Preface... 5 Arithmetic Functions The Euler-Maclaurin Summation Formula Average Orders The Riemann ζ-function...

Size: px
Start display at page:

Download "Preface... 5 Arithmetic Functions 197 5.1 The Euler-Maclaurin Summation Formula... 197 5.2 Average Orders... 214 5.3 The Riemann ζ-function..."

Transcription

1 Contents Preface ix 1 Algebraic Number Theory and Quadratic Fields Algebraic Number Fields The Gaussian field Euclidean Quadratic Fields Applications of Unique Factorization Ideals The Arithmetic of Ideals in Quadratic Fields Dedekind Domains Application to Factoring Binary Quadratic Forms Basics Composition and the Form Class Group Applications Via Ambiguity Genus Representation Equivalence Modulo p Diophantine Approximation Algebraic and Transcendental Numbers Transcendence Minkowski s Convex Body Theorem Arithmetic Functions The Euler-Maclaurin Summation Formula Average Orders The Riemann ζ-function Introduction to p-adic Analysis Solving Modulo p n Introduction to Valuations Non- Vs. Archimedean Valuations vii

2 viii 6.4 Representation of p-adic Numbers Dirichlet: Characters, Density, and Primes in Progression Dirichlet Characters Dirichlet s L-Function and Theorem Dirichlet Density Applications to Diophantine Equations Lucas-Lehmer Theory Generalized Ramanujan-Nagell Equations Bachet s Equation The Fermat Equation Catalan and the ABC-Conjecture Elliptic Curves The Basics Mazur, Siegel, and Reduction Applications: Factoring & Primality Testing Elliptic Curve Cryptography (ECC) Modular Forms The Modular Group Modular Forms and Functions Applications to Elliptic Curves Shimura-Taniyama-Weil & FLT Appendix A: Sieve Methods Bibliography Solutions to Odd-Numbered Exercises About the Author

3 Preface This book is designed as a second course in number theory at the senior undergraduate/junior graduate level to follow a course in elementary methods, such as that given in [65], the contents of which the reader is assumed to have knowledge. The material covered in the ten chapters of this book constitute a course outline for one semester. Chapter One begins with algebraic techniques including specialization to quadratic fields with applications to solutions of the Ramanujan-Nagell equations, factorization of Gaussian integers, Euclidean quadratic fields, and Gauss proof of Fermat s Last Theorem (FLT) for p = 3. Applications of unique factorization are given in terms of both Euler s and Fermat s solution to Bachet s equation, concluding with a look at norm-euclidean quadratic fields. In Chapter Two ideal theory is covered beginning with quadratic fields, and decomposition into prime ideals therein. Dedekind domains make up the second section, leading into Noetherian domains, and the unique factorization theorem for Dedekind domains. Principal Ideal Domains and Unique Factorization Domains are compared and contrasted. The section ends with the Chinese Remainder Theorem for ideals. The chapter concludes with an application to factoring using Pollard s cubic integer method, which serves as a preamble for the introduction of the number field sieve presented in Appendix A. Pollard s method is illustrated via factoring of the seventh Fermat number. Chapter Three is devoted to binary quadratic forms, starting with the basics on equivalence, discriminants, reduction, and class number. In the next section, composition is covered and linked to ideal theory. The form and ideal class groups are compared and contrasted, including an explicit formula for the relationship between the form class number and both the narrow and wide ideal class numbers. A proof of the finiteness of the ideal class number is achieved via the form class number, rather than the usual method of using Minkowski s Convex Body Theorem, which we cover in 4.3. Section Three investigates the notion of ambiguous forms and ideals and the relationship between their classes. We show how this applies to representations of integers as a sum of two squares and to Markov triples. In the fourth section, genus is introduced and the assigned values of generic characters is developed via Jacobi symbols. This is then applied to the principal genus, via a coset interpretation, using Dirichlet s Theorem on Primes in Arithmetic Progression, the proof of which is given in Chapter Seven. This is a valuable vehicle for demonstrating the fact that two forms are in the same genus exactly when their cosets are equal. We tie the above together with the fact that the genus group is essentially the group of ambiguous forms. The fifth section uses the above to investigate representation problems. We begin with the algebraic interpretation of prime power representation as binary quadratic forms using the ideal class number. Numerous applications to representations of primes in the form p = a 2 + Db 2 are provided. The chapter ends with representations modulo a prime. Chapter Four develops Diophantine approximation techniques, starting with ix

4 x Advanced Number Theory with Applications Roth s celebrated result. We prove Liouville s Theorem, leading into an analysis of enumerable sets, including a proof that the set of all algebraic numbers is enumerable, followed by the countablity of the rational numbers and the uncountability of the reals. Indeed, it follows from this that almost all reals are transcendental. The first section is completed with a proof of the fact that the n-th root of a rational integer is an algebraic integer of degree n, when that integer is not a certain power. Transcendence is covered in the second section with proofs that Liouville numbers, e, and π are all transcendental. Next the Lindemann-Weierstrass Theorem is established, allowing the statement of the more general Schanuel conjecture. The discussion is rounded out by a look at some renowned constants including that of Gel fond, Gel fond-schneider, Proulet-Thue-Morse, Euler, Apéry, and Catalan. Section Three introduces the geometry of numbers and its techniques with a goal of proving Minkowski s Convex Body Theorem that ends the chapter. In Chapter Five, we extend the knowledge of arithmetic functions gained in a first course, by proving the Euler-Maclaurin summation formula, for which we introduce Bernoulli numbers, Bernoulli polynomials, and Fourier series. With this we are able to apply the formula to obtain Wallis formula, Stirling s constant, Stirling s formula, and perhaps the slickest of applications, namely the accurate approximation of the Euler-Mascheroni constant. Average orders is the topic of the second section starting with a proof of Hermite s formula. This puts us into a position where we can derive the average order of the number of divisors function, the sum of divisors function, and Euler s totient φ(m). The third section concentrates upon the Riemann ζ-function. We apply the Euler- Maclaurin summation formula to obtain a formula for ζ(s). Then we discuss the Prime Number Theorem (PNT), Merten s Theorem, and various arithmetic function equivalences to the PNT. Then the Riemann hypothesis (RH) and its equivalent formulations are considered, after which we develop techniques to provide a rather straightforward proof of the functional equation for ζ(s) as a closing feature of the chapter. In the sixth chapter, we introduce p-adic analysis, commencing with solving modulo p n for successively higher powers of a prime p. Hensel s Lemma is the featured result of the first section. The second section introduces valuations, including the p-adic versions. Then Cauchy sequences come into play giving rise to p-adic fields and domains. We have tools to prove that equivalent powers are valuations, which ends the section. We compare Archimedean and non- Archimedean valuations in the third section, featuring a proof of Ostrowski s Theorem. In the last section, we apply what we have learned to representation of p-adic numbers. This involves the proof that every rational number has a representation as a periodic power series in a given prime p to close out the chapter. Chapter Seven delves into Dirichlet, his characters, L-functions, and their zeros related to the RH. We see the implications of his theorem for primes in arithmetic progression, proved in the second section. In the third section we introduce Dirichlet density and applications such as Beatty s theorem. The chapter ends with Dirichlet density on primes in arithmetic progression modulo

5 Preface xi m which have density 1/φ(m). Chapter Eight comprises applications of the first seven chapters to Diophantine equations. We begin with an overview of Lucas-Lehmer theory, proving results promised earlier in the text such as solutions of the generalized Ramanujan-Nagell equations in the second section and Bachet s equation in the third section. The Fermat equation is the topic of the fourth section with Kummer s proof of FLT for regular primes. The chapter is rounded out with the ABC conjecture and Catalan s conjecture. We discuss the recent proof of the latter and its generalization, the still open Fermat-Catalan conjecture. More than a half-dozen consequences of the ABC conjecture are displayed and discussed, including the Thue-Siegel-Roth Theorem, Hall s conjecture, the Erdös-Mollin- Walsh conjecture, and the Granville-Langevin conjecture. We demonstrate how these follow from ABC. Chapter Nine studies elliptic curves, launched by an introduction of the basics, illustrated and presented as a foundation. The second section defines torsion points, the Nagell-Lutz Theorem, Mazur s Theorem, Siegel s Theorem, and the notion of reduction. This sets the stage for Lenstra s elliptic curve factoring method and his primality testing method. We also look at the Goldwasser- Killian primality proving algorithm. The chapter closes with a description of the Menezes-Vanstone Elliptic Curve Cryptosystem as an application. The last chapter is on modular forms. The modular group, and modular forms are introduced as vehicles for much deeper considerations later in the chapter. Spaces and levels of modular forms are used as applications to elliptic curves including j-invariants and the Weierstrass -function. The main text ends with section four that looks, in detail, at the Shimura-Taniyama-Weil conjecture both in terms of L-functions and modular parametrizations. Modular elliptic curves are introduced as the stepping-stone to the proof of FLT. The tenth chapter ends with Ribet s Theorem and a one-paragraph proof of FLT emanating from it, called the Frey-Serre-Ribet approach, a fitting conclusion and demonstration of the power of the theory. An overview, without proofs, of sieve theory is relegated to Appendix A. We begin with a description of the goals of sieve theory and the effects its study has had on such open problems as the twin prime conjecture, the Goldbach conjecture, and Artin s conjecture, among others. We provide a description of the Eratosthenes sieve from the perspective of the Möbius function in order to lay the foundation for modern-day sieves. We begin with Brun s Theorem and his constant, including a discussion of how computation of Brun s constant led to the discovery of a flaw in the Pentium computer chip. Then we set the groundwork for presentation of Selberg s sieve by painting the picture of the basic sieve problem in terms of upper and lower limits on certain related functions. Selberg s sieve has many applications including the Brun-Titchmarsh Theorem, bounds for the twin prime conjecture, and the Goldbach conjecture. Then Linnik s large sieve is developed as a generalization of Brun s results and illustrated via applications to Artin s conjecture. Next is the Bombieri-Vinogradov Theorem and its applications to the Titchmarsh divisor problem. Then the classic result, Bombieri s asymptotic sieve, is presented via a hypothesis involving the

6 xii Advanced Number Theory with Applications generalized Mangoldt function. The most striking of the applications of the asymptotic sieve is the Friedlander-Iwaniec Theorem that there are infinitely many primes of the form a 2 + b 4. The aforementioned hypothesis involves the Elliot-Halberstram conjecture (EHC), so we are naturally led to the recent results by Goldston, Pintz, and Yilidrim on gaps between primes. In particular, their result based upon the validity of the EHC is the satisfying conclusion that lim n inf(p n+1 p n ) 16, where p n is the n-th prime. With these results as an illustration of the power of sieve theory, we turn our attention to the use of sieves in factoring by bringing out the big gun, the number field sieve and illustrate in detail its use in factoring of the ninth Fermat number. The Bibliography has been set up in such a way that maximum information is imparted. This includes a page reference for each and every citing of a given item, so that no guess work is involved as to where this reference is used. The index has more than 1,500 entries presented for maximum cross-referencing. Similarly, any reference, in text, to a theorem, definition, etc. is coupled with the page number on which it sits. These conventions ensure that the reader will find data with ease. There are nearly 50 mini-biographies of the mathematicians who helped to develop the results presented, in order to give a human face to the number theory and its applications. There are nearly 340 exercises with solutions of the odd-numbered exercises included at the end of the text, and a solutions manual for the even-numbered exercises available to instructors who adopt the text for a course. The website below is designed for the reader to access any updates and the address below is available for any comments. Acknowledgments First of all, I am deeply grateful to the Killam foundation for providing the award allowing the completion of this project in a timely fashion. Also, I am grateful for the proofreading done by the following people. Thanks to John Burke (U.S.A.) who, despite a heavy administrative load, and commitment to teaching and research, took the time to look at aspects of this work and effectively comment. Also, thanks to John Robertson (U.S.A.) with whom I had lengthy electronic conversations over development of several sections of the book, especially chapter three on binary quadratic forms. These interchanges had beneficial effects both for the book and our respective research programs. His insightful comments were most welcome. With Anitha Srinivasan (India), I similarly had lengthy electronic exchanges that led to creative, and even perspective-changing results. Her input was extremely valuable. My former student, Thomas Zaplachinski (Canada) who is now a working cryptographer in the field, gave the non-academic approach that was needed to round out the input received, and was deeply appreciated. Overall, this was an inspiring project, and one that is intended to be a service to students studying the most dynamic area of mathematics number theory. May 15, 2009 website: ramollin/ ramollin@math.ucalgary.ca

ANT2rev 2010/11/23 11:25 page vii #4

ANT2rev 2010/11/23 11:25 page vii #4 ANT2rev 2010/11/23 11:25 page vii #4 Contents Preface................................................................ ix About the Author..................................................... xiii Suggested

More information

Integer Factorization using the Quadratic Sieve

Integer Factorization using the Quadratic Sieve Integer Factorization using the Quadratic Sieve Chad Seibert* Division of Science and Mathematics University of Minnesota, Morris Morris, MN 56567 seib0060@morris.umn.edu March 16, 2011 Abstract We give

More information

Algebraic and Transcendental Numbers

Algebraic and Transcendental Numbers Pondicherry University July 2000 Algebraic and Transcendental Numbers Stéphane Fischler This text is meant to be an introduction to algebraic and transcendental numbers. For a detailed (though elementary)

More information

Five fundamental operations. mathematics: addition, subtraction, multiplication, division, and modular forms

Five fundamental operations. mathematics: addition, subtraction, multiplication, division, and modular forms The five fundamental operations of mathematics: addition, subtraction, multiplication, division, and modular forms UC Berkeley Trinity University March 31, 2008 This talk is about counting, and it s about

More information

Recent Breakthrough in Primality Testing

Recent Breakthrough in Primality Testing Nonlinear Analysis: Modelling and Control, 2004, Vol. 9, No. 2, 171 184 Recent Breakthrough in Primality Testing R. Šleževičienė, J. Steuding, S. Turskienė Department of Computer Science, Faculty of Physics

More information

Alex, I will take congruent numbers for one million dollars please

Alex, I will take congruent numbers for one million dollars please Alex, I will take congruent numbers for one million dollars please Jim L. Brown The Ohio State University Columbus, OH 4310 jimlb@math.ohio-state.edu One of the most alluring aspectives of number theory

More information

CONTINUED FRACTIONS AND FACTORING. Niels Lauritzen

CONTINUED FRACTIONS AND FACTORING. Niels Lauritzen CONTINUED FRACTIONS AND FACTORING Niels Lauritzen ii NIELS LAURITZEN DEPARTMENT OF MATHEMATICAL SCIENCES UNIVERSITY OF AARHUS, DENMARK EMAIL: niels@imf.au.dk URL: http://home.imf.au.dk/niels/ Contents

More information

Columbia University in the City of New York New York, N.Y. 10027

Columbia University in the City of New York New York, N.Y. 10027 Columbia University in the City of New York New York, N.Y. 10027 DEPARTMENT OF MATHEMATICS 508 Mathematics Building 2990 Broadway Fall Semester 2005 Professor Ioannis Karatzas W4061: MODERN ANALYSIS Description

More information

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory

More information

Primes in Sequences. Lee 1. By: Jae Young Lee. Project for MA 341 (Number Theory) Boston University Summer Term I 2009 Instructor: Kalin Kostadinov

Primes in Sequences. Lee 1. By: Jae Young Lee. Project for MA 341 (Number Theory) Boston University Summer Term I 2009 Instructor: Kalin Kostadinov Lee 1 Primes in Sequences By: Jae Young Lee Project for MA 341 (Number Theory) Boston University Summer Term I 2009 Instructor: Kalin Kostadinov Lee 2 Jae Young Lee MA341 Number Theory PRIMES IN SEQUENCES

More information

Is n a Prime Number? Manindra Agrawal. March 27, 2006, Delft. IIT Kanpur

Is n a Prime Number? Manindra Agrawal. March 27, 2006, Delft. IIT Kanpur Is n a Prime Number? Manindra Agrawal IIT Kanpur March 27, 2006, Delft Manindra Agrawal (IIT Kanpur) Is n a Prime Number? March 27, 2006, Delft 1 / 47 Overview 1 The Problem 2 Two Simple, and Slow, Methods

More information

7. Some irreducible polynomials

7. Some irreducible polynomials 7. Some irreducible polynomials 7.1 Irreducibles over a finite field 7.2 Worked examples Linear factors x α of a polynomial P (x) with coefficients in a field k correspond precisely to roots α k [1] of

More information

Lecture 13 - Basic Number Theory.

Lecture 13 - Basic Number Theory. Lecture 13 - Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are non-negative integers. We say that A divides B, denoted

More information

Continued Fractions. Darren C. Collins

Continued Fractions. Darren C. Collins Continued Fractions Darren C Collins Abstract In this paper, we discuss continued fractions First, we discuss the definition and notation Second, we discuss the development of the subject throughout history

More information

Trigonometric Functions and Equations

Trigonometric Functions and Equations Contents Trigonometric Functions and Equations Lesson 1 Reasoning with Trigonometric Functions Investigations 1 Proving Trigonometric Identities... 271 2 Sum and Difference Identities... 276 3 Extending

More information

Theorem3.1.1 Thedivisionalgorithm;theorem2.2.1insection2.2 If m, n Z and n is a positive

Theorem3.1.1 Thedivisionalgorithm;theorem2.2.1insection2.2 If m, n Z and n is a positive Chapter 3 Number Theory 159 3.1 Prime Numbers Prime numbers serve as the basic building blocs in the multiplicative structure of the integers. As you may recall, an integer n greater than one is prime

More information

Prime numbers and prime polynomials. Paul Pollack Dartmouth College

Prime numbers and prime polynomials. Paul Pollack Dartmouth College Prime numbers and prime polynomials Paul Pollack Dartmouth College May 1, 2008 Analogies everywhere! Analogies in elementary number theory (continued fractions, quadratic reciprocity, Fermat s last theorem)

More information

Today s Topics. Primes & Greatest Common Divisors

Today s Topics. Primes & Greatest Common Divisors Today s Topics Primes & Greatest Common Divisors Prime representations Important theorems about primality Greatest Common Divisors Least Common Multiples Euclid s algorithm Once and for all, what are prime

More information

8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

More information

4.2 Euclid s Classification of Pythagorean Triples

4.2 Euclid s Classification of Pythagorean Triples 178 4. Number Theory: Fermat s Last Theorem Exercise 4.7: A primitive Pythagorean triple is one in which any two of the three numbers are relatively prime. Show that every multiple of a Pythagorean triple

More information

The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.

The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors. The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,

More information

Homework until Test #2

Homework until Test #2 MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such

More information

11 Ideals. 11.1 Revisiting Z

11 Ideals. 11.1 Revisiting Z 11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(

More information

Primality - Factorization

Primality - Factorization Primality - Factorization Christophe Ritzenthaler November 9, 2009 1 Prime and factorization Definition 1.1. An integer p > 1 is called a prime number (nombre premier) if it has only 1 and p as divisors.

More information

ALGEBRAIC APPROACH TO COMPOSITE INTEGER FACTORIZATION

ALGEBRAIC APPROACH TO COMPOSITE INTEGER FACTORIZATION ALGEBRAIC APPROACH TO COMPOSITE INTEGER FACTORIZATION Aldrin W. Wanambisi 1* School of Pure and Applied Science, Mount Kenya University, P.O box 553-50100, Kakamega, Kenya. Shem Aywa 2 Department of Mathematics,

More information

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization

More information

Lies My Calculator and Computer Told Me

Lies My Calculator and Computer Told Me Lies My Calculator and Computer Told Me 2 LIES MY CALCULATOR AND COMPUTER TOLD ME Lies My Calculator and Computer Told Me See Section.4 for a discussion of graphing calculators and computers with graphing

More information

On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples

On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples Brian Hilley Boston College MT695 Honors Seminar March 3, 2006 1 Introduction 1.1 Mazur s Theorem Let C be a

More information

Factoring & Primality

Factoring & Primality Factoring & Primality Lecturer: Dimitris Papadopoulos In this lecture we will discuss the problem of integer factorization and primality testing, two problems that have been the focus of a great amount

More information

An Introductory Course in Elementary Number Theory. Wissam Raji

An Introductory Course in Elementary Number Theory. Wissam Raji An Introductory Course in Elementary Number Theory Wissam Raji 2 Preface These notes serve as course notes for an undergraduate course in number theory. Most if not all universities worldwide offer introductory

More information

Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may

Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may Number Theory Divisibility and Primes Definition. If a and b are integers and there is some integer c such that a = b c, then we say that b divides a or is a factor or divisor of a and write b a. Definition

More information

The positive integers other than 1 may be divided into two classes, prime numbers (such as 2, 3, 5, 7) which do not admit of resolution into smaller

The positive integers other than 1 may be divided into two classes, prime numbers (such as 2, 3, 5, 7) which do not admit of resolution into smaller The positive integers other than may be divided into two classes, prime numbers (such as, 3, 5, 7) which do not admit of resolution into smaller factors, and composite numbers (such as 4, 6, 8, 9) which

More information

TEXAS A&M UNIVERSITY. Prime Factorization. A History and Discussion. Jason R. Prince. April 4, 2011

TEXAS A&M UNIVERSITY. Prime Factorization. A History and Discussion. Jason R. Prince. April 4, 2011 TEXAS A&M UNIVERSITY Prime Factorization A History and Discussion Jason R. Prince April 4, 2011 Introduction In this paper we will discuss prime factorization, in particular we will look at some of the

More information

SECTION 10-2 Mathematical Induction

SECTION 10-2 Mathematical Induction 73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms

More information

Integer roots of quadratic and cubic polynomials with integer coefficients

Integer roots of quadratic and cubic polynomials with integer coefficients Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street

More information

Master of Arts in Mathematics

Master of Arts in Mathematics Master of Arts in Mathematics Administrative Unit The program is administered by the Office of Graduate Studies and Research through the Faculty of Mathematics and Mathematics Education, Department of

More information

Every Positive Integer is the Sum of Four Squares! (and other exciting problems)

Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Sophex University of Texas at Austin October 18th, 00 Matilde N. Lalín 1. Lagrange s Theorem Theorem 1 Every positive integer

More information

A number field is a field of finite degree over Q. By the Primitive Element Theorem, any number

A number field is a field of finite degree over Q. By the Primitive Element Theorem, any number Number Fields Introduction A number field is a field of finite degree over Q. By the Primitive Element Theorem, any number field K = Q(α) for some α K. The minimal polynomial Let K be a number field and

More information

CHAPTER 5. Number Theory. 1. Integers and Division. Discussion

CHAPTER 5. Number Theory. 1. Integers and Division. Discussion CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a

More information

Chapter 11 Number Theory

Chapter 11 Number Theory Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications

More information

Congruent Number Problem

Congruent Number Problem University of Waterloo October 28th, 2015 Number Theory Number theory, can be described as the mathematics of discovering and explaining patterns in numbers. There is nothing in the world which pleases

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY

CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.

More information

How To Find Out How To Build An Elliptic Curve Over A Number Field

How To Find Out How To Build An Elliptic Curve Over A Number Field Numbers Volume 2015, Article ID 501629, 4 pages http://dx.doi.org/10.1155/2015/501629 Research Article On the Rank of Elliptic Curves in Elementary Cubic Extensions Rintaro Kozuma College of International

More information

ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM

ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM DANIEL PARKER Abstract. This paper provides a foundation for understanding Lenstra s Elliptic Curve Algorithm for factoring large numbers. We give

More information

Numerical Analysis An Introduction

Numerical Analysis An Introduction Walter Gautschi Numerical Analysis An Introduction 1997 Birkhauser Boston Basel Berlin CONTENTS PREFACE xi CHAPTER 0. PROLOGUE 1 0.1. Overview 1 0.2. Numerical analysis software 3 0.3. Textbooks and monographs

More information

International Journal of Information Technology, Modeling and Computing (IJITMC) Vol.1, No.3,August 2013

International Journal of Information Technology, Modeling and Computing (IJITMC) Vol.1, No.3,August 2013 FACTORING CRYPTOSYSTEM MODULI WHEN THE CO-FACTORS DIFFERENCE IS BOUNDED Omar Akchiche 1 and Omar Khadir 2 1,2 Laboratory of Mathematics, Cryptography and Mechanics, Fstm, University of Hassan II Mohammedia-Casablanca,

More information

Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and

Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and Breaking The Code Ryan Lowe Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and a minor in Applied Physics. As a sophomore, he took an independent study

More information

OSTROWSKI FOR NUMBER FIELDS

OSTROWSKI FOR NUMBER FIELDS OSTROWSKI FOR NUMBER FIELDS KEITH CONRAD Ostrowski classified the nontrivial absolute values on Q: up to equivalence, they are the usual (archimedean) absolute value and the p-adic absolute values for

More information

Introduction. Appendix D Mathematical Induction D1

Introduction. Appendix D Mathematical Induction D1 Appendix D Mathematical Induction D D Mathematical Induction Use mathematical induction to prove a formula. Find a sum of powers of integers. Find a formula for a finite sum. Use finite differences to

More information

Math 4310 Handout - Quotient Vector Spaces

Math 4310 Handout - Quotient Vector Spaces Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable

More information

An Overview of Integer Factoring Algorithms. The Problem

An Overview of Integer Factoring Algorithms. The Problem An Overview of Integer Factoring Algorithms Manindra Agrawal IITK / NUS The Problem Given an integer n, find all its prime divisors as efficiently as possible. 1 A Difficult Problem No efficient algorithm

More information

Doug Ravenel. October 15, 2008

Doug Ravenel. October 15, 2008 Doug Ravenel University of Rochester October 15, 2008 s about Euclid s Some s about primes that every mathematician should know (Euclid, 300 BC) There are infinitely numbers. is very elementary, and we

More information

Runtime and Implementation of Factoring Algorithms: A Comparison

Runtime and Implementation of Factoring Algorithms: A Comparison Runtime and Implementation of Factoring Algorithms: A Comparison Justin Moore CSC290 Cryptology December 20, 2003 Abstract Factoring composite numbers is not an easy task. It is classified as a hard algorithm,

More information

STUDENT S SOLUTIONS MANUAL ELEMENTARY NUMBER THEORY. Bart Goddard. Kenneth H. Rosen AND ITS APPLICATIONS FIFTH EDITION. to accompany.

STUDENT S SOLUTIONS MANUAL ELEMENTARY NUMBER THEORY. Bart Goddard. Kenneth H. Rosen AND ITS APPLICATIONS FIFTH EDITION. to accompany. STUDENT S SOLUTIONS MANUAL to accompany ELEMENTARY NUMBER THEORY AND ITS APPLICATIONS FIFTH EDITION Bart Goddard Kenneth H. Rosen AT&T Labs Reproduced by Pearson Addison-Wesley from electronic files supplied

More information

On Generalized Fermat Numbers 3 2n +1

On Generalized Fermat Numbers 3 2n +1 Applied Mathematics & Information Sciences 4(3) (010), 307 313 An International Journal c 010 Dixie W Publishing Corporation, U. S. A. On Generalized Fermat Numbers 3 n +1 Amin Witno Department of Basic

More information

Basics of Polynomial Theory

Basics of Polynomial Theory 3 Basics of Polynomial Theory 3.1 Polynomial Equations In geodesy and geoinformatics, most observations are related to unknowns parameters through equations of algebraic (polynomial) type. In cases where

More information

Prime Numbers and Irreducible Polynomials

Prime Numbers and Irreducible Polynomials Prime Numbers and Irreducible Polynomials M. Ram Murty The similarity between prime numbers and irreducible polynomials has been a dominant theme in the development of number theory and algebraic geometry.

More information

MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS

MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS Class Meetings: MW 2:00-3:15 pm in Physics 144, September 7 to December 14 [Thanksgiving break November 23 27; final exam December 21] Instructor:

More information

THE NUMBER OF REPRESENTATIONS OF n OF THE FORM n = x 2 2 y, x > 0, y 0

THE NUMBER OF REPRESENTATIONS OF n OF THE FORM n = x 2 2 y, x > 0, y 0 THE NUMBER OF REPRESENTATIONS OF n OF THE FORM n = x 2 2 y, x > 0, y 0 RICHARD J. MATHAR Abstract. We count solutions to the Ramanujan-Nagell equation 2 y +n = x 2 for fixed positive n. The computational

More information

On the largest prime factor of x 2 1

On the largest prime factor of x 2 1 On the largest prime factor of x 2 1 Florian Luca and Filip Najman Abstract In this paper, we find all integers x such that x 2 1 has only prime factors smaller than 100. This gives some interesting numerical

More information

Note on some explicit formulae for twin prime counting function

Note on some explicit formulae for twin prime counting function Notes on Number Theory and Discrete Mathematics Vol. 9, 03, No., 43 48 Note on some explicit formulae for twin prime counting function Mladen Vassilev-Missana 5 V. Hugo Str., 4 Sofia, Bulgaria e-mail:

More information

Row Echelon Form and Reduced Row Echelon Form

Row Echelon Form and Reduced Row Echelon Form These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation

More information

Elementary Number Theory

Elementary Number Theory Elementary Number Theory A revision by Jim Hefferon, St Michael s College, 2003-Dec of notes by W. Edwin Clark, University of South Florida, 2002-Dec L A TEX source compiled on January 5, 2004 by Jim Hefferon,

More information

Georg Cantor and Set Theory

Georg Cantor and Set Theory Georg Cantor and Set Theory. Life Father, Georg Waldemar Cantor, born in Denmark, successful merchant, and stock broker in St Petersburg. Mother, Maria Anna Böhm, was Russian. In 856, because of father

More information

THE PRIME NUMBER THEOREM AND THE RIEMANN HYPOTHESIS. A marriage of calculus and arithmetic. BERNARD RUSSO University of California, Irvine

THE PRIME NUMBER THEOREM AND THE RIEMANN HYPOTHESIS. A marriage of calculus and arithmetic. BERNARD RUSSO University of California, Irvine THE PRIME NUMBER THEOREM AND THE RIEMANN HYPOTHESIS A marriage of calculus and arithmetic BERNARD RUSSO University of California, Irvine MARINA HIGH SCHOOL JUNE 7, 2011 Biographical Sketch Bernard Russo

More information

Distribution of prime numbers Fundamental Theorem Dan Liu

Distribution of prime numbers Fundamental Theorem Dan Liu Bulletin of Mathematical Sciences and Applications Online: 2013-02-04 ISSN: 2278-9634, Vol. 3, pp 45-48 doi:10.18052/www.scipress.com/bmsa.3.45 2013 SciPress Ltd., Switzerland Distribution of prime numbers

More information

Just the Factors, Ma am

Just the Factors, Ma am 1 Introduction Just the Factors, Ma am The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive

More information

Some applications of LLL

Some applications of LLL Some applications of LLL a. Factorization of polynomials As the title Factoring polynomials with rational coefficients of the original paper in which the LLL algorithm was first published (Mathematische

More information

The Mathematics of the RSA Public-Key Cryptosystem

The Mathematics of the RSA Public-Key Cryptosystem The Mathematics of the RSA Public-Key Cryptosystem Burt Kaliski RSA Laboratories ABOUT THE AUTHOR: Dr Burt Kaliski is a computer scientist whose involvement with the security industry has been through

More information

Settling a Question about Pythagorean Triples

Settling a Question about Pythagorean Triples Settling a Question about Pythagorean Triples TOM VERHOEFF Department of Mathematics and Computing Science Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven, The Netherlands E-Mail address:

More information

POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

More information

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12 CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

More information

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013

Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013 Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013 D. R. Wilkins Copyright c David R. Wilkins 1997 2013 Contents A Cyclotomic Polynomials 79 A.1 Minimum Polynomials of Roots of

More information

A Course on Number Theory. Peter J. Cameron

A Course on Number Theory. Peter J. Cameron A Course on Number Theory Peter J. Cameron ii Preface These are the notes of the course MTH6128, Number Theory, which I taught at Queen Mary, University of London, in the spring semester of 2009. There

More information

Arithmetic algorithms for cryptology 5 October 2015, Paris. Sieves. Razvan Barbulescu CNRS and IMJ-PRG. R. Barbulescu Sieves 0 / 28

Arithmetic algorithms for cryptology 5 October 2015, Paris. Sieves. Razvan Barbulescu CNRS and IMJ-PRG. R. Barbulescu Sieves 0 / 28 Arithmetic algorithms for cryptology 5 October 2015, Paris Sieves Razvan Barbulescu CNRS and IMJ-PRG R. Barbulescu Sieves 0 / 28 Starting point Notations q prime g a generator of (F q ) X a (secret) integer

More information

z 0 and y even had the form

z 0 and y even had the form Gaussian Integers The concepts of divisibility, primality and factoring are actually more general than the discussion so far. For the moment, we have been working in the integers, which we denote by Z

More information

1.2. Successive Differences

1.2. Successive Differences 1. An Application of Inductive Reasoning: Number Patterns In the previous section we introduced inductive reasoning, and we showed how it can be applied in predicting what comes next in a list of numbers

More information

CRYPTOG NETWORK SECURITY

CRYPTOG NETWORK SECURITY CRYPTOG NETWORK SECURITY PRINCIPLES AND PRACTICES FOURTH EDITION William Stallings Prentice Hall Upper Saddle River, NJ 07458 'jkfetmhki^^rij^jibwfcmf «MMr""'-^.;

More information

ABEL S THEOREM IN PROBLEMS AND SOLUTIONS

ABEL S THEOREM IN PROBLEMS AND SOLUTIONS TeAM YYePG Digitally signed by TeAM YYePG DN: cn=team YYePG, c=us, o=team YYePG, ou=team YYePG, email=yyepg@msn.com Reason: I attest to the accuracy and integrity of this document Date: 2005.01.23 16:28:19

More information

THE SINE PRODUCT FORMULA AND THE GAMMA FUNCTION

THE SINE PRODUCT FORMULA AND THE GAMMA FUNCTION THE SINE PRODUCT FORMULA AND THE GAMMA FUNCTION ERICA CHAN DECEMBER 2, 2006 Abstract. The function sin is very important in mathematics and has many applications. In addition to its series epansion, it

More information

Not for resale. 4.1 Divisibility of Natural Numbers 4.2 Tests for Divisibility 4.3 Greatest Common Divisors and Least Common Multiples

Not for resale. 4.1 Divisibility of Natural Numbers 4.2 Tests for Divisibility 4.3 Greatest Common Divisors and Least Common Multiples CHAPTER 4 Number Theory 4.1 Divisibility of Natural Numbers 4.2 Tests for Divisibility 4.3 Greatest Common Divisors and Least Common Multiples 4.4 Codes and Credit Card Numbers: Connections to Number Theory

More information

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

More information

Some practice problems for midterm 2

Some practice problems for midterm 2 Some practice problems for midterm 2 Kiumars Kaveh November 15, 2011 Problem: What is the remainder of 6 2000 when divided by 11? Solution: This is a long-winded way of asking for the value of 6 2000 mod

More information

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing

More information

k, then n = p2α 1 1 pα k

k, then n = p2α 1 1 pα k Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

More information

Zeros of a Polynomial Function

Zeros of a Polynomial Function Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

More information

Short Programs for functions on Curves

Short Programs for functions on Curves Short Programs for functions on Curves Victor S. Miller Exploratory Computer Science IBM, Thomas J. Watson Research Center Yorktown Heights, NY 10598 May 6, 1986 Abstract The problem of deducing a function

More information

Factoring Polynomials

Factoring Polynomials Factoring Polynomials Hoste, Miller, Murieka September 12, 2011 1 Factoring In the previous section, we discussed how to determine the product of two or more terms. Consider, for instance, the equations

More information

Revised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)

Revised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m) Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.

More information

How To Prove The Dirichlet Unit Theorem

How To Prove The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

MATH 132: CALCULUS II SYLLABUS

MATH 132: CALCULUS II SYLLABUS MATH 32: CALCULUS II SYLLABUS Prerequisites: Successful completion of Math 3 (or its equivalent elsewhere). Math 27 is normally not a sufficient prerequisite for Math 32. Required Text: Calculus: Early

More information

UNIVERSITY OF PUNE, PUNE 411007. BOARD OF STUDIES IN MATHEMATICS SYLLABUS

UNIVERSITY OF PUNE, PUNE 411007. BOARD OF STUDIES IN MATHEMATICS SYLLABUS UNIVERSITY OF PUNE, PUNE 411007. BOARD OF STUDIES IN MATHEMATICS SYLLABUS F.Y.B.Sc (MATHEMATICS) PAPER 1 ALGEBRA AND GEOMETRY FIRST TERM 1) Sets (4 Lectures) 1.1 Power set of a set, Product of two sets.

More information

Basic Algorithms In Computer Algebra

Basic Algorithms In Computer Algebra Basic Algorithms In Computer Algebra Kaiserslautern SS 2011 Prof. Dr. Wolfram Decker 2. Mai 2011 References Cohen, H.: A Course in Computational Algebraic Number Theory. Springer, 1993. Cox, D.; Little,

More information

So let us begin our quest to find the holy grail of real analysis.

So let us begin our quest to find the holy grail of real analysis. 1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers

More information

The Method of Partial Fractions Math 121 Calculus II Spring 2015

The Method of Partial Fractions Math 121 Calculus II Spring 2015 Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

More information

Complex Function Theory. Second Edition. Donald Sarason >AMS AMERICAN MATHEMATICAL SOCIETY

Complex Function Theory. Second Edition. Donald Sarason >AMS AMERICAN MATHEMATICAL SOCIETY Complex Function Theory Second Edition Donald Sarason >AMS AMERICAN MATHEMATICAL SOCIETY Contents Preface to the Second Edition Preface to the First Edition ix xi Chapter I. Complex Numbers 1 1.1. Definition

More information