and Springs in ANSYS

Application of Joints and Springs in ANSYS Introduction This tutorial was created using ANSYS 5.7.1. This tutorial will introduce: the use of multiple elements in ANSYS elements COMBIN7 (Joints) and COMBIN14

### INTRODUCTION TO COMSOL Multiphysics

INTRODUCTION TO COMSOL Multiphysics Introduction to COMSOL Multiphysics 1998 2015 COMSOL Protected by U.S. Patents listed on www.comsol.com/patents, and U.S. Patents 7,519,518; 7,596,474; 7,623,991; 8,457,932;

### Program COLANY Stone Columns Settlement Analysis. User Manual

User Manual 1 CONTENTS SYNOPSIS 3 1. INTRODUCTION 4 2. PROBLEM DEFINITION 4 2.1 Material Properties 2.2 Dimensions 2.3 Units 6 7 7 3. EXAMPLE PROBLEM 8 3.1 Description 3.2 Hand Calculation 8 8 4. COLANY

### Engineering optimization example

Engineering optimization example The title of example: Number of example: Level of example: Short description of the example: Shape optimization of a 3D part using CAE system OPT-BME-5 intermediate In

### Piston Ring. Problem:

Problem: A cast-iron piston ring has a mean diameter of 81 mm, a radial height of h 6 mm, and a thickness b 4 mm. The ring is assembled using an expansion tool which separates the split ends a distance

### Technology of EHIS (stamping) applied to the automotive parts production

Laboratory of Applied Mathematics and Mechanics Technology of EHIS (stamping) applied to the automotive parts production Churilova Maria, Saint-Petersburg State Polytechnical University Department of Applied

### Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity

### EML 5526 FEA Project 1 Alexander, Dylan. Project 1 Finite Element Analysis and Design of a Plane Truss

Problem Statement: Project 1 Finite Element Analysis and Design of a Plane Truss The plane truss in Figure 1 is analyzed using finite element analysis (FEA) for three load cases: A) Axial load: 10,000

### Workshop. Tennis Racket Simulation using Abaqus

Introduction Workshop Tennis Racket Simulation using Abaqus In this workshop you will become familiar with the process of creating a model interactively by using Abaqus/CAE. You will create the tennis

### The Basics of FEA Procedure

CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

### The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM

1 The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM tools. The approach to this simulation is different

### DESIGN AND ANALYSIS OF BRIDGE WITH TWO ENDS FIXED ON VERTICAL WALL USING FINITE ELEMENT ANALYSIS

International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 34-44, Article ID: IJCIET_07_02_003 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

### Modal Analysis of a Circular Plate

WORKSHOP PROBLEM 6 Modal Analysis of a Circular Plate Z Objectives Reduce the model to a 30 degree section and use symmetric boundary conditions. Produce a Nastran input file. Submit the file for modal

### Heat Transfer in a Coffee Cup with Comsol Multiphysics

Heat Transfer in a Coffee Cup with Comsol Multiphysics Denny Otten 1 Department of Mathematics Bielefeld University 33501 Bielefeld Germany Date: 27. Mai 2015 1. Introduction and Mathematical Setting 2.

### Finite Element Formulation for Plates - Handout 3 -

Finite Element Formulation for Plates - Handout 3 - Dr Fehmi Cirak (fc286@) Completed Version Definitions A plate is a three dimensional solid body with one of the plate dimensions much smaller than the

### Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,

### Nonlinear analysis and form-finding in GSA Training Course

Nonlinear analysis and form-finding in GSA Training Course Non-linear analysis and form-finding in GSA 1 of 47 Oasys Ltd Non-linear analysis and form-finding in GSA 2 of 47 Using the GSA GsRelax Solver

### The elements used in commercial codes can be classified in two basic categories:

CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

CosmosWorks Centrifugal Loads (Draft 4, May 28, 2006) Introduction This example will look at essentially planar objects subjected to centrifugal loads. That is, loads due to angular velocity and/or angular

### Chapter 15 Wave Motion. Copyright 2009 Pearson Education, Inc.

Chapter 15 Wave Motion Characteristics of Wave Motion Types of Waves: Transverse and Longitudinal Energy Transported by Waves Mathematical Representation of a Traveling Wave The Wave Equation Units of

### Figure 12 1 Short columns fail due to material failure

12 Buckling Analysis 12.1 Introduction There are two major categories leading to the sudden failure of a mechanical component: material failure and structural instability, which is often called buckling.

### Introduction to Comsol Multiphysics

Introduction to Comsol Multiphysics VERSION 4.2a Benelux COMSOL BV Röntgenlaan 37 2719 DX Zoetermeer The Netherlands +31 (0) 79 363 4230 +31 (0) 79 361 4212 info@comsol.nl www.comsol.nl Denmark COMSOL

### Exercise 1: Three Point Bending Using ANSYS Workbench

Exercise 1: Three Point Bending Using ANSYS Workbench Contents Goals... 1 Beam under 3-Pt Bending... 2 Taking advantage of symmetries... 3 Starting and Configuring ANSYS Workbench... 4 A. Pre-Processing:

### Finite Elements for 2 D Problems

Finite Elements for 2 D Problems General Formula for the Stiffness Matrix Displacements (u, v) in a plane element are interpolated from nodal displacements (ui, vi) using shape functions Ni as follows,

### Element Selection Criteria

Element Selection Criteria Element Selection Criteria Overview Elements in ABAQUS Structural Elements (Shells and Beams) vs. Continuum Elements Modeling Bending Using Continuum Elements Stress Concentrations

### Learning Module 6 Linear Dynamic Analysis

Learning Module 6 Linear Dynamic Analysis What is a Learning Module? Title Page Guide A Learning Module (LM) is a structured, concise, and self-sufficient learning resource. An LM provides the learner

### Customer Training Material. ANSYS Mechanical Basics. Mechanical. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved. WS2.

Workshop 2.1 ANSYS Mechanical Basics Introduction to ANSYS Mechanical WS2.1-1 Notes on Workshop 2.1 The first workshop is extensively documented. As this course progresses, students will become more familiar

### 3-D WAVEGUIDE MODELING AND SIMULATION USING SBFEM

3-D WAVEGUIDE MODELING AND SIMULATION USING SBFEM Fabian Krome, Hauke Gravenkamp BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany email: Fabian.Krome@BAM.de

### Shear and Bending Moment

Problem: For the loaded beam shown below, develop the corresponding shear force and bending moment diagrams. The beam is in equilibrium. For this problem L= 10 in. Overview Anticipated time to complete

### Heat Generation in a Disc Brake

Heat Generation in a Disc Brake Introduction This example models the heat generation and dissipation in a disc brake of an ordinary car during panic braking and the following release period. As the brakes

### Start the program from the Desktop Icon or from Start, Programs Menu.

5. SHELL MODEL Start Start the program from the Desktop Icon or from Start, Programs Menu. New Create a new model with the New Icon. In the dialogue window that pops up, replace the Model Filename with

### Pro/ENGINEER Mechanica Simulation using Pro/ENGINEER Wildfire 5.0

Pro/ENGINEER Mechanica Simulation using Pro/ENGINEER Wildfire 5.0 Overview Course Code TRN-2235-S Course Length 40 Hours This course is designed for new users who want to test, validate, and optimize product

### ATENA Program Documentation Part 4-2. Tutorial for Program ATENA 3D. Written by: Jan Červenka, Zdenka Procházková, Tereza Sajdlová

Červenka Consulting s.ro. Na Hrebenkach 55 150 00 Prague Czech Republic Phone: +420 220 610 018 E-mail: cervenka@cervenka.cz Web: http://www.cervenka.cz ATENA Program Documentation Part 4-2 Tutorial for

### Solid Mechanics. Stress. What you ll learn: Motivation

Solid Mechanics Stress What you ll learn: What is stress? Why stress is important? What are normal and shear stresses? What is strain? Hooke s law (relationship between stress and strain) Stress strain

### MODELLING AND COMPUTATIONAL ANALYSIS

DAAAM INTERNATIONAL SCIENTIFIC BOOK 2011 pp. 205-214 CHAPTER 17 MODELLING AND COMPUTATIONAL ANALYSIS OF SPINDLES IN COMSOL SYSTEM WOLNY, R. Abstract: This paper presents the opportunities of COMSOL multiphysics

### Tensile fracture analysis of blunt notched PMMA specimens by means of the Strain Energy Density

Engineering Solid Mechanics 3 (2015) 35-42 Contents lists available at GrowingScience Engineering Solid Mechanics homepage: www.growingscience.com/esm Tensile fracture analysis of blunt notched PMMA specimens

### ABSTRACT 1. INTRODUCTION

Finite Element Analysis of the GTC Commissioning Instrument Structure A. Farah, J. Godoy, F. Velázquez, C. Espejo, S. Cuevas, Universidad Nacional Autónoma de México; V. Bringas, A. Manzo, L. del Llano,

### Getting Started with ANSYS ANSYS Workbench Environment

Getting Started with ANSYS ANSYS Workbench Environment Overview The purpose of this tutorial is to get you started with the ANSYS Workbench environment. We will use a simple, static analysis of a single

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A transverse wave is propagated in a string stretched along the x-axis. The equation

### Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell

Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell B.K. Jung ; J. Ryue ; C.S. Hong 3 ; W.B. Jeong ; K.K. Shin

### MESYS Calculation software for mechanical engineering

MESYS Calculation software for mechanical engineering Calculation software for mechanical engineering The company MESYS AG in Zurich offers calculation software for mechanical engineering, custom software

### Buckling Analysis of a Thin-Shell Cylinder

LESSON 14 Buckling Analysis of a Thin-Shell Cylinder Objectives: Create a geometrical representation of a thin-shell cylinder. Use the geometry model to define a MSC/NASTRAN analysis model comprised of

### Editing Common Polygon Boundary in ArcGIS Desktop 9.x

Editing Common Polygon Boundary in ArcGIS Desktop 9.x Article ID : 100018 Software : ArcGIS ArcView 9.3, ArcGIS ArcEditor 9.3, ArcGIS ArcInfo 9.3 (or higher versions) Platform : Windows XP, Windows Vista

### Applied Finite Element Analysis. M. E. Barkey. Aerospace Engineering and Mechanics. The University of Alabama

Applied Finite Element Analysis M. E. Barkey Aerospace Engineering and Mechanics The University of Alabama M. E. Barkey Applied Finite Element Analysis 1 Course Objectives To introduce the graduate students

### Presented at the COMSOL Conference 2008 Boston

Presented at the COMSOL Conference 2008 Boston Residual Stresses in Panels Manufactured Using EBF3 Process J. Gaillard (Masters Student, Microelectronics and Micromechanics Department, ENSICAEN (Ecole

TABLE OF CONTENTS Introduction...1 Electrical Harness Design...2 Electrical Harness Assembly Workbench...4 Bottom Toolbar...5 Measure...5 Electrical Harness Design...7 Defining Geometric Bundles...7 Installing

### Numerical Methods for Differential Equations

Numerical Methods for Differential Equations Course objectives and preliminaries Gustaf Söderlind and Carmen Arévalo Numerical Analysis, Lund University Textbooks: A First Course in the Numerical Analysis

### INTRODUCTION TO FINITE ELEMENT ANALYSIS USING MSC.PATRAN/NASTRAN

Objective INTRODUCTION TO FINITE ELEMENT ANALYSIS USING MSC.PATRAN/NASTRAN The goal of this exercise is to prepare a finite element model using surface representation of an object from CAD system. Then