Introduction Epipolar Geometry Calibration Methods Further Readings. Stereo Camera Calibration


 Clare Lewis
 2 years ago
 Views:
Transcription
1 Stereo Camera Calibration Stereo Camera Calibration Stereo Camera Calibration Stereo Camera Calibration
2 Overview Introduction Summary /
3 Motivation Depth Perception Ambiguity of Correspondence The Epipolar Constraint Motivation 3DVision Problems Correspondence problem Reconstruction problem
4 Motivation Depth Perception Ambiguity of Correspondence The Epipolar Constraint Motivation 3DVision Problems Correspondence problem Reconstruction problem
5 Motivation Depth Perception Ambiguity of Correspondence The Epipolar Constraint How does depth perception work? High level process? Objects are matched... Low level process! Proof: Random Dot Images Problem: Matching the Dots
6 Motivation Depth Perception Ambiguity of Correspondence The Epipolar Constraint The Ambiguity of Correspondence Real Correspondence Just looking similar
7 Motivation Depth Perception Ambiguity of Correspondence The Epipolar Constraint The Epipolar Constraint World Point M corresponds to point m in Image Plane I
8 Motivation Depth Perception Ambiguity of Correspondence The Epipolar Constraint The Epipolar Constraint Ray CM has Image in I'
9 Motivation Depth Perception Ambiguity of Correspondence The Epipolar Constraint The Epipolar Constraint Corresponding Point in I' can be found...
10 Motivation Depth Perception Ambiguity of Correspondence The Epipolar Constraint The Epipolar Constraint The Points C, C' and M build a Plane. e is Image of C' and v.v.
11 Motivation Depth Perception Ambiguity of Correspondence The Epipolar Constraint The Epipolar Constraint m' has epipolar line too
12 Motivation Depth Perception Ambiguity of Correspondence The Epipolar Constraint Pencils of Epipolar Lines Different World Points can have different epipolar lines.
13 Basics The Essential Matrix The Fundamental Matrix Summary Perspective Projection Matrix There are normalized and unnormalized cameras Decomposition possible:
14 Basics The Essential Matrix The Fundamental Matrix Summary Camera Intrinsic Matrix Result of decomposition
15 Basics The Essential Matrix The Fundamental Matrix Summary Skew Symmetric Matrix Mapping from 3DVector to 3x3 antisymmetric Matrix
16 Basics The Essential Matrix The Fundamental Matrix Summary The Essential Matrix Mapping from Point to Line
17 Basics The Essential Matrix The Fundamental Matrix Summary Defining EG with Normalized Images Relation between camera coordinate systems Normalized Coordinates
18 Basics The Essential Matrix The Fundamental Matrix Summary Defining EG with Normalized Images
19 Basics The Essential Matrix The Fundamental Matrix Summary Defining EG with Normalized Images Coplanar
20 Basics The Essential Matrix The Fundamental Matrix Summary Defining EG with Normalized Images
21 Basics The Essential Matrix The Fundamental Matrix Summary Properties of E Determined completely by the transform between the cameras det(e)=0
22 Basics The Essential Matrix The Fundamental Matrix Summary The Fundamental Matrix Fundamental Matrix F must satisfy where A and A' are intrinsic Matrices of the two Cameras
23 Basics The Essential Matrix The Fundamental Matrix Summary Properties of F det(f)=0 because det(e)=0 F is of rank 2 F has 9 Parameters but 7DOF
24 Basics The Essential Matrix The Fundamental Matrix Summary Summary Stereo Vision is about point matching E and F map points in one image to lines in the other. F satisfies 7 DOF and has between two arbitrary images can be estimated by 7 point correspondences
25 Calibration Basics 7PointAlgorithm >8PointAlgorithm(s) Experiments/Tricks Calibration Basics Assumptions The full perspective projection model is used. Intrinsic and Extrinsic parameters of the Cameras are unknown. Rigid transformation between the two camera systems
26 Calibration Basics 7PointAlgorithm >8PointAlgorithm(s) Experiments/Tricks Equivalent Problems 2 Images by a moving camera at two different moments (static). 2 Images by a fixed camera at two different moments (single object,dynamic) 2 Images by 2 Cameras at the same time 2 Images by 2 Cameras (static)
27 Calibration Basics 7PointAlgorithm >8PointAlgorithm(s) Experiments/Tricks Definitions The Epipolar Equation can be written as linear homogeneous equation
28 Calibration Basics 7PointAlgorithm >8PointAlgorithm(s) Experiments/Tricks Definitions For n point matches
29 Calibration Basics 7PointAlgorithm >8PointAlgorithm(s) Experiments/Tricks Not that easy Noise Leastsquare methods are very sensitive to false matches Enforce rank 2 constraint or epipolar lines will "smear out" find closest rank 2 approximation of F
30 Calibration Basics 7PointAlgorithm >8PointAlgorithm(s) Experiments/Tricks Rank 2 Constraint
31 Calibration Basics 7PointAlgorithm >8PointAlgorithm(s) Experiments/Tricks Rank 2 Constraint Rank 3 Rank 2
32 Calibration Basics 7PointAlgorithm >8PointAlgorithm(s) Experiments/Tricks 7 Point Algorithm In this case n=7 and rank(u 7 )=7 SVD 2 last columns of Y span the right nullspace of U => F1 and F2
33 Calibration Basics 7PointAlgorithm >8PointAlgorithm(s) Experiments/Tricks 7 Point Algorithm 1 Parameter family of matrices because F is homogenous Can have 1 or 3 Solutions!
34 Calibration Basics 7PointAlgorithm >8PointAlgorithm(s) Experiments/Tricks 8 Point Algorithm(s) Usually more than 7 Matches Many Methods (see [1]) Linear Methods Nonlinear Methods Robust Methods
35 Calibration Basics 7PointAlgorithm >8PointAlgorithm(s) Experiments/Tricks Linear Methods Minimize epipolar Equation or better There is a trivial solution:
36 Calibration Basics 7PointAlgorithm >8PointAlgorithm(s) Experiments/Tricks Eigen Analysis Impose a constraint on norm of Get unconstrained problem through Lagrange multipliers
37 Calibration Basics 7PointAlgorithm >8PointAlgorithm(s) Experiments/Tricks Eigen Analysis  Minimizing First derivative = 0 deriving...
38 Calibration Basics 7PointAlgorithm >8PointAlgorithm(s) Experiments/Tricks Eigen Analysis  Back substitution There are 9 eigenvalues Back substituting the solution Solution is the Eigenvector of associated to the smallest Eigenvalue (smallest Singular Vector of )
39 Calibration Basics 7PointAlgorithm >8PointAlgorithm(s) Experiments/Tricks Problems with most linear methods The rank 2 constraint is not satisfied Minimized Quantity has no physical meaning High instability (in the numerical sense) => normalize Input Data!
40 Calibration Basics 7PointAlgorithm >8PointAlgorithm(s) Experiments/Tricks Iterative Linear Method Minimize the distances between points and corresponding epipolar lines Symmetrical Distance
41 Calibration Basics 7PointAlgorithm >8PointAlgorithm(s) Experiments/Tricks Iterative Linear Method  Weights Represent distances as weights Problem: Weights depend on F Solution: Set all weights to 1 Compute F Calculate new weights from F Repeat 'till satisfaction
42 Calibration Basics 7PointAlgorithm >8PointAlgorithm(s) Experiments/Tricks Iterative Linear Method  Can't get no... Pros: Easy to implement Minimizes Physical quantity Cons: Rank2 constraint isn't satisfied No significant improvement[1] Better: Nonlinear Minimization in Parameter Space [1]
43 Calibration Basics 7PointAlgorithm >8PointAlgorithm(s) Experiments/Tricks Robust Methods  RANSAC Exploit heuristics Try to remove "outliers" RANdom SAmple Consensus
44 Calibration Basics 7PointAlgorithm >8PointAlgorithm(s) Experiments/Tricks Robust Methods  RANSAC Step 1. Extract features Step 2. Compute a set of potential matches Step 3. do Step 3.1 select minimal sample Step 3.2 compute solution(s) for F (verify hypothesis) Step 3.3 determine inliers until Γ(#inliers,#samples) 95% Step 4. Compute F based on all inliers Step 5. Look for additional matches Step 6. Refine F based on all correct matches (generate hypothesis)
45 Calibration Basics 7PointAlgorithm >8PointAlgorithm(s) Experiments/Tricks Robust Methods  RANSAC Propability that at least one random sample is free of outliers
46 Calibration Basics 7PointAlgorithm >8PointAlgorithm(s) Experiments/Tricks Experiments / Tricks Image Rectification [2]
47 Calibration Basics 7PointAlgorithm >8PointAlgorithm(s) Experiments/Tricks Experiments / Tricks Image Rectification [2] Demos online
48 " in Stereo Motion and Object Recognition" Many (if not all) algorithms Gang Xu and Zhengyou Zhang You don't want to buy it... Get it from the library... [1]
49 "ThreeDimensional Computer Vision  A Geometric Viewpoint" Olivier Faugeras Good Basics, Interesting Chapter about EdgeDetection. Many Images. [2]
50 "Multiple View Geometry in Computer Vision" Richard Hartley and Andrew Zisserman [3]
51 Web (matlab functions) (demo) (matlab toolbox) [3]
52 That's it Thanks
Wii Remote Calibration Using the Sensor Bar
Wii Remote Calibration Using the Sensor Bar Alparslan Yildiz Abdullah Akay Yusuf Sinan Akgul GIT Vision Lab  http://vision.gyte.edu.tr Gebze Institute of Technology Kocaeli, Turkey {yildiz, akay, akgul}@bilmuh.gyte.edu.tr
More information8. Linear leastsquares
8. Linear leastsquares EE13 (Fall 21112) definition examples and applications solution of a leastsquares problem, normal equations 81 Definition overdetermined linear equations if b range(a), cannot
More information2View Geometry. Mark Fiala Ryerson University Mark.fiala@ryerson.ca
CRV 2010 Tutorial Day 2View Geometry Mark Fiala Ryerson University Mark.fiala@ryerson.ca 3Vectors for image points and lines Mark Fiala 2010 2D Homogeneous Points Add 3 rd number to a 2D point on image
More informationProjective Reconstruction from Line Correspondences
Projective Reconstruction from Line Correspondences Richard I. Hartley G.E. CRD, Schenectady, NY, 12301. Abstract The paper gives a practical rapid algorithm for doing projective reconstruction of a scene
More informationAn Efficient Solution to the FivePoint Relative Pose Problem
An Efficient Solution to the FivePoint Relative Pose Problem David Nistér Sarnoff Corporation CN5300, Princeton, NJ 08530 dnister@sarnoff.com Abstract An efficient algorithmic solution to the classical
More informationInteractive 3D Scanning Without Tracking
Interactive 3D Scanning Without Tracking Matthew J. Leotta, Austin Vandergon, Gabriel Taubin Brown University Division of Engineering Providence, RI 02912, USA {matthew leotta, aev, taubin}@brown.edu Abstract
More informationA Flexible New Technique for Camera Calibration
A Flexible New Technique for Camera Calibration Zhengyou Zhang December 2, 1998 (updated on December 14, 1998) (updated on March 25, 1999) (updated on Aug. 1, 22; a typo in Appendix B) (updated on Aug.
More information3 Orthogonal Vectors and Matrices
3 Orthogonal Vectors and Matrices The linear algebra portion of this course focuses on three matrix factorizations: QR factorization, singular valued decomposition (SVD), and LU factorization The first
More informationManifold Learning Examples PCA, LLE and ISOMAP
Manifold Learning Examples PCA, LLE and ISOMAP Dan Ventura October 14, 28 Abstract We try to give a helpful concrete example that demonstrates how to use PCA, LLE and Isomap, attempts to provide some intuition
More informationNonlinear Iterative Partial Least Squares Method
Numerical Methods for Determining Principal Component Analysis Abstract Factors Béchu, S., RichardPlouet, M., Fernandez, V., Walton, J., and Fairley, N. (2016) Developments in numerical treatments for
More informationOptical Tracking Using Projective Invariant Marker Pattern Properties
Optical Tracking Using Projective Invariant Marker Pattern Properties Robert van Liere, Jurriaan D. Mulder Department of Information Systems Center for Mathematics and Computer Science Amsterdam, the Netherlands
More informationEpipolar Geometry and Visual Servoing
Epipolar Geometry and Visual Servoing Domenico Prattichizzo joint with with Gian Luca Mariottini and Jacopo Piazzi www.dii.unisi.it/prattichizzo Robotics & Systems Lab University of Siena, Italy Scuoladi
More informationP164 Tomographic Velocity Model Building Using Iterative Eigendecomposition
P164 Tomographic Velocity Model Building Using Iterative Eigendecomposition K. Osypov* (WesternGeco), D. Nichols (WesternGeco), M. Woodward (WesternGeco) & C.E. Yarman (WesternGeco) SUMMARY Tomographic
More informationRelating Vanishing Points to Catadioptric Camera Calibration
Relating Vanishing Points to Catadioptric Camera Calibration Wenting Duan* a, Hui Zhang b, Nigel M. Allinson a a Laboratory of Vision Engineering, University of Lincoln, Brayford Pool, Lincoln, U.K. LN6
More informationSimilar matrices and Jordan form
Similar matrices and Jordan form We ve nearly covered the entire heart of linear algebra once we ve finished singular value decompositions we ll have seen all the most central topics. A T A is positive
More informationA QCQP Approach to Triangulation. Chris Aholt, Sameer Agarwal, and Rekha Thomas University of Washington 2 Google, Inc.
A QCQP Approach to Triangulation 1 Chris Aholt, Sameer Agarwal, and Rekha Thomas 1 University of Washington 2 Google, Inc. 2 1 The Triangulation Problem X Given: n camera matrices P i R 3 4 n noisy observations
More informationCS 534: Computer Vision 3D Modelbased recognition
CS 534: Computer Vision 3D Modelbased recognition Ahmed Elgammal Dept of Computer Science CS 534 3D Modelbased Vision  1 High Level Vision Object Recognition: What it means? Two main recognition tasks:!
More informationDESIGN & DEVELOPMENT OF AUTONOMOUS SYSTEM TO BUILD 3D MODEL FOR UNDERWATER OBJECTS USING STEREO VISION TECHNIQUE
DESIGN & DEVELOPMENT OF AUTONOMOUS SYSTEM TO BUILD 3D MODEL FOR UNDERWATER OBJECTS USING STEREO VISION TECHNIQUE N. Satish Kumar 1, B L Mukundappa 2, Ramakanth Kumar P 1 1 Dept. of Information Science,
More informationSubspace Analysis and Optimization for AAM Based Face Alignment
Subspace Analysis and Optimization for AAM Based Face Alignment Ming Zhao Chun Chen College of Computer Science Zhejiang University Hangzhou, 310027, P.R.China zhaoming1999@zju.edu.cn Stan Z. Li Microsoft
More informationRecall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n.
ORTHOGONAL MATRICES Informally, an orthogonal n n matrix is the ndimensional analogue of the rotation matrices R θ in R 2. When does a linear transformation of R 3 (or R n ) deserve to be called a rotation?
More informationTHE problem of visual servoing guiding a robot using
582 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 4, AUGUST 1997 A Modular System for Robust Positioning Using Feedback from Stereo Vision Gregory D. Hager, Member, IEEE Abstract This paper
More informationMehtap Ergüven Abstract of Ph.D. Dissertation for the degree of PhD of Engineering in Informatics
INTERNATIONAL BLACK SEA UNIVERSITY COMPUTER TECHNOLOGIES AND ENGINEERING FACULTY ELABORATION OF AN ALGORITHM OF DETECTING TESTS DIMENSIONALITY Mehtap Ergüven Abstract of Ph.D. Dissertation for the degree
More informationα = u v. In other words, Orthogonal Projection
Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v
More informationMetrics on SO(3) and Inverse Kinematics
Mathematical Foundations of Computer Graphics and Vision Metrics on SO(3) and Inverse Kinematics Luca Ballan Institute of Visual Computing Optimization on Manifolds Descent approach d is a ascent direction
More informationSingle Image 3D Reconstruction of Ball Motion and Spin From Motion Blur
Single Image 3D Reconstruction of Ball Motion and Spin From Motion Blur An Experiment in Motion from Blur Giacomo Boracchi, Vincenzo Caglioti, Alessandro Giusti Objective From a single image, reconstruct:
More informationEPnP: An Accurate O(n) Solution to the PnP Problem
DOI 10.1007/s1126300801526 EPnP: An Accurate O(n) Solution to the PnP Problem Vincent Lepetit Francesc MorenoNoguer Pascal Fua Received: 15 April 2008 / Accepted: 25 June 2008 Springer Science+Business
More informationInner Product Spaces and Orthogonality
Inner Product Spaces and Orthogonality week 34 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,
More informationRobust Pedestrian Detection and Tracking From A Moving Vehicle
Robust Pedestrian Detection and Tracking From A Moving Vehicle Nguyen Xuan Tuong a, Thomas Müller b and Alois Knoll b a Department of Computer Engineering, Nanyang Technological University, Singapore b
More informationCritical Motions for AutoCalibration When Some Intrinsic Parameters Can Vary
Critical Motions for AutoCalibration When Some Intrinsic Parameters Can Vary Fredrik Kahl (fredrik@maths.lth.se), Bill Triggs (bill.triggs@inrialpes.fr) and Kalle Åström (kalle@maths.lth.se) Centre for
More informationTerrain Traversability Analysis using Organized Point Cloud, Superpixel Surface Normalsbased segmentation and PCAbased Classification
Terrain Traversability Analysis using Organized Point Cloud, Superpixel Surface Normalsbased segmentation and PCAbased Classification Aras Dargazany 1 and Karsten Berns 2 Abstract In this paper, an stereobased
More informationCS 5614: (Big) Data Management Systems. B. Aditya Prakash Lecture #18: Dimensionality Reduc7on
CS 5614: (Big) Data Management Systems B. Aditya Prakash Lecture #18: Dimensionality Reduc7on Dimensionality Reduc=on Assump=on: Data lies on or near a low d dimensional subspace Axes of this subspace
More informationGoing Big in Data Dimensionality:
LUDWIG MAXIMILIANS UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Going Big in Data Dimensionality: Challenges and Solutions for Mining High Dimensional Data Peer Kröger Lehrstuhl für
More informationSolving Simultaneous Equations and Matrices
Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering
More informationBlind Deconvolution of Barcodes via Dictionary Analysis and Wiener Filter of Barcode Subsections
Blind Deconvolution of Barcodes via Dictionary Analysis and Wiener Filter of Barcode Subsections Maximilian Hung, Bohyun B. Kim, Xiling Zhang August 17, 2013 Abstract While current systems already provide
More informationTime Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication
Time Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication Thomas Reilly Data Physics Corporation 1741 Technology Drive, Suite 260 San Jose, CA 95110 (408) 2168440 This paper
More informationSingular Spectrum Analysis with Rssa
Singular Spectrum Analysis with Rssa Maurizio Sanarico Chief Data Scientist SDG Consulting Milano R June 4, 2014 Motivation Discover structural components in complex time series Working hypothesis: a signal
More informationEigenvalues and Eigenvectors
Chapter 6 Eigenvalues and Eigenvectors 6. Introduction to Eigenvalues Linear equations Ax D b come from steady state problems. Eigenvalues have their greatest importance in dynamic problems. The solution
More informationComputational Optical Imaging  Optique Numerique.  Deconvolution 
Computational Optical Imaging  Optique Numerique  Deconvolution  Winter 2014 Ivo Ihrke Deconvolution Ivo Ihrke Outline Deconvolution Theory example 1D deconvolution Fourier method Algebraic method
More informationUsing Many Cameras as One
Using Many Cameras as One Robert Pless Department of Computer Science and Engineering Washington University in St. Louis, Box 1045, One Brookings Ave, St. Louis, MO, 63130 pless@cs.wustl.edu Abstract We
More informationLecture Topic: LowRank Approximations
Lecture Topic: LowRank Approximations LowRank Approximations We have seen principal component analysis. The extraction of the first principle eigenvalue could be seen as an approximation of the original
More informationDATA ANALYSIS II. Matrix Algorithms
DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where
More informationSegmentation of building models from dense 3D pointclouds
Segmentation of building models from dense 3D pointclouds Joachim Bauer, Konrad Karner, Konrad Schindler, Andreas Klaus, Christopher Zach VRVis Research Center for Virtual Reality and Visualization, Institute
More informationA new Optical Tracking System for Virtual and Augmented Reality Applications
IEEE Instrumentation and Measurement Technology Conference Budapest, Hungary, May 21 23, 2001 A new Optical Tracking System for Virtual and Augmented Reality Applications Miguel Ribo VRVis Competence Center
More informationBackground: State Estimation
State Estimation Cyber Security of the Smart Grid Dr. Deepa Kundur Background: State Estimation University of Toronto Dr. Deepa Kundur (University of Toronto) Cyber Security of the Smart Grid 1 / 81 Dr.
More informationAffine Object Representations for CalibrationFree Augmented Reality
Affine Object Representations for CalibrationFree Augmented Reality Kiriakos N. Kutulakos kyros@cs.rochester.edu James Vallino vallino@cs.rochester.edu Computer Science Department University of Rochester
More informationMath 215 HW #6 Solutions
Math 5 HW #6 Solutions Problem 34 Show that x y is orthogonal to x + y if and only if x = y Proof First, suppose x y is orthogonal to x + y Then since x, y = y, x In other words, = x y, x + y = (x y) T
More informationGeometric Constraints
Simulation in Computer Graphics Geometric Constraints Matthias Teschner Computer Science Department University of Freiburg Outline introduction penalty method Lagrange multipliers local constraints University
More informationFactor analysis. Angela Montanari
Factor analysis Angela Montanari 1 Introduction Factor analysis is a statistical model that allows to explain the correlations between a large number of observed correlated variables through a small number
More informationDigital Image Increase
Exploiting redundancy for reliable aerial computer vision 1 Digital Image Increase 2 Images Worldwide 3 Terrestrial Image Acquisition 4 Aerial Photogrammetry 5 New Sensor Platforms Towards Fully Automatic
More informationTowards Using Sparse Bundle Adjustment for Robust Stereo Odometry in Outdoor Terrain
Sünderhauf, N. & Protzel, P. (2006). Towards Using Sparse Bundle Adjustment for Robust Stereo Odometry in Outdoor Terrain. In Proc. of Towards Autonomous Robotic Systems TAROS06, Guildford, UK, pp. 206
More informationLinear Threshold Units
Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear
More informationEigenvalues, Eigenvectors, Matrix Factoring, and Principal Components
Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components The eigenvalues and eigenvectors of a square matrix play a key role in some important operations in statistics. In particular, they
More information(Quasi)Newton methods
(Quasi)Newton methods 1 Introduction 1.1 Newton method Newton method is a method to find the zeros of a differentiable nonlinear function g, x such that g(x) = 0, where g : R n R n. Given a starting
More informationCS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen
CS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen LECTURE 3: DATA TRANSFORMATION AND DIMENSIONALITY REDUCTION Chapter 3: Data Preprocessing Data Preprocessing: An Overview Data Quality Major
More information4.3 Least Squares Approximations
18 Chapter. Orthogonality.3 Least Squares Approximations It often happens that Ax D b has no solution. The usual reason is: too many equations. The matrix has more rows than columns. There are more equations
More informationAn Efficient Solution to the FivePoint Relative Pose Problem
An Efficient Solution to the FivePoint Relative Pose Problem David Nistér Sarnoff Corporation CN5300, Princeton, NJ 08530 dnister@sarnoff.com Abstract An efficient algorithmic solution to the classical
More informationSpatioTemporally Coherent 3D Animation Reconstruction from Multiview RGBD Images using Landmark Sampling
, March 1315, 2013, Hong Kong SpatioTemporally Coherent 3D Animation Reconstruction from Multiview RGBD Images using Landmark Sampling Naveed Ahmed Abstract We present a system for spatiotemporally
More informationPartial Least Squares (PLS) Regression.
Partial Least Squares (PLS) Regression. Hervé Abdi 1 The University of Texas at Dallas Introduction Pls regression is a recent technique that generalizes and combines features from principal component
More informationClustering Very Large Data Sets with Principal Direction Divisive Partitioning
Clustering Very Large Data Sets with Principal Direction Divisive Partitioning David Littau 1 and Daniel Boley 2 1 University of Minnesota, Minneapolis MN 55455 littau@cs.umn.edu 2 University of Minnesota,
More informationFactorization Theorems
Chapter 7 Factorization Theorems This chapter highlights a few of the many factorization theorems for matrices While some factorization results are relatively direct, others are iterative While some factorization
More informationDesignSimulationOptimization Package for a Generic 6DOF Manipulator with a Spherical Wrist
DesignSimulationOptimization Package for a Generic 6DOF Manipulator with a Spherical Wrist MHER GRIGORIAN, TAREK SOBH Department of Computer Science and Engineering, U. of Bridgeport, USA ABSTRACT Robot
More informationMATHEMATICS (MATH) 3. Provides experiences that enable graduates to find employment in sciencerelated
194 / Department of Natural Sciences and Mathematics MATHEMATICS (MATH) The Mathematics Program: 1. Provides challenging experiences in Mathematics, Physics, and Physical Science, which prepare graduates
More informationThe Image Deblurring Problem
page 1 Chapter 1 The Image Deblurring Problem You cannot depend on your eyes when your imagination is out of focus. Mark Twain When we use a camera, we want the recorded image to be a faithful representation
More informationNumerical Analysis Lecture Notes
Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number
More informationMatrix Calculations: Applications of Eigenvalues and Eigenvectors; Inner Products
Matrix Calculations: Applications of Eigenvalues and Eigenvectors; Inner Products H. Geuvers Institute for Computing and Information Sciences Intelligent Systems Version: spring 2015 H. Geuvers Version:
More information3D Scene Data Recovery using Omnidirectional Multibaseline Stereo
Abstract 3D Scene Data Recovery using Omnidirectional Multibaseline Stereo Sing Bing Kang Richard Szeliski Digital Equipment Corporation Cambridge Research Lab Microsoft Corporation One Kendall Square,
More informationAPPM4720/5720: Fast algorithms for big data. Gunnar Martinsson The University of Colorado at Boulder
APPM4720/5720: Fast algorithms for big data Gunnar Martinsson The University of Colorado at Boulder Course objectives: The purpose of this course is to teach efficient algorithms for processing very large
More informationPerformance of Dynamic Load Balancing Algorithms for Unstructured Mesh Calculations
Performance of Dynamic Load Balancing Algorithms for Unstructured Mesh Calculations Roy D. Williams, 1990 Presented by Chris Eldred Outline Summary Finite Element Solver Load Balancing Results Types Conclusions
More informationUnsupervised and supervised dimension reduction: Algorithms and connections
Unsupervised and supervised dimension reduction: Algorithms and connections Jieping Ye Department of Computer Science and Engineering Evolutionary Functional Genomics Center The Biodesign Institute Arizona
More informationLocalization of Mobile Robots Using Odometry and an External Vision Sensor
Sensors 21, 1, 3655368; doi:1.339/s143655 OPEN ACCESS sensors ISSN 1424822 www.mdpi.com/journal/sensors Article Localization of Mobile Robots Using Odometry and an External Vision Sensor Daniel Pizarro,
More informationMathematics (MAT) MAT 061 Basic Euclidean Geometry 3 Hours. MAT 051 PreAlgebra 4 Hours
MAT 051 PreAlgebra Mathematics (MAT) MAT 051 is designed as a review of the basic operations of arithmetic and an introduction to algebra. The student must earn a grade of C or in order to enroll in MAT
More informationVPITS : VIDEO BASED PHONOMICROSURGERY INSTRUMENT TRACKING SYSTEM. Ketan Surender
VPITS : VIDEO BASED PHONOMICROSURGERY INSTRUMENT TRACKING SYSTEM by Ketan Surender A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Electrical Engineering)
More informationFast Optimal Three View Triangulation
Fast Optimal Three View Triangulation Martin Byröd, Klas Josephson and Kalle Åström {byrod, klasj, kalle}@maths.lth.se Center for Mathematical Sciences, Lund University, Lund, Sweden Abstract. We consider
More informationRecall that two vectors in are perpendicular or orthogonal provided that their dot
Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal
More informationLinear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices
MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two
More informationMonocular ModelBased 3D Tracking of Rigid Objects: A Survey
Foundations and Trends R in Computer Graphics and Vision Vol. 1, No 1 (2005) 1 89 c 2005 V. Lepetit and P. Fua Monocular ModelBased 3D Tracking of Rigid Objects: A Survey Vincent Lepetit 1 and Pascal
More information3D Scene Data Recovery using Omnidirectional Multibaseline Stereo
3D Scene Data Recovery using Omnidirectional Multibaseline Stereo Sing Bing Kang and Richard Szeliski Digital Equipment Corporation Cambridge Research Lab CRL 95/6 October, 1995 Digital Equipment Corporation
More informationFeature Tracking and Optical Flow
02/09/12 Feature Tracking and Optical Flow Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Many slides adapted from Lana Lazebnik, Silvio Saverse, who in turn adapted slides from Steve
More informationInner products on R n, and more
Inner products on R n, and more Peyam Ryan Tabrizian Friday, April 12th, 2013 1 Introduction You might be wondering: Are there inner products on R n that are not the usual dot product x y = x 1 y 1 + +
More informationRealTime Automated Simulation Generation Based on CAD Modeling and Motion Capture
103 RealTime Automated Simulation Generation Based on CAD Modeling and Motion Capture Wenjuan Zhu, Abhinav Chadda, Ming C. Leu and Xiaoqing F. Liu Missouri University of Science and Technology, zhuwe@mst.edu,
More informationLeast Squares Estimation
Least Squares Estimation SARA A VAN DE GEER Volume 2, pp 1041 1045 in Encyclopedia of Statistics in Behavioral Science ISBN13: 9780470860809 ISBN10: 0470860804 Editors Brian S Everitt & David
More informationINTRODUCTION TO RENDERING TECHNIQUES
INTRODUCTION TO RENDERING TECHNIQUES 22 Mar. 212 Yanir Kleiman What is 3D Graphics? Why 3D? Draw one frame at a time Model only once X 24 frames per second Color / texture only once 15, frames for a feature
More informationComputer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science  Technion. An Example.
An Example 2 3 4 Outline Objective: Develop methods and algorithms to mathematically model shape of real world objects Categories: WireFrame Representation Object is represented as as a set of points
More informationInteractive Segmentation, Tracking, and Kinematic Modeling of Unknown 3D Articulated Objects
Interactive Segmentation, Tracking, and Kinematic Modeling of Unknown 3D Articulated Objects Dov Katz, Moslem Kazemi, J. Andrew Bagnell and Anthony Stentz 1 Abstract We present an interactive perceptual
More informationMetric Measurements on a Plane from a Single Image
TR26579, Dartmouth College, Computer Science Metric Measurements on a Plane from a Single Image Micah K. Johnson and Hany Farid Department of Computer Science Dartmouth College Hanover NH 3755 Abstract
More informationTHREE DIMENSIONAL REPRESENTATION OF AMINO ACID CHARAC TERISTICS
THREE DIMENSIONAL REPRESENTATION OF AMINO ACID CHARAC TERISTICS O.U. Sezerman 1, R. Islamaj 2, E. Alpaydin 2 1 Laborotory of Computational Biology, Sabancı University, Istanbul, Turkey. 2 Computer Engineering
More information6. Cholesky factorization
6. Cholesky factorization EE103 (Fall 201112) triangular matrices forward and backward substitution the Cholesky factorization solving Ax = b with A positive definite inverse of a positive definite matrix
More informationDaniel F. DeMenthon and Larry S. Davis. Center for Automation Research. University of Maryland
ModelBased Object Pose in 25 Lines of Code Daniel F. DeMenthon and Larry S. Davis Computer Vision Laboratory Center for Automation Research University of Maryland College Park, MD 20742 Abstract In this
More informationRegression III: Advanced Methods
Lecture 4: Transformations Regression III: Advanced Methods William G. Jacoby Michigan State University Goals of the lecture The Ladder of Roots and Powers Changing the shape of distributions Transforming
More informationROBUST VEHICLE TRACKING IN VIDEO IMAGES BEING TAKEN FROM A HELICOPTER
ROBUST VEHICLE TRACKING IN VIDEO IMAGES BEING TAKEN FROM A HELICOPTER Fatemeh Karimi Nejadasl, Ben G.H. Gorte, and Serge P. Hoogendoorn Institute of Earth Observation and Space System, Delft University
More informationThe Projection Matrix
The Projection Matrix David Arnold Fall 996 Abstract In this activity you will use Matlab to project a set of vectors onto a single vector. Prerequisites. Inner product (dot product) and orthogonal vectors.
More informationA QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS
A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors
More informationDecember 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in twodimensional space (1) 2x y = 3 describes a line in twodimensional space The coefficients of x and y in the equation
More informationTHREE DIMENSIONAL GEOMETRY
Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,
More informationWe shall turn our attention to solving linear systems of equations. Ax = b
59 Linear Algebra We shall turn our attention to solving linear systems of equations Ax = b where A R m n, x R n, and b R m. We already saw examples of methods that required the solution of a linear system
More informationObservability Index Selection for Robot Calibration
Observability Index Selection for Robot Calibration Yu Sun and John M Hollerbach Abstract This paper relates 5 observability indexes for robot calibration to the alphabet optimalities from the experimental
More informationBuild Panoramas on Android Phones
Build Panoramas on Android Phones Tao Chu, Bowen Meng, Zixuan Wang Stanford University, Stanford CA Abstract The purpose of this work is to implement panorama stitching from a sequence of photos taken
More informationPoint Cloud Segmentation via Constrained Nonlinear Least Squares Surface Normal Estimates
Point Cloud Segmentation via Constrained Nonlinear Least Squares Surface Normal Estimates Edward Castillo Radiation Oncology Department University of Texas MD Anderson Cancer Center, Houston TX ecastillo3@mdanderson.org
More information1.5 Equations of Lines and Planes in 3D
40 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3D Recall that given a point P = (a, b, c), one can draw a vector from
More informationCS3220 Lecture Notes: QR factorization and orthogonal transformations
CS3220 Lecture Notes: QR factorization and orthogonal transformations Steve Marschner Cornell University 11 March 2009 In this lecture I ll talk about orthogonal matrices and their properties, discuss
More information