# Prime numbers and prime polynomials. Paul Pollack Dartmouth College

Size: px
Start display at page:

## Transcription

1 Prime numbers and prime polynomials Paul Pollack Dartmouth College May 1, 2008

2 Analogies everywhere! Analogies in elementary number theory (continued fractions, quadratic reciprocity, Fermat s last theorem) Analogies in algebraic number theory (the theory of global function fields vs. the theory of algebraic number fields) Analogies in analytic number theory, especially prime number theory 1

3 A partial dictionary between Z and F q [T ] Primes Irreducibles {±1} F q [T ] = F q Positive integers Monic polynomials Usual absolute value f = q deg f Observe #Z/nZ = n and #F q [T ]/(p(t )) = p(t ). 2

4 Prime number theorem (Hadamard, de la Vallée Poussin). If π(x) denotes the number of primes p x, then π(x) x log x as x. Prime number theorem for polynomials. Let π(q; d) denote the number of monic, degree d irreducibles over the finite field F q. Then as q d, we have π(q; d) qd d. Notice that if X = q d, then q d /d = X/ log q X. 3

5 Gauss s take on the prime number theorem: Empirical observations suggest that the primes near x have a density of about 1/ log x. So we should have π(x) 1 log log log x. Theorem (von Koch). If the Riemann Hypothesis is true, then π(x) = 2 n x 1 log n + O(x1/2 log x). 4

6 In the polynomial setting, Gauss s proof shows that qd π(q; d) d 2qd/2 d. But perhaps irregularities surface if we introduce a finer count? Let p be a prime. To each nonnegative integer in base p, we associate a polynomial in F p [T ], a 0 + a 1 p + + a k p k a 0 + a 1 T + + a k T k. Say that f is encoded by the integer f. 5

7 Define π p (X) as the number of n x which encode irreducible polynomials over F p. We might hope that π p (X) f x 1 deg f. Theorem. If X p, then π p (X) = f x where p d X < p d+1. 1 deg f + O ( dp d/2+1 ), Notice dp d/2+1 p X 1/2 log X, so this is a von Koch analogue. 6

8 Proof idea: To each global function field K (finite extension of F q (T )) one associates a zeta function, ζ K (s) = a 0 1 Nm(a) s. A deep theorem of Weil asserts that these zeta functions all satisfy the analogue of the Riemann Hypothesis. Define L-functions which are sensitive to the behavior of the initial coefficients of a polynomial in F q [T ]. The analytic properties of this L-function can then be linked to the analytic properties of ζ K (s) for an appropriate K and the Riemann Hypothesis brought into play. 7

9 Twin primes Twin prime conjecture. There are infinitely many prime pairs p, p + 2. Hypothesis H (Schinzel). Let f 1 (T ),..., f r (T ) be nonconstant polynomials with integer coefficients and positive leading coefficients, all irreducible over Z. Suppose that there is no prime p for which p divides f 1 (n) f r (n) for all n. Then for infinitely many positive integers n, the specializations f 1 (n),..., f r (n) are simultaneously prime. Examples: Twin prime conjecture, or the infinitude of primes of the form n

10 Theorem (Hall). Suppose q > 3. Then there are infinitely many monic irreducibles P (T ) over F q for which P (T ) + 1 is also irreducible. Theorem (P.). Suppose q > 3. Then there are infinitely many monic irreducibles P (T ) over F q for which P (T ) + 1 is also irreducible. 9

11 Theorem (Capelli s Theorem). Let F be any field. The binomial T m a is reducible over F if and only if either of the following holds: there is a prime l dividing m for which a is an lth power in F, 4 divides m and a = 4b 4 for some b in F. Observe: We have x 4 + 4y 4 = (x 2 + 2y 2 ) 2 (2xy) 2. 10

12 Example: The cubes in F 7 = Z/7Z are 1, 0, 1. So by Capelli s theorem, T 3k 2 is irreducible over F 7 for k = 0, 1, 2, 3,.... Similarly, T 3k 3 is always irreducible. Hence: T 3k 2, T 3k 3 is a pair of prime polynomials over F 7 differing by 1 for every k. 11

13 A finite field analogue of Hypothesis H. Suppose f 1,..., f r are irreducible polynomials in F q [T ] and that there is no irreducible P in F q [T ] for which P (T ) always divides f 1 (h(t )) f r (h(t )). Then f 1 (h(t )),..., f r (h(t )) are simultaneously irreducible for infinitely many monic polynomials h(t ) F q [T ]. Example: Twin prime pairs: take f 1 (T ) := T and f 2 (T ) := T + 1. Observation: The local condition is always satisfied if q > r i=1 deg f i. 12

14 Theorem (P.). Suppose f 1,..., f r are irreducible polynomials in F q [T ]. Let D = r i=1 deg f i. If q > max{3, 2 2r 2 D 2 }, then there are infinitely many monic polynomials h(t ) for which all of f 1 (h(t )),..., f r (h(t )) are simultaneously irreducible. 13

15 Example: Primes one more than a square Let F q be a finite field without a square root of 1; i.e., with q 3 (mod 4). We prove there are infinitely many irreducibles of the form h(t ) 2 + 1, where h(t ) is monic. Fix a square root i of 1 from the extension F q 2. We have h(t ) irreducible over F q h(t ) i irreducible over F q 2. Try for h(t ) a binomial say h(t ) = T lk β, with l a fixed prime. By Capelli, it suffices to find β F q so that β + i is a non-lth power. 14

16 Choose any prime l dividing q 2 1, and let let χ be an lth power-residue character on F q 2. If there is no such β, then β F q χ(β + i) = q. But Weil s Riemann Hypothesis gives a bound for this incomplete character sum of q a contradiction. 15

17 Quantitative problems and results Twin prime conjecture (quantitative version). The number of prime pairs p, p + 2 with p x is asymptotically x 2C 2 log 2 x as x, where C 2 = p>2(1 1/(p 1) 2 ). Can generalize to the full Hypothesis H situation (Hardy-Littlewood/Bateman-Horn). 16

18 A quantitative finite field Hypothesis H. Let f 1 (T ),..., f r (T ) be nonassociated polynomials over F q satisfying the conditions of Hypothesis H. Then #{h(t ) : h monic, deg h = n, and f 1 (h(t )),..., f r (h(t )) are all prime} S(f 1,..., f r ) ri=1 deg f i q n n r as q n. Here the local factor S(f 1,..., f r ) is defined by S(f 1,..., f r ) := where ω(p ) := n=1 deg P =n P monic prime of F q [T ] 1 ω(p )/q n (1 1/q n ) r, #{h mod P : f 1 (h) f r (h) 0 (mod P )}. 17

19 Theorem. Let n be a positive integer. Let f 1 (T ),..., f r (T ) be pairwise nonassociated irreducible polynomials over F q with the degree of the product f 1 f r bounded by B. The number of univariate monic polynomials h of degree n for which all of f 1 (h(t )),..., f r (h(t )) are irreducible over F q is q n /n r + O((nB)n! B q n 1/2 ) provided gcd(q, 2n) = 1. Example: The number of monic polynomials h(t ) of degree 3 over F q for which h(t ) is irreducible is asymptotically q 3 /3 as q with q 3 (mod 4) and (q, 3) = 1. 18

20 Some ideas of the proof The inspiration: Conjecture (Chowla, 1966). Fix a positive integer n. Then for all large primes p, there is always an irreducible polynomial in F p [T ] of the form T n + T + a with a F p. In fact, for fixed n the number of such a is asymptotic to p/n as p. Proved by Ree and Cohen (independently) in

21 Idea of their proof: Kummer: For most a, the polynomial T n +T a factors over F q the same way as the prime u a of F q (u) factors over the field obtained by adjoining a root of T n + T u over F q (u). Chebotarev: The splitting type of primes from F q (u), on average, is governed by the Galois group of the splitting field of T n + T u over F q (u). (Chebotarev.) Birch and Swinnerton-Dyer: This splitting field is, if q is prime to n(n 1), a geometric Galois extension with Galois group the full symmetric group on n letters. The proportion of n-cycles in S n is 1 in n, and this implies that about 1 in n polynomials of the form T n +T a, with a F q, are irreducible. 20

22 M M 1 K i,1 L 1,1 K 1,1 L1,j 1,j K 1,j F q D(u) K 1,d1 F q (u) L 1,d1 L i,1 M i L i,j K i,j K i,di Lr,1 r,1 L r,j Mr r K r,1 Kr,j Lr,j Kr,dr K r,dr L i,di L r,dr 21

23 Prime gaps Recall that the average gap between primes near N is about log N. Conjecture (Primes are Poisson distributed). Fix λ > 0. Suppose h and N tend to infinity in such a way that h λ log N. Then 1 #{n N : π(n + h) π(n) = k} e λλk N k! for every fixed integer k = 0, 1, 2,.... Gallagher has shown that this follows from a uniform version of the prime k-tuples conjecture. 22

24 Polynomial prime gaps For a prime p and an integer a, let a denote the residue class of a in Z/pZ = F p. For each prime p and each integer h 0, define I(p; h) := {a 0 + a 1 T + + a j T j : 0 a 0,..., a j < p with a i p i < h}. Let P k (p; h, n) be the number of polynomials A(T ) of degree n over F p for which the translated interval A + I(p; h) contains exactly k primes. 23

25 Conjecture. Fix λ > 0. Suppose h and n tend to infinity in such a way that h λn. Then 1 p np k(p; h, n) e λλk k! (as n ) for each fixed k = 0, 1, 2, 3,..., uniformly in the prime p. 24

26 Theorem. Fix λ > 0. Suppose h and n tend t0o infinity in such a way that h λn. Then for each fixed integer k 0, 1 p np k(p; h, n) e λλk k!, if both n and p tend to infinity, with p tending to infinity faster than any power of n n2. 25

### Primality - Factorization

Primality - Factorization Christophe Ritzenthaler November 9, 2009 1 Prime and factorization Definition 1.1. An integer p > 1 is called a prime number (nombre premier) if it has only 1 and p as divisors.

### Prime Numbers and Irreducible Polynomials

Prime Numbers and Irreducible Polynomials M. Ram Murty The similarity between prime numbers and irreducible polynomials has been a dominant theme in the development of number theory and algebraic geometry.

### FACTORING SPARSE POLYNOMIALS

FACTORING SPARSE POLYNOMIALS Theorem 1 (Schinzel): Let r be a positive integer, and fix non-zero integers a 0,..., a r. Let F (x 1,..., x r ) = a r x r + + a 1 x 1 + a 0. Then there exist finite sets S

### H/wk 13, Solutions to selected problems

H/wk 13, Solutions to selected problems Ch. 4.1, Problem 5 (a) Find the number of roots of x x in Z 4, Z Z, any integral domain, Z 6. (b) Find a commutative ring in which x x has infinitely many roots.

### U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory

### Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013

Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013 D. R. Wilkins Copyright c David R. Wilkins 1997 2013 Contents A Cyclotomic Polynomials 79 A.1 Minimum Polynomials of Roots of

### Prime power degree representations of the symmetric and alternating groups

Prime power degree representations of the symmetric and alternating groups Antal Balog, Christine Bessenrodt, Jørn B. Olsson, Ken Ono Appearing in the Journal of the London Mathematical Society 1 Introduction

### QUADRATIC RECIPROCITY IN CHARACTERISTIC 2

QUADRATIC RECIPROCITY IN CHARACTERISTIC 2 KEITH CONRAD 1. Introduction Let F be a finite field. When F has odd characteristic, the quadratic reciprocity law in F[T ] (see [4, Section 3.2.2] or [5]) lets

### 11 Ideals. 11.1 Revisiting Z

11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(

### 3 1. Note that all cubes solve it; therefore, there are no more

Math 13 Problem set 5 Artin 11.4.7 Factor the following polynomials into irreducible factors in Q[x]: (a) x 3 3x (b) x 3 3x + (c) x 9 6x 6 + 9x 3 3 Solution: The first two polynomials are cubics, so if

### 1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain

Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is

### PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

### MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu

Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing

### The Dirichlet Unit Theorem

Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

### OSTROWSKI FOR NUMBER FIELDS

OSTROWSKI FOR NUMBER FIELDS KEITH CONRAD Ostrowski classified the nontrivial absolute values on Q: up to equivalence, they are the usual (archimedean) absolute value and the p-adic absolute values for

### Sign changes of Hecke eigenvalues of Siegel cusp forms of degree 2

Sign changes of Hecke eigenvalues of Siegel cusp forms of degree 2 Ameya Pitale, Ralf Schmidt 2 Abstract Let µ(n), n > 0, be the sequence of Hecke eigenvalues of a cuspidal Siegel eigenform F of degree

### Doug Ravenel. October 15, 2008

Doug Ravenel University of Rochester October 15, 2008 s about Euclid s Some s about primes that every mathematician should know (Euclid, 300 BC) There are infinitely numbers. is very elementary, and we

### Recent Breakthrough in Primality Testing

Nonlinear Analysis: Modelling and Control, 2004, Vol. 9, No. 2, 171 184 Recent Breakthrough in Primality Testing R. Šleževičienė, J. Steuding, S. Turskienė Department of Computer Science, Faculty of Physics

### Generic Polynomials of Degree Three

Generic Polynomials of Degree Three Benjamin C. Wallace April 2012 1 Introduction In the nineteenth century, the mathematician Évariste Galois discovered an elegant solution to the fundamental problem

### Cyclotomic Extensions

Chapter 7 Cyclotomic Extensions A cyclotomic extension Q(ζ n ) of the rationals is formed by adjoining a primitive n th root of unity ζ n. In this chapter, we will find an integral basis and calculate

### Factoring Algorithms

Factoring Algorithms The p 1 Method and Quadratic Sieve November 17, 2008 () Factoring Algorithms November 17, 2008 1 / 12 Fermat s factoring method Fermat made the observation that if n has two factors

### THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear

### Ideal Class Group and Units

Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals

### Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

### Unique Factorization

Unique Factorization Waffle Mathcamp 2010 Throughout these notes, all rings will be assumed to be commutative. 1 Factorization in domains: definitions and examples In this class, we will study the phenomenon

### A number field is a field of finite degree over Q. By the Primitive Element Theorem, any number

Number Fields Introduction A number field is a field of finite degree over Q. By the Primitive Element Theorem, any number field K = Q(α) for some α K. The minimal polynomial Let K be a number field and

### Integer Factorization using the Quadratic Sieve

Integer Factorization using the Quadratic Sieve Chad Seibert* Division of Science and Mathematics University of Minnesota, Morris Morris, MN 56567 seib0060@morris.umn.edu March 16, 2011 Abstract We give

### The cyclotomic polynomials

The cyclotomic polynomials Notes by G.J.O. Jameson 1. The definition and general results We use the notation e(t) = e 2πit. Note that e(n) = 1 for integers n, e(s + t) = e(s)e(t) for all s, t. e( 1 ) =

### ALGEBRAIC NUMBER THEORY AND QUADRATIC RECIPROCITY

ALGEBRAIC NUMBER THEORY AND QUADRATIC RECIPROCITY HENRY COHN, JOSHUA GREENE, JONATHAN HANKE 1. Introduction These notes are from a series of lectures given by Henry Cohn during MIT s Independent Activities

### Alex, I will take congruent numbers for one million dollars please

Alex, I will take congruent numbers for one million dollars please Jim L. Brown The Ohio State University Columbus, OH 4310 jimlb@math.ohio-state.edu One of the most alluring aspectives of number theory

### Factoring of Prime Ideals in Extensions

Chapter 4 Factoring of Prime Ideals in Extensions 4. Lifting of Prime Ideals Recall the basic AKLB setup: A is a Dedekind domain with fraction field K, L is a finite, separable extension of K of degree

### Is n a Prime Number? Manindra Agrawal. March 27, 2006, Delft. IIT Kanpur

Is n a Prime Number? Manindra Agrawal IIT Kanpur March 27, 2006, Delft Manindra Agrawal (IIT Kanpur) Is n a Prime Number? March 27, 2006, Delft 1 / 47 Overview 1 The Problem 2 Two Simple, and Slow, Methods

### Since [L : K(α)] < [L : K] we know from the inductive assumption that [L : K(α)] s < [L : K(α)]. It follows now from Lemma 6.

Theorem 7.1. Let L K be a finite extension. Then a)[l : K] [L : K] s b) the extension L K is separable iff [L : K] = [L : K] s. Proof. Let M be a normal closure of L : K. Consider first the case when L

### Basic Algorithms In Computer Algebra

Basic Algorithms In Computer Algebra Kaiserslautern SS 2011 Prof. Dr. Wolfram Decker 2. Mai 2011 References Cohen, H.: A Course in Computational Algebraic Number Theory. Springer, 1993. Cox, D.; Little,

### it is easy to see that α = a

21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

### Irreducibility criteria for compositions and multiplicative convolutions of polynomials with integer coefficients

DOI: 10.2478/auom-2014-0007 An. Şt. Univ. Ovidius Constanţa Vol. 221),2014, 73 84 Irreducibility criteria for compositions and multiplicative convolutions of polynomials with integer coefficients Anca

### PROBLEM SET 6: POLYNOMIALS

PROBLEM SET 6: POLYNOMIALS 1. introduction In this problem set we will consider polynomials with coefficients in K, where K is the real numbers R, the complex numbers C, the rational numbers Q or any other

### Faster deterministic integer factorisation

David Harvey (joint work with Edgar Costa, NYU) University of New South Wales 25th October 2011 The obvious mathematical breakthrough would be the development of an easy way to factor large prime numbers

### An Overview of Integer Factoring Algorithms. The Problem

An Overview of Integer Factoring Algorithms Manindra Agrawal IITK / NUS The Problem Given an integer n, find all its prime divisors as efficiently as possible. 1 A Difficult Problem No efficient algorithm

### The van Hoeij Algorithm for Factoring Polynomials

The van Hoeij Algorithm for Factoring Polynomials Jürgen Klüners Abstract In this survey we report about a new algorithm for factoring polynomials due to Mark van Hoeij. The main idea is that the combinatorial

### Factoring Dickson polynomials over finite fields

Factoring Dickson polynomials over finite fiels Manjul Bhargava Department of Mathematics, Princeton University. Princeton NJ 08544 manjul@math.princeton.eu Michael Zieve Department of Mathematics, University

### Integer roots of quadratic and cubic polynomials with integer coefficients

Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street

### Some applications of LLL

Some applications of LLL a. Factorization of polynomials As the title Factoring polynomials with rational coefficients of the original paper in which the LLL algorithm was first published (Mathematische

4. BINARY QUADRATIC FORMS 4.1. What integers are represented by a given binary quadratic form?. An integer n is represented by the binary quadratic form ax + bxy + cy if there exist integers r and s such

### PROOFS BY DESCENT KEITH CONRAD

PROOFS BY DESCENT KEITH CONRAD As ordinary methods, such as are found in the books, are inadequate to proving such difficult propositions, I discovered at last a most singular method... that I called the

### Factoring Polynomials

Factoring Polynomials Factoring Factoring is the process of writing a polynomial as the product of two or more polynomials. The factors of 6x 2 x 2 are 2x + 1 and 3x 2. In this section, we will be factoring

### Copyrighted Material. Chapter 1 DEGREE OF A CURVE

Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two

### 1.3 Algebraic Expressions

1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

### LOW-DEGREE PLANAR MONOMIALS IN CHARACTERISTIC TWO

LOW-DEGREE PLANAR MONOMIALS IN CHARACTERISTIC TWO PETER MÜLLER AND MICHAEL E. ZIEVE Abstract. Planar functions over finite fields give rise to finite projective planes and other combinatorial objects.

### Die ganzen zahlen hat Gott gemacht

Die ganzen zahlen hat Gott gemacht Polynomials with integer values B.Sury A quote attributed to the famous mathematician L.Kronecker is Die Ganzen Zahlen hat Gott gemacht, alles andere ist Menschenwerk.

### Factorization Algorithms for Polynomials over Finite Fields

Degree Project Factorization Algorithms for Polynomials over Finite Fields Sajid Hanif, Muhammad Imran 2011-05-03 Subject: Mathematics Level: Master Course code: 4MA11E Abstract Integer factorization is

### Revised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)

Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.

### 2 Polynomials over a field

2 Polynomials over a field A polynomial over a field F is a sequence (a 0, a 1, a 2,, a n, ) where a i F i with a i = 0 from some point on a i is called the i th coefficient of f We define three special

### Factoring Polynomials

Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent

### Chapter 13: Basic ring theory

Chapter 3: Basic ring theory Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 42, Spring 24 M. Macauley (Clemson) Chapter 3: Basic ring

### FACTORING IN QUADRATIC FIELDS. 1. Introduction. This is called a quadratic field and it has degree 2 over Q. Similarly, set

FACTORING IN QUADRATIC FIELDS KEITH CONRAD For a squarefree integer d other than 1, let 1. Introduction K = Q[ d] = {x + y d : x, y Q}. This is called a quadratic field and it has degree 2 over Q. Similarly,

### ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM

ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM DANIEL PARKER Abstract. This paper provides a foundation for understanding Lenstra s Elliptic Curve Algorithm for factoring large numbers. We give

### Notes on Factoring. MA 206 Kurt Bryan

The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor

### 1.3 Polynomials and Factoring

1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.

### Arithmetic algorithms for cryptology 5 October 2015, Paris. Sieves. Razvan Barbulescu CNRS and IMJ-PRG. R. Barbulescu Sieves 0 / 28

Arithmetic algorithms for cryptology 5 October 2015, Paris Sieves Razvan Barbulescu CNRS and IMJ-PRG R. Barbulescu Sieves 0 / 28 Starting point Notations q prime g a generator of (F q ) X a (secret) integer

### ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida

ARBITRAGE-FREE OPTION PRICING MODELS Denis Bell University of North Florida Modelling Stock Prices Example American Express In mathematical finance, it is customary to model a stock price by an (Ito) stochatic

### SOLVING POLYNOMIAL EQUATIONS BY RADICALS

SOLVING POLYNOMIAL EQUATIONS BY RADICALS Lee Si Ying 1 and Zhang De-Qi 2 1 Raffles Girls School (Secondary), 20 Anderson Road, Singapore 259978 2 Department of Mathematics, National University of Singapore,

### The Ideal Class Group

Chapter 5 The Ideal Class Group We will use Minkowski theory, which belongs to the general area of geometry of numbers, to gain insight into the ideal class group of a number field. We have already mentioned

### EXERCISES FOR THE COURSE MATH 570, FALL 2010

EXERCISES FOR THE COURSE MATH 570, FALL 2010 EYAL Z. GOREN (1) Let G be a group and H Z(G) a subgroup such that G/H is cyclic. Prove that G is abelian. Conclude that every group of order p 2 (p a prime

### On the number-theoretic functions ν(n) and Ω(n)

ACTA ARITHMETICA LXXVIII.1 (1996) On the number-theoretic functions ν(n) and Ω(n) by Jiahai Kan (Nanjing) 1. Introduction. Let d(n) denote the divisor function, ν(n) the number of distinct prime factors,

### VERTICES OF GIVEN DEGREE IN SERIES-PARALLEL GRAPHS

VERTICES OF GIVEN DEGREE IN SERIES-PARALLEL GRAPHS MICHAEL DRMOTA, OMER GIMENEZ, AND MARC NOY Abstract. We show that the number of vertices of a given degree k in several kinds of series-parallel labelled

### Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.

Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,

### 9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11.

9. POLYNOMIALS 9.1. Definition of a Polynomial A polynomial is an expression of the form: a(x) = a n x n + a n-1 x n-1 +... + a 1 x + a 0. The symbol x is called an indeterminate and simply plays the role

### SOLVING POLYNOMIAL EQUATIONS

C SOLVING POLYNOMIAL EQUATIONS We will assume in this appendix that you know how to divide polynomials using long division and synthetic division. If you need to review those techniques, refer to an algebra

### SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS

SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS Assume f ( x) is a nonconstant polynomial with real coefficients written in standard form. PART A: TECHNIQUES WE HAVE ALREADY SEEN Refer to: Notes 1.31

### On the representability of the bi-uniform matroid

On the representability of the bi-uniform matroid Simeon Ball, Carles Padró, Zsuzsa Weiner and Chaoping Xing August 3, 2012 Abstract Every bi-uniform matroid is representable over all sufficiently large

### WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?

WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly

### Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

### Catalan Numbers. Thomas A. Dowling, Department of Mathematics, Ohio State Uni- versity.

7 Catalan Numbers Thomas A. Dowling, Department of Mathematics, Ohio State Uni- Author: versity. Prerequisites: The prerequisites for this chapter are recursive definitions, basic counting principles,

### GROUPS WITH TWO EXTREME CHARACTER DEGREES AND THEIR NORMAL SUBGROUPS

GROUPS WITH TWO EXTREME CHARACTER DEGREES AND THEIR NORMAL SUBGROUPS GUSTAVO A. FERNÁNDEZ-ALCOBER AND ALEXANDER MORETÓ Abstract. We study the finite groups G for which the set cd(g) of irreducible complex

### CONTINUED FRACTIONS AND FACTORING. Niels Lauritzen

CONTINUED FRACTIONS AND FACTORING Niels Lauritzen ii NIELS LAURITZEN DEPARTMENT OF MATHEMATICAL SCIENCES UNIVERSITY OF AARHUS, DENMARK EMAIL: niels@imf.au.dk URL: http://home.imf.au.dk/niels/ Contents

### 9.2 Summation Notation

9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a

### CONTRIBUTIONS TO ZERO SUM PROBLEMS

CONTRIBUTIONS TO ZERO SUM PROBLEMS S. D. ADHIKARI, Y. G. CHEN, J. B. FRIEDLANDER, S. V. KONYAGIN AND F. PAPPALARDI Abstract. A prototype of zero sum theorems, the well known theorem of Erdős, Ginzburg

### Labeling outerplanar graphs with maximum degree three

Labeling outerplanar graphs with maximum degree three Xiangwen Li 1 and Sanming Zhou 2 1 Department of Mathematics Huazhong Normal University, Wuhan 430079, China 2 Department of Mathematics and Statistics

### An example of a computable

An example of a computable absolutely normal number Verónica Becher Santiago Figueira Abstract The first example of an absolutely normal number was given by Sierpinski in 96, twenty years before the concept

### A simple and fast algorithm for computing exponentials of power series

A simple and fast algorithm for computing exponentials of power series Alin Bostan Algorithms Project, INRIA Paris-Rocquencourt 7815 Le Chesnay Cedex France and Éric Schost ORCCA and Computer Science Department,

### Congruence properties of binary partition functions

Congruence properties of binary partition functions Katherine Anders, Melissa Dennison, Jennifer Weber Lansing and Bruce Reznick Abstract. Let A be a finite subset of N containing 0, and let f(n) denote

### Primality Testing and Factorization Methods

Primality Testing and Factorization Methods Eli Howey May 27, 2014 Abstract Since the days of Euclid and Eratosthenes, mathematicians have taken a keen interest in finding the nontrivial factors of integers,

### SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

### Putnam Notes Polynomials and palindromes

Putnam Notes Polynomials and palindromes Polynomials show up one way or another in just about every area of math. You will hardly ever see any math competition without at least one problem explicitly concerning

### Factoring & Primality

Factoring & Primality Lecturer: Dimitris Papadopoulos In this lecture we will discuss the problem of integer factorization and primality testing, two problems that have been the focus of a great amount

### Influences in low-degree polynomials

Influences in low-degree polynomials Artūrs Bačkurs December 12, 2012 1 Introduction In 3] it is conjectured that every bounded real polynomial has a highly influential variable The conjecture is known

### LAKE ELSINORE UNIFIED SCHOOL DISTRICT

LAKE ELSINORE UNIFIED SCHOOL DISTRICT Title: PLATO Algebra 1-Semester 2 Grade Level: 10-12 Department: Mathematics Credit: 5 Prerequisite: Letter grade of F and/or N/C in Algebra 1, Semester 2 Course Description:

### Review of Intermediate Algebra Content

Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6

### COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS

COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS IGOR V. EROVENKO AND B. SURY ABSTRACT. We compute commutativity degrees of wreath products A B of finite abelian groups A and B. When B

### DIVISORS IN A DEDEKIND DOMAIN. Javier Cilleruelo and Jorge Jiménez-Urroz. 1 Introduction

DIVISORS IN A DEDEKIND DOMAIN Javier Cilleruelo and Jorge Jiménez-Urroz 1 Introduction Let A be a Dedekind domain in which we can define a notion of distance. We are interested in the number of divisors

### On the irreducibility of certain polynomials with coefficients as products of terms in an arithmetic progression

On the irreducibility of certain polynomials with coefficients as products of terms in an arithmetic progression Carrie E. Finch and N. Saradha Abstract We prove the irreducibility of ceratin polynomials

### Polynomial Factoring. Ramesh Hariharan

Polynomial Factoring Ramesh Hariharan The Problem Factoring Polynomials overs Integers Factorization is unique (why?) (x^2 + 5x +6) (x+2)(x+3) Time: Polynomial in degree A Related Problem Factoring Integers

### FACTORISATION YEARS. A guide for teachers - Years 9 10 June 2011. The Improving Mathematics Education in Schools (TIMES) Project

9 10 YEARS The Improving Mathematics Education in Schools (TIMES) Project FACTORISATION NUMBER AND ALGEBRA Module 33 A guide for teachers - Years 9 10 June 2011 Factorisation (Number and Algebra : Module

### Notes 11: List Decoding Folded Reed-Solomon Codes

Introduction to Coding Theory CMU: Spring 2010 Notes 11: List Decoding Folded Reed-Solomon Codes April 2010 Lecturer: Venkatesan Guruswami Scribe: Venkatesan Guruswami At the end of the previous notes,

### An Introductory Course in Elementary Number Theory. Wissam Raji

An Introductory Course in Elementary Number Theory Wissam Raji 2 Preface These notes serve as course notes for an undergraduate course in number theory. Most if not all universities worldwide offer introductory

### Field Fundamentals. Chapter 3. 3.1 Field Extensions. 3.1.1 Definitions. 3.1.2 Lemma

Chapter 3 Field Fundamentals 3.1 Field Extensions If F is a field and F [X] is the set of all polynomials over F, that is, polynomials with coefficients in F, we know that F [X] is a Euclidean domain,

### 3. INNER PRODUCT SPACES

. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.