# Basics of Polynomial Theory

Size: px
Start display at page:

## Transcription

1 3 Basics of Polynomial Theory 3.1 Polynomial Equations In geodesy and geoinformatics, most observations are related to unknowns parameters through equations of algebraic (polynomial) type. In cases where the observations are not of polynomial type, as exemplified by the GPS meteorology problem of Chap. 13, they are converted via Theorem 3.1 on p. 20 into polynomials. The unknown parameters are then be obtained by solving the resulting polynomial equations. Such solutions are only possible through application of operations addition and multiplication on polynomials which form elements of polynomial rings. This chapter discusses polynomials and the properties that characterize them. Starting from the definitions of monomials, basic polynomial aspects that are relevant for daily operations are presented. A monomial is defined as Definition 3.1 (Monomial). A monomial is a multivariate product of the form x α 1 1 xα xαn n, (α 1,..., α n ) Z n + in the variables x 1,..., x n. In Definition 3.1 above, the set Z n + comprises positive elements of the set of integers (2.2) that we saw in Chap. 2, p. 8. Example 3.1 (Monomial). Consider the system of equations for solving distances in the three-dimensional resection problem given as (see e.g., (11.44) on p. 180) x a 12x 1 x 2 + x a o = 0 x b 23x 2 x 3 + x b o = 0 x c 31x 3 x 1 + x c o = 0 where x 1 R +, x 2 R +, x 3 R +.

2 18 3 Basics of Polynomial Theory The variables {x 1, x 2, x 3 } are unknowns while the other terms are known constants. The products of variables { x 2 1, x 1x 2, x 2 2, x 2x 3, x 2 3, x 3x 1 } are monomials in {x 1, x 2, x 3 }. Summation of monomials form polynomials defined as Definition 3.2 (Polynomial). A polynomial f k [x 1,...,x n ] in variables x 1,...,x n with coefficients in the field k is a finite linear combination of monomials with pairwise different terms expressed as f = α a α x α, a α k, x α = (x α 1,..., x αn ), α = (α 1,..., α n ), (3.1) where a α are coefficients in the field k, e.g., R or C and x α the monomials. Example 3.2 (Polynomials). Equations x a 12x 1 x 2 + x a o = 0 x b 23x 2 x 3 + x b o = 0 x c 31x 3 x 1 + x c o = 0, in Example 3.1 are multivariate polynomials. The first expression is a multivariate polynomial in two variables {x 1, x 2 } and a linear combination of monomials { x 2 1, x 1x 2, x 2 2}. The second expression is a multivariate polynomial in two variables {x 2, x 3 } and a linear combination of the monomials { x 2 2, x 2x 3, x 2 3}, while the third expression is a multivariate polynomial in two variables {x 3, x 1 } and a linear combination of the monomials { x 2 3, x 3x 1, x 2 1}. In Example 3.2, the coefficients of the polynomials are elements of the set Z. In general, the coefficients can take on any sets Q, R, C of number rings or other rings such as modular arithmetic rings. These coefficients can be added, subtracted, multiplied or divided, and as such play a key role in determining the solutions of polynomial equations. The definition of the set to which the coefficients belong determines whether a polynomial equation is solvable or not. Consider the following example: Example 3.3. Given an equation 9w 2 1 = 0 with the coefficients in the integral domain, obtain the integer solutions. Since the coefficient 9 Z, the equation does not have a solution. If instead the coefficient 9 Q, then the solution w = ± 1 3 exist.

3 3.2 Polynomial Rings 19 From Definition 2.1 of algebraic, polynomials become algebraic once (3.1) is equated to 0. The fundamental problem of algebra can thus be stated as the solution of equations of form (3.1) equated to Polynomial Rings In Sect. 2.3 of Chap. 2, the theory of rings was introduced with respect to numbers. Apart from the number rings, polynomials are objects that also satisfy ring axioms leading to polynomial rings upon which operations addition and multiplication are implemented Polynomial Objects as Rings Polynomial rings are defined as Definition 3.3 (Polynomial ring). Consider a ring R say of real numbers R. Given a variable x / R, a univariate polynomial f(x) is formed (see Definition 3.2 on p. 18) by assigning coefficients a i R to the variable and obtaining summation over finite number of distinct integers. Thus f(x) = c α x α, c α R, α 0 α is said to be a univariate polynomial over R. If two polynomials are given such that f 1 (x) = c i x i and f 2 (x) = d j x j, then two binary i j operations addition and multiplication can be defined on these polynomials such that: (a) Addition: f 1 (x) + f 2 (x) = e k x k, e k = c k + d k, e k R k (b) Multiplication: f 1 (x).f 2 (x) = g k x k, g k = c i d j, g k R. k i+j=k A collection of polynomials with these additive and multiplicative rules form a commutative ring with zero element and identity 1. A univariate polynomial f(x) obtained by assigning elements c i belonging to the ring R to the variable x is called a polynomial ring and is expressed as f(x) = R[x]. In general the entire collection of all polynomials in x 1,...,x n, with coefficients in the field k that satisfy the definition of a ring above are called a polynomial rings. Designated P, polynomial rings are represented by n unknown variables x i over k expressed as P := k [x 1,..., x n ]. Its elements are polynomials

4 20 3 Basics of Polynomial Theory known as univariate when n = 1 and multivariate otherwise. The distinction between a polynomial ring and a polynomial is that the latter is the sum of a finite set of monomials (see e.g., Definition 3.1 on p. 17) and is an element of the former. Example 3.4. Equations x a 12x 1 x 2 + x a o = 0 x b 23x 2 x 3 + x b o = 0 x c 31x 3 x 1 + x c o = 0 of Example 3.1 are said to be polynomials in three variables [x 1, x 2, x 3 ] forming elements of the polynomial ring P over the field of real numbers R expressed as P := R [x 1, x 2, x 3 ]. Polynomials that we use in solving unknown parameters in various problems, as we shall see later, form elements of polynomial rings. Polynomial rings provide means and tools upon which to manipulate the polynomial equations. They can either be added, subtracted, multiplied or divided. These operations on polynomial rings form the basis of solving systems of equations algebraically as will be made clear in the chapters ahead. Next, we state the theorem that enables the solution of nonlinear systems of equations in geodesy and geoinformatics. Theorem 3.1. Given n algebraic (polynomial) observational equations, where n is the dimension of the observation space Y of order l in m unknown variables, and m is the dimension of the parameter space X, the application of least squares solution (LESS) to the algebraic observation equations gives (2l 1) as the order of the set of nonlinear algebraic normal equations. There exists m normal equations of the polynomial order (2l 1) to be solved. Proof. Given nonlinear algebraic equations f i k{ξ 1,..., ξ m } expressed as f 1 k{ξ 1,..., ξ m } f 2 k{ξ 1,..., ξ m }. (3.2).. f n k{ξ 1,..., ξ m }, with the order considered as l, we write the objective function to be minimized as

5 3.2 Polynomial Rings 21 f 2 = f f 2 n f i k{ξ 1,..., ξ m }, (3.3) and obtain the partial derivatives (first derivatives of 3.3) with respect to the unknown variables {ξ 1,..., ξ m }. The order of (3.3) which is l 2 then reduces to (2l 1) upon differentiating the objective function with respect to the variables ξ 1,..., ξ m. Thus resulting in m normal equations of the polynomial order (2l 1). Example 3.5 (Pseudo-ranging problem). For pseudo-ranging or distance equations, the order of the polynomials in the algebraic observational equations is l = 2. If we take the pseudo-ranges squared or distances squared, a necessary procedure in-order to make the observation equations algebraic or polynomial, and implement least squares solution (LESS), the objective function which is of order l = 4 reduces by one to order l = 3 upon differentiating once. The normal equations are of order l = 3 as expected. The significance of Theorem 3.1 is that all observational equations of interest are successfully converted to algebraic or polynomial equations. This implies that problems requiring exact algebraic solutions must first have their equations converted into algebraic. This will be made clear in Chap. 13 where trigonometric nonlinear system on equations are first converted into algebraic Operations Addition and Multiplication Definition 3.3 implies that a polynomial ring qualifies as a ring based on the applications of operations addition and multiplication on its coefficients. In this case, the axioms that follow the Abelian group with respect to addition and the semi group with respect to multiplication readily follow. Of importance in manipulating polynomial rings using operations addition and multiplication is the concept of division of polynomials defined as Definition 3.4 (Polynomial division). Consider the polynomial ring k[x] whose elements are polynomials f(x) and g(x). There exists unique polynomials p(x) and r(x) also elements of polynomial ring k[x] such that f(x) = g(x)p(x) + r(x), with either r(x) = 0 or degree of r(x) is less than the degree of g(x).

6 22 3 Basics of Polynomial Theory For univariate polynomials, as in Definition 3.4, the Euclidean algorithm employs operations addition and multiplication to factor polynomials in-order to reduce them to satisfy the definition of division algorithm. 3.3 Factoring Polynomials In-order to understand the factorization of polynomials, it is essential to revisit some of the properties of prime numbers of integers. This is due to the fact that polynomials behave much like integers. Whereas for integers, any integer n > 1 is either prime (i.e., can only be factored by 1 and n itself) or a product of prime numbers, a polynomial f(x) k[x] is either irreducible in k[x] or factors as a product of irreducible polynomials in the field k[x]. The polynomial f(x) has to be of positive degree. Factorization of polynomials play an important role as it enables solution of polynomial roots as will be seen in the next section. Indeed, the Groebner basis algorithm presented in Chap. 4 makes use of the factorization of polynomials. In general, computer algebra systems discussed in Chap. 16 offers possibilities of factoring polynomials. 3.4 Polynomial Roots More often than not, the most encountered interaction with polynomials is perhaps the solution of its roots. Finding the roots of polynomials is essential for most computations that we undertake in practice. As an example, consider a simple planar ranging case where distances have been measured from two known stations to an unknown station (see e.g, Fig. 4.1 on p. 30). In such a case, the measured distances are normally related to the coordinates of the unknown station by multivariate polynomial equations. If for instance a station P 1, whose coordinates are {x 1, y 1 } is occupied, the distance s 1 can be measured to an unknown station P 0. The coordinates {x 0, y 0 } of this unknown station are desired and have to be determined from distance measurements. The relationship between the measured distance and the coordinates is given by s 1 = (x 1 x 0 ) 2 + (y 1 y 0 ) 2. (3.4) Applying Theorem 3.1, a necessary step to convert (3.4) into polynomial, (3.4) is squared to give a multivariate quadratic polynomial

7 3.4 Polynomial Roots 23 s 2 1 = (x 1 x 0 ) 2 + (y 1 y 0 ) 2. (3.5) Equation (3.5) has two unknowns thus necessitating a second distance measurement to be taken. Measuring this second distance s 2 from station P 2, whose coordinates {x 2, y 2 } are known, to the unknown station P 0 leads to a second multivariate quadratic polynomial equation s 2 2 = (x 2 x 0 ) 2 + (y 2 y 0 ) 2. (3.6) The intersection of the two equations (3.5) and (3.6) results in two quadratic equations ax bx 0 + c = 0 and dy ey 0 + f = 0 whose roots give the desired coordinates x 0, y 0 of the unknown station P 0. In Sect. 4.1, we will expound further on the derivation of these multivariate quadratic polynomial equations. In Sect. 3.6, we will discuss the types of polynomials with real coefficients. Suffice to mention at this point that polynomials, as defined in Definition 3.2 with the coefficients in the field k, has a solution ξ such that on replacing the variable x α, one obtains a n ξ n + a n 1 ξ n a 1 ξ + a 0 = 0. (3.7) From high school algebra, we learnt that if ξ is a solution of a polynomial f(x), also called the root of f(x), then (x ξ) divides the polynomial f(x). This fact enables the solution of the remaining roots of the polynomial as we already know. The division of f(x) by (x ξ) obeys the division rule discussed in Sect In a case where f(x) = 0 has many solutions (i.e., multiple roots ξ 1, ξ 2,..., ξ m ), then (x ξ 1 ), (x ξ 2 ),...,(x ξ m ) all divide f(x) in the field k. In general, a polynomial of degree n will have n roots that are either real or complex. If one is operating in the real domain, i.e., the polynomial coefficients are real, the complex roots normally results in a pair of conjugate roots. Polynomial coefficients play a significant role in the determination of the roots. A slight change in the coefficients would significantly alter the solutions. For ill-conditioned polynomials, such a change in the coefficients can lead to disastrous results. Methods of determining polynomial roots have been elaborately presented by [269]. We should point out that for polynomials of degree n in the field of real numbers R however, the solutions exist only for polynomials up to degree 4. Above this, Niels Henrick Abel ( ) proved through his impossibility theorem that the roots are insolvable, while Evariste Galois ( ) gave a more concrete proof that for every integer n greater than 4, there can not be a formula for the roots of a general n t h degree polynomial in terms of coefficients.

8

### it is easy to see that α = a

21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

### a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x

### 7. Some irreducible polynomials

7. Some irreducible polynomials 7.1 Irreducibles over a finite field 7.2 Worked examples Linear factors x α of a polynomial P (x) with coefficients in a field k correspond precisely to roots α k [1] of

### Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

### SOLVING POLYNOMIAL EQUATIONS

C SOLVING POLYNOMIAL EQUATIONS We will assume in this appendix that you know how to divide polynomials using long division and synthetic division. If you need to review those techniques, refer to an algebra

### 1.7. Partial Fractions. 1.7.1. Rational Functions and Partial Fractions. A rational function is a quotient of two polynomials: R(x) = P (x) Q(x).

.7. PRTIL FRCTIONS 3.7. Partial Fractions.7.. Rational Functions and Partial Fractions. rational function is a quotient of two polynomials: R(x) = P (x) Q(x). Here we discuss how to integrate rational

### H/wk 13, Solutions to selected problems

H/wk 13, Solutions to selected problems Ch. 4.1, Problem 5 (a) Find the number of roots of x x in Z 4, Z Z, any integral domain, Z 6. (b) Find a commutative ring in which x x has infinitely many roots.

### Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

### CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY

January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.

### The Method of Partial Fractions Math 121 Calculus II Spring 2015

Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

### Application. Outline. 3-1 Polynomial Functions 3-2 Finding Rational Zeros of. Polynomial. 3-3 Approximating Real Zeros of.

Polynomial and Rational Functions Outline 3-1 Polynomial Functions 3-2 Finding Rational Zeros of Polynomials 3-3 Approximating Real Zeros of Polynomials 3-4 Rational Functions Chapter 3 Group Activity:

### Zeros of a Polynomial Function

Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

### 15. Symmetric polynomials

15. Symmetric polynomials 15.1 The theorem 15.2 First examples 15.3 A variant: discriminants 1. The theorem Let S n be the group of permutations of {1,, n}, also called the symmetric group on n things.

### JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

### Higher Education Math Placement

Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

### FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization

### PROBLEM SET 6: POLYNOMIALS

PROBLEM SET 6: POLYNOMIALS 1. introduction In this problem set we will consider polynomials with coefficients in K, where K is the real numbers R, the complex numbers C, the rational numbers Q or any other

### 1 Lecture: Integration of rational functions by decomposition

Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.

### 9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11.

9. POLYNOMIALS 9.1. Definition of a Polynomial A polynomial is an expression of the form: a(x) = a n x n + a n-1 x n-1 +... + a 1 x + a 0. The symbol x is called an indeterminate and simply plays the role

### Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

### Linear Algebra I. Ronald van Luijk, 2012

Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.

### CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

### SOLVING POLYNOMIAL EQUATIONS BY RADICALS

SOLVING POLYNOMIAL EQUATIONS BY RADICALS Lee Si Ying 1 and Zhang De-Qi 2 1 Raffles Girls School (Secondary), 20 Anderson Road, Singapore 259978 2 Department of Mathematics, National University of Singapore,

### minimal polyonomial Example

Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We

### POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

### Quotient Rings and Field Extensions

Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.

### a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

### Integrals of Rational Functions

Integrals of Rational Functions Scott R. Fulton Overview A rational function has the form where p and q are polynomials. For example, r(x) = p(x) q(x) f(x) = x2 3 x 4 + 3, g(t) = t6 + 4t 2 3, 7t 5 + 3t

### 1.3 Algebraic Expressions

1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

### Zeros of Polynomial Functions

Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction

2.5 ZEROS OF POLYNOMIAL FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions.

### Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

### Vector and Matrix Norms

Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty

### Equations, Inequalities & Partial Fractions

Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities

### Factorization Algorithms for Polynomials over Finite Fields

Degree Project Factorization Algorithms for Polynomials over Finite Fields Sajid Hanif, Muhammad Imran 2011-05-03 Subject: Mathematics Level: Master Course code: 4MA11E Abstract Integer factorization is

### 1.3 Polynomials and Factoring

1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.

### 3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes

Partial Fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. For 4x + 7 example it can be shown that x 2 + 3x + 2 has the same

### ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS

ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS DANIEL RABAYEV AND JACK SONN Abstract. Let f(x) be a monic polynomial in Z[x] with no rational roots but with roots in Q p for

### Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2)

Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2) Kevin Broughan University of Waikato, Hamilton, New Zealand May 13, 2010 Remainder and Factor Theorem 15 Definition of factor If f (x)

### Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

### 6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives

6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise

### 3.6 The Real Zeros of a Polynomial Function

SECTION 3.6 The Real Zeros of a Polynomial Function 219 3.6 The Real Zeros of a Polynomial Function PREPARING FOR THIS SECTION Before getting started, review the following: Classification of Numbers (Appendix,

### Factoring Polynomials

Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent

### 3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

### 3 1. Note that all cubes solve it; therefore, there are no more

Math 13 Problem set 5 Artin 11.4.7 Factor the following polynomials into irreducible factors in Q[x]: (a) x 3 3x (b) x 3 3x + (c) x 9 6x 6 + 9x 3 3 Solution: The first two polynomials are cubics, so if

### HIBBING COMMUNITY COLLEGE COURSE OUTLINE

HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE: - Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,

### Mathematics Georgia Performance Standards

Mathematics Georgia Performance Standards K-12 Mathematics Introduction The Georgia Mathematics Curriculum focuses on actively engaging the students in the development of mathematical understanding by

### THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear

### Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper

Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

### The Notebook Series. The solution of cubic and quartic equations. R.S. Johnson. Professor of Applied Mathematics

The Notebook Series The solution of cubic and quartic equations by R.S. Johnson Professor of Applied Mathematics School of Mathematics & Statistics University of Newcastle upon Tyne R.S.Johnson 006 CONTENTS

### Zeros of Polynomial Functions

Zeros of Polynomial Functions Objectives: 1.Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions 2.Find rational zeros of polynomial functions 3.Find conjugate

### (a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9

Homework #01, due 1/20/10 = 9.1.2, 9.1.4, 9.1.6, 9.1.8, 9.2.3 Additional problems for study: 9.1.1, 9.1.3, 9.1.5, 9.1.13, 9.2.1, 9.2.2, 9.2.4, 9.2.5, 9.2.6, 9.3.2, 9.3.3 9.1.1 (This problem was not assigned

### Zeros of Polynomial Functions

Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of

### Unique Factorization

Unique Factorization Waffle Mathcamp 2010 Throughout these notes, all rings will be assumed to be commutative. 1 Factorization in domains: definitions and examples In this class, we will study the phenomenon

### Polynomials and Factoring

Lesson 2 Polynomials and Factoring A polynomial function is a power function or the sum of two or more power functions, each of which has a nonnegative integer power. Because polynomial functions are built

### Vocabulary Words and Definitions for Algebra

Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

### South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

### Factoring Cubic Polynomials

Factoring Cubic Polynomials Robert G. Underwood 1. Introduction There are at least two ways in which using the famous Cardano formulas (1545) to factor cubic polynomials present more difficulties than

### Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a

PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

### FACTORING QUADRATICS 8.1.1 and 8.1.2

FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.

### MATH 10034 Fundamental Mathematics IV

MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.

### The van Hoeij Algorithm for Factoring Polynomials

The van Hoeij Algorithm for Factoring Polynomials Jürgen Klüners Abstract In this survey we report about a new algorithm for factoring polynomials due to Mark van Hoeij. The main idea is that the combinatorial

### DRAFT. Algebra 1 EOC Item Specifications

DRAFT Algebra 1 EOC Item Specifications The draft Florida Standards Assessment (FSA) Test Item Specifications (Specifications) are based upon the Florida Standards and the Florida Course Descriptions as

### Cryptography and Network Security. Prof. D. Mukhopadhyay. Department of Computer Science and Engineering. Indian Institute of Technology, Kharagpur

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 12 Block Cipher Standards

### Vieta s Formulas and the Identity Theorem

Vieta s Formulas and the Identity Theorem This worksheet will work through the material from our class on 3/21/2013 with some examples that should help you with the homework The topic of our discussion

### Algebra and Geometry Review (61 topics, no due date)

Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

### Lecture 6: Finite Fields (PART 3) PART 3: Polynomial Arithmetic. Theoretical Underpinnings of Modern Cryptography

Lecture 6: Finite Fields (PART 3) PART 3: Polynomial Arithmetic Theoretical Underpinnings of Modern Cryptography Lecture Notes on Computer and Network Security by Avi Kak (kak@purdue.edu) January 29, 2015

### SOLVING SEXTIC EQUATIONS. Raghavendra G. Kulkarni

Atlantic Electronic http://aejm.ca Journal of Mathematics http://aejm.ca/rema Volume 3, Number 1, Winter 2008 pp. 56 60 SOLVING SEXTIC EQUATIONS Raghavendra G. Kulkarni Hybrid Microcircuits Division Bharat

### ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section

ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section MULTIPLE CHOICE 1. ANS: C 2. ANS: A 3. ANS: A OBJ: 5-3.1 Using Vertex Form SHORT ANSWER 4. ANS: (x + 6)(x 2 6x + 36) OBJ: 6-4.2 Solving Equations by

### CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

### Answer Key for California State Standards: Algebra I

Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

### 1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain

Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is

### Factoring Polynomials

Factoring Polynomials Hoste, Miller, Murieka September 12, 2011 1 Factoring In the previous section, we discussed how to determine the product of two or more terms. Consider, for instance, the equations

### is identically equal to x 2 +3x +2

Partial fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as 1 + 3

### March 29, 2011. 171S4.4 Theorems about Zeros of Polynomial Functions

MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial

### NSM100 Introduction to Algebra Chapter 5 Notes Factoring

Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the

### 1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ]

1 Homework 1 (1) Prove the ideal (3,x) is a maximal ideal in Z[x]. SOLUTION: Suppose we expand this ideal by including another generator polynomial, P / (3, x). Write P = n + x Q with n an integer not

### PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

### Polynomial Invariants

Polynomial Invariants Dylan Wilson October 9, 2014 (1) Today we will be interested in the following Question 1.1. What are all the possible polynomials in two variables f(x, y) such that f(x, y) = f(y,

### Differentiation and Integration

This material is a supplement to Appendix G of Stewart. You should read the appendix, except the last section on complex exponentials, before this material. Differentiation and Integration Suppose we have

### 1 VECTOR SPACES AND SUBSPACES

1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such

### 5. Factoring by the QF method

5. Factoring by the QF method 5.0 Preliminaries 5.1 The QF view of factorability 5.2 Illustration of the QF view of factorability 5.3 The QF approach to factorization 5.4 Alternative factorization by the

### MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,

### Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

### 3. INNER PRODUCT SPACES

. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

### Section 6.1 Factoring Expressions

Section 6.1 Factoring Expressions The first method we will discuss, in solving polynomial equations, is the method of FACTORING. Before we jump into this process, you need to have some concept of what

### QUADRATIC EQUATIONS EXPECTED BACKGROUND KNOWLEDGE

MODULE - 1 Quadratic Equations 6 QUADRATIC EQUATIONS In this lesson, you will study aout quadratic equations. You will learn to identify quadratic equations from a collection of given equations and write

### Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

### ( ) FACTORING. x In this polynomial the only variable in common to all is x.

FACTORING Factoring is similar to breaking up a number into its multiples. For example, 10=5*. The multiples are 5 and. In a polynomial it is the same way, however, the procedure is somewhat more complicated

### Solving Cubic Polynomials

Solving Cubic Polynomials 1.1 The general solution to the quadratic equation There are four steps to finding the zeroes of a quadratic polynomial. 1. First divide by the leading term, making the polynomial

### Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.

Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method

### ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola

### 3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.

### Inner Product Spaces

Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

### 3 Factorisation into irreducibles

3 Factorisation into irreducibles Consider the factorisation of a non-zero, non-invertible integer n as a product of primes: n = p 1 p t. If you insist that primes should be positive then, since n could

### Factoring Special Polynomials

6.6 Factoring Special Polynomials 6.6 OBJECTIVES 1. Factor the difference of two squares 2. Factor the sum or difference of two cubes In this section, we will look at several special polynomials. These