# 4.3 Least Squares Approximations

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 18 Chapter. Orthogonality.3 Least Squares Approximations It often happens that Ax D b has no solution. The usual reason is: too many equations. The matrix has more rows than columns. There are more equations than unknowns (m is greater than n). The n columns span a small part of m-dimensional space. Unless all measurements are perfect, b is outside that column space. Elimination reaches an impossible equation and stops. But we can t stop just because measurements include noise. To repeat: We cannot always get the error e D b Ax down to zero. When e is zero, x is an exact solution to Ax D b. When the length of e is as small as possible, bx is a least squares solution. Our goal in this section is to compute bx and use it. These are real problems and they need an answer. The previous section emphasized p (the projection). This section emphasizes bx (the least squares solution). They are connected by p D Abx. The fundamental equation is still A T Abx D A T b. Here is a short unofficial way to reach this equation: When Ax D b has no solution, multiply by A T and solve A T Abx D A T b: Example 1 A crucial application of least squares is fitting a straight line to m points. Start with three points: Find the closest line to the points.0; 6/;.1; 0/, and.; 0/. No straight line b D C C Dt goes through those three points. We are asking for two numbers C and D that satisfy three equations. Here are the equations at t D 0; 1; to match the given values b D 6; 0; 0: t D 0 The first point is on the line b D C C Dt if C C D 0 D 6 t D 1 The second point is on the line b D C C Dt if C C D 1 D 0 t D The third point is on the line b D C C Dt if C C D D 0: This 3 by system has no solution: b D.6;0;0/ is not a combination of the columns.1;1;1/and.0;1;/. Read off A; x; and b from those equations: A D 1 15 C x D b D 05 Ax D b is not solvable. D 1 0 The same numbers were in Example 3 in the last section. We computed bx D.5; 3/. Those numbers are the best C and D, so5 3t will be the best line for the 3 points. We must connect projections to least squares, by explaining why A T Abx D A T b. In practical problems, there could easily be m D 100 points instead of m D 3. They don t exactly match any straight line C C Dt. Our numbers 6; 0; 0 exaggerate the error so you can see e 1 ;e, and e 3 in Figure.6. Minimizing the Error How do we make the error e D b Ax as small as possible? This is an important question with a beautiful answer. The best x (called bx/ can be found by geometry or algebra or calculus: 90 ı angle or project using P or set the derivative of the error to zero.

2 .3. Least Squares Approximations 19 By geometry Every Ax lies in the plane of the columns.1;1;1/ and.0;1;/. In that plane, we look for the point closest to b. The nearest point is the projection p. The best choice for Abx is p. The smallest possible error is e D b p. The three points at heights.p 1 ;p ;p 3 / do lie on a line, because p is in the column space. In fitting a straight line, bx gives the best choice for.c; D/. By algebra Every vector b splits into two parts. The part in the column space is p. The perpendicular part in the nullspace of A T is e. There is an equation we cannot solve.ax D b/. There is an equation Abx D p we do solve (by removing e/: Ax D b D p C e is impossible; Abx D p is solvable. (1) The solution to Abx D p leaves the least possible error (which is e): Squared length for any x kax bk DkAx pk Ckek : () This is the law c D a C b for a right triangle. The vector Ax p in the column space is perpendicular to e in the left nullspace. We reduce Ax p to zero by choosing x to be bx. That leaves the smallest possible error e D.e 1 ;e ;e 3 /. Notice what smallest means. The squared length of Ax b is minimized: The least squares solution bx makes E DkAx bk as small as possible. Figure.6: Best line and projection: Two pictures, same problem. The line has heights p D.5; ; 1/ with errors e D.1; ; 1/. The equations A T Abx D A T b give bx D.5; 3/. The best line is b D 5 3t and the projection is p D 5a 1 3a. Figure.6a shows the closest line. It misses by distances e 1 ;e ;e 3 D 1; ; 1. Those are vertical distances. The least squares line minimizes E D e 1 C e C e 3.

3 0 Chapter. Orthogonality Figure.6b shows the same problem in 3-dimensional space (bpe space). The vector b is not in the column space of A. That is why we could not solve Ax D b. No line goes through the three points. The smallest possible error is the perpendicular vector e. This is e D b Abx, the vector of errors.1; ; 1/ in the three equations. Those are the distances from the best line. Behind both figures is the fundamental equation A T Abx D A T b. Notice that the errors 1; ; 1 add to zero. The error e D.e 1 ;e ;e 3 / is perpendicular to the first column.1;1;1/in A. The dot product gives e 1 C e C e 3 D 0. By calculus Most functions are minimized by calculus! The graph bottoms out and the derivative in every direction is zero. Here the error function E to be minimized is a sum of squares e1 C e C e 3 (the square of the error in each equation): E DkAx bk D.C C D 0 6/ C.C C D 1/ C.C C D / : (3) The unknowns are C and D. With two unknowns there are two derivatives both zero at the minimum. They are partial derivatives because treats D as constant and treats C as constant: D.C C D 0 6/ C.C C D 1/ C.C C D / D 0 D.C C D 0 6/.0/ C.C C D 1/.1/ C.C C D /./ D 0: contains the extra factors 0; 1; from the chain rule. (The last derivative from.c C D/ was times C C D times that extra.) In the C derivative the corresponding factors are 1; 1; 1, because C is always multiplied by 1. It is no accident that 1, 1, 1 and 0, 1, are the columns of A. Now cancel from every term and collect all C s and all D s: The C derivative is zero: 3C C 3D D 6 The D derivative is zero: 3C C 5D D 0 This matrix is A T A () These equations are identical with A T Abx D A T b. The best C and D are the components of bx. The equations from calculus are the same as the normal equations from linear algebra. These are the key equations of least squares: The partial derivatives of kax bk are zero when A T Abx D A T b: The solution is C D 5 and D D 3. Therefore b D 5 3t is the best line it comes closest to the three points. At t D 0, 1, this line goes through p D 5,, 1. It could not go through b D 6, 0, 0. The errors are 1,, 1. This is the vector e! The Big Picture The key figure of this book shows the four subspaces and the true action of a matrix. The vector x on the left side of Figure.3 went to b D Ax on the right side. In that figure x was split into x r C x n. There were many solutions to Ax D b.

4 .3. Least Squares Approximations 1 Figure.7: The projection p D Abx is closest to b, sobx minimizes E Dkb Axk. In this section the situation is just the opposite. There are no solutions to Ax D b. Instead of splitting up x we are splitting up b. Figure.3 shows the big picture for least squares. Instead of Ax D b we solve Abx D p. The error e D b p is unavoidable. Notice how the nullspace N.A/ is very small just one point. With independent columns, the only solution to Ax D 0 is x D 0. Then A T A is invertible. The equation A T Abx D A T b fully determines the best vector bx. The error has A T e D 0. Chapter 7 will have the complete picture all four subspaces included. Every x splits into x r C x n, and every b splits into p C e. The best solution is bx r in the row space. We can t help e and we don t want x n this leaves Abx D p. Fitting a Straight Line Fitting a line is the clearest application of least squares. It starts with m > points, hopefully near a straight line. At times t 1 ;:::;t m those m points are at heights b 1 ;:::;b m. The best line C C Dt misses the points by vertical distances e 1 ;:::;e m. No line is perfect, and the least squares line minimizes E D e1 CCe m. The first example in this section had three points in Figure.6. Now we allow m points (and m can be large). The two components of bx are still C and D. A line goes through the m points when we exactly solve Ax D b. Generally we can t do it. Two unknowns C and D determine a line, so A has only n D columns. To fit the m points, we are trying to solve m equations (and we only want two!): 3 C C Dt 1 D b 1 1 t 1 C C Dt Ax D b is D b 1 t : with A D 6 7 : : : 5 : (5) C C Dt m D b m 1 t m

5 Chapter. Orthogonality The column space is so thin that almost certainly b is outside of it. When b happens to lie in the column space, the points happen to lie on a line. In that case b D p. Then Ax D b is solvable and the errors are e D.0;:::;0/. The closest line C C Dt has heights p 1 ;:::;p m with errors e 1 ;:::;e m. Solve A T Abx D A T b for bx D.C; D/. The errors are e i D b i C Dt i. Fitting points by a straight line is so important that we give the two equations A T Abx D A T b, once and for all. The two columns of A are independent (unless all times t i are the same). So we turn to least squares and solve A T Abx D A T b. 3 1 t 1 " P # Dot-product matrix A T A D t 1 t m : 7 m ti : 5 D P P : (6) ti t 1 t i m On the right side of the normal equation is the by 1 vector A T b: 3 b 1 " P # A T bi b D t 1 t m : 5 D P : (7) ti b i b m In a specific problem, these numbers are given. The best bx D.C; D/ is in equation (9). The line C C Dt minimizes e 1 CCe m DkAx bk when A T Abx D A T b: " P # m ti C P D t i D P ti " P # bi P : (8) ti b i The vertical errors at the m points on the line are the components of e D b p. This error vector (the residual) b Abx is perpendicular to the columns of A (geometry). The error is in the nullspace of A T (linear algebra). The best bx D.C; D/ minimizes the total error E, the sum of squares: E.x/ DkAx bk D.C C Dt 1 b 1 / CC.C C Dt m b m / : When calculus sets the derivatives and to zero, it produces A T Abx D A T b. Other least squares problems have more than two unknowns. Fitting by the best parabola has n D 3 coefficients C;D;E (see below). In general we are fitting m data points by n parameters x 1 ;:::;x n. The matrix A has n columns and n<m. The derivatives of kax bk give the n equations A T Abx D A T b. The derivative of a square is linear. This is why the method of least squares is so popular. Example A has orthogonal columns when the measurement times t i add to zero.

6 .3. Least Squares Approximations 3 Suppose b D 1; ; at times t D ; 0;. Those times add to zero. The columns of A have zero dot product: 3 3 C C D. / D C C D.0/ D or Ax D 1 05 C D 5 : D C C D./ D 1 Look at the zeros in A T A: A T Abx D A T b is 3 0 C 7 D : 0 8 D 6 Main point: NowA T A is diagonal. We can solve separately for C D 7 3 and D D 6 8. The zeros in A T A are dot products of perpendicular columns in A. The diagonal matrix A T A, with entries m D 3 and t1 C t C t 3 D 8, is virtually as good as the identity matrix. Orthogonal columns are so helpful that it is worth moving the time origin to produce them. To do that, subtract away the average timebt D.t 1 CCt m /=m. The shifted times T i D t i bt add to P T i D mbt mbt D 0. With the columns now orthogonal, A T A is diagonal. Its entries are m and T1 CCT m. The best C and D have direct formulas: T is t bt C D b 1 CCb m m and D D b 1T 1 CCb m T m T1 CCT : (9) m The best line is C C DT or C C D.t bt /. The time shift that makes A T A diagonal is an example of the Gram-Schmidt process: orthogonalize the columns in advance. Fitting by a Parabola If we throw a ball, it would be crazy to fit the path by a straight line. A parabola b D C C Dt C Et allows the ball to go up and come down again.b is the height at time t/. The actual path is not a perfect parabola, but the whole theory of projectiles starts with that approximation. When Galileo dropped a stone from the Leaning Tower of Pisa, it accelerated. The distance contains a quadratic term 1 gt. (Galileo s point was that the stone s mass is not involved.) Without that t term we could never send a satellite into the right orbit. But even with a nonlinear function like t, the unknowns C;D;E appear linearly! Choosing the best parabola is still a problem in linear algebra. Problem Fit heights b 1 ;:::;b m at times t 1 ;:::;t m by a parabola C C Dt C Et. Solution With m>3points, the m equations for an exact fit are generally unsolvable: C C Dt 1 C Et 1 D b 1 : C C Dt m C Etm D b m has the m by 3 matrix 1 t 1 t 3 1 A D : : : 5 : (10) 1 t m tm Least squares The closest parabola C C Dt C Et chooses bx D.C;D;E/ to satisfy the three normal equations A T Abx D A T b.

7 Chapter. Orthogonality May I ask you to convert this to a problem of projection? The column space of A has dimension. The projection of b is p D Abx, which combines the three columns using the coefficients C;D;E. The error at the first data point is e 1 D b 1 C Dt 1 Et1. The total squared error is e1 C. If you prefer to minimize by calculus, take the partial derivatives of E with respect to ; ;. These three derivatives will be zero when bx D.C;D;E/solves the 3 by 3 system of equations. Section 8.5 has more least squares applications. The big one is Fourier series approximating functions instead of vectors. The function to be minimized changes from a sum of squared errors e1 CCe m to an integral of the squared error. Example 3 For a parabola b D C CDt CEt to go through the three heights b D 6; 0; 0 when t D 0; 1;, the equations are C C D 0 C E 0 D 6 C C D 1 C E 1 D 0 C C D C E D 0: (11) This is Ax D b. We can solve it exactly. Three data points give three equations and a square matrix. The solution is x D.C;D;E/ D.6; 9; 3/. The parabola through the three points in Figure.8a is b D 6 9t C 3t. What does this mean for projection? The matrix has three columns, which span the whole space R 3. The projection matrix is the identity. The projection of b is b. The error is zero. We didn t need A T Abx D A T b, because we solved Ax D b. Of course we could multiply by A T, but there is no reason to do it. Figure.8 also shows a fourth point b at time t. If that falls on the parabola, the new Ax D b (four equations) is still solvable. When the fourth point is not on the parabola, we turn to A T Abx D A T b. Will the least squares parabola stay the same, with all the error at the fourth point? Not likely! The smallest error vector.e 1 ;e ;e 3 ;e / is perpendicular to.1;1;1;1/, the first column of A. Least squares balances out the four errors, and they add to zero. 6 b 0 j t b D 6 9t C 3t. 1 t b is in R t Figure.8: From Example 3: An exact fit of the parabola at t D 0; 1; means that p D b and e D 0. The point b off the parabola makes m>nand we need least squares. 0 1 t 3 7 5

8 .3. Least Squares Approximations 5 REVIEW OF THE KEY IDEAS 1. The least squares solution bx minimizes E DkAx bk. This is the sum of squares of the errors in the m equations.m > n/.. The best bx comes from the normal equations A T Abx D A T b. 3. To fit m points by a line b D C C Dt, the normal equations give C and D.. The heights of the best line are p D.p 1 ;:::;p m /. The vertical distances to the data points are the errors e D.e 1 ;:::;e m /. 5. If we try to fit m points by a combination of n < m functions, the m equations Ax D b are generally unsolvable. The n equations A T Abx D A T b give the least squares solution the combination with smallest MSE (mean square error). WORKED EXAMPLES.3 A Start with nine measurements b 1 to b 9, all zero, at times t D 1;:::;9. The tenth measurement b 10 D 0 is an outlier. Find the best horizontal line y D C to fit the ten points.1; 0/;.; 0/; : : : ;.9; 0/;.10; 0/ using three measures for the error E: (1) Least squares E D e1 C C e 10 (then the normal equation for C is linear) () Least maximum error E 1 Dje max j (3) Least sum of errors E 1 Dje 1 jccje 10 j. Solution (1) The least squares fit to 0; 0; : : : ; 0; 0 by a horizontal line is C D : A D column of 1 s A T A D 10 A T b D sum of b i D 0. So10C D 0: () The least maximum error requires C D 0, halfway between 0 and 0. (3) The least sum requires C D 0 (!!). The sum of errors 9jC jcj0 C j would increase if C moves up from zero. The least sum comes from the median measurement (the median of 0;:::;0;0is zero). Many statisticians feel that the least squares solution is too heavily influenced by outliers like b 10 D 0, and they prefer least sum. But the equations become nonlinear. Now find the least squares straight line C C Dt through those ten points. P A T 10 ti A D P P ti t D i A T b D P bi P ti b i D 0 00 Those come from equation (8). Then A T Abx D A T b gives C D 8 and D D =11. What happens to C and D if you multiply the b i by 3 and then add 30 to get b new D.30; 30; : : : ; 150/? Linearity allows us to rescale b D.0;0;:::;0/. Multiplying b by 3 will multiply C and D by 3. Adding 30 to all b i will add 30 to C.

9 6 Chapter. Orthogonality.3 B Find the parabola C CDt CEt that comes closest (least squares error) to the values b D.0;0;1;0;0/at the times t D ; 1; 0; 1;. First write down the five equations Ax D b in three unknowns x D.C;D;E/for a parabola to go through the five points. No solution because no such parabola exists. Solve A T Abx D A T b. I would predict D D 0. Why should the best parabola be symmetric around t D 0? In A T Abx D A T b, equation for D should uncouple from equations 1 and 3. Solution The five equations Ax D b have a rectangular Vandermonde matrix A: 3 C C D. / C E. / D 0 1 C C D. 1/ C E. 1/ D C C D.0/ C E.0/ D 1 A D C C D.1/ C E.1/ D AT A D C C D./ C E./ D 0 1 Those zeros in A T A mean that column of A is orthogonal to columns 1 and 3. We see this directly in A (the times ; 1; 0; 1; are symmetric). The best C;D;E in the parabola C C Dt C Et come from A T Abx D A T b, and D is uncoupled: Problem Set C D E 3 5 D leads to C D 3=70 D D 0 as predicted E D 10=70 Problems 1 11 use four data points b D.0;8;8;0/to bring out the key ideas. 1 With b D 0; 8; 8; 0 at t D 0; 1; 3;, set up and solve the normal equations A T Abx D A T b. For the best straight line in Figure.9a, find its four heights p i and four errors e i. What is the minimum value E D e 1 C e C e 3 C e? (Line C C Dt does go through p s) With b D 0; 8; 8; 0 at times t D 0; 1; 3;, write down the four equations Ax D b (unsolvable). Change the measurements to p D 1; 5; 13; 17 and find an exact solution to Abx D p. 3 Check that e D b p D. 1; 3; 5; 3/ is perpendicular to both columns of A. What is the shortest distance kek from b to the column space of A? (By calculus) Write down E DkAx bk as a sum of four squares the last one is.c C D 0/. Find the derivative equations D 0 and D 0. Divide by to obtain the normal equations A T Abx D A T b. 5 Find the height C of the best horizontal line to fit b D.0;8;8;0/. An exact fit would solve the unsolvable equations C D 0; C D 8; C D 8; C D 0. Find the by 1 matrix A in these equations and solve A T Abx D A T b. Draw the horizontal line at height bx D C and the four errors in e. 3 5

10 .3. Least Squares Approximations 7 6 Project b D.0;8;8;0/onto the line through a D.1;1;1;1/. Find bx D a T b=a T a and the projection p D bxa. Check that e D b p is perpendicular to a, and find the shortest distance kek from b to the line through a. 7 Find the closest line b D Dt, through the origin, to the same four points. An exact fit would solve D 0 D 0; D 1 D 8; D 3 D 8; D D 0. Find the by 1 matrix and solve A T Abx D A T b. Redraw Figure.9a showing the best line b D Dt and the e s. 8 Project b D.0;8;8;0/ onto the line through a D.0;1;3;/. Find bx D D and p D bxa. The best C in Problems 5 6 and the best D in Problems 7 8 do not agree with the best.c; D/ in Problems 1. That is because.1;1;1;1/and.0;1;3;/are perpendicular. 9 For the closest parabola b D C C Dt C Et to the same four points, write down the unsolvable equations Ax D b in three unknowns x D.C;D;E/. Set up the three normal equations A T Abx D A T b (solution not required). In Figure.9a you are now fitting a parabola to points what is happening in Figure.9b? 10 For the closest cubic b D C C Dt C Et C Ft 3 to the same four points, write down the four equations Ax D b. Solve them by elimination. In Figure.9a this cubic now goes exactly through the points. What are p and e? 11 The average of the four times is bt D 1.0 C 1 C 3 C / D. The average of the four b s is b D 1.0 C 8 C 8 C 0/ D 9. (a) Verify that the best line goes through the center point.bt; b b/ D.; 9/. (b) Explain why C C Dbt D b comes from the first equation in A T Abx D A T b. Figure.9: Problems 1 11: The closest line C C Dt matches C a 1 C Da in R.

11 8 Chapter. Orthogonality Questions 1 16 introduce basic ideas of statistics the foundation for least squares. 1 (Recommended) This problem projects b D.b 1 ;:::;b m / onto the line through a D.1;:::;1/. We solve m equations ax D b in 1 unknown (by least squares). (a) Solve a T abx D a T b to show that bx is the mean (the average) of the b s. (b) Find e D b abx and the variance kek and the standard deviation kek. (c) The horizontal line bb D 3 is closest to b D.1;;6/. Check that p D.3;3;3/ is perpendicular to e and find the 3 by 3 projection matrix P. 13 First assumption behind least squares: Ax D b (noise e with mean zero). Multiply the error vectors e D b Ax by.a T A/ 1 A T to get bx x on the right. The estimation errors bx x also average to zero. The estimate bx is unbiased. 1 Second assumption behind least squares: The m errors e i are independent with variance, so the average of.b Ax/.b Ax/ T is I. Multiply on the left by.a T A/ 1 A T and on the right by A.A T A/ 1 to show that the average matrix.bx x/.bx x/ T is.a T A/ 1. This is the covariance matrix P in section A doctor takes readings of your heart rate. The best solution to x D b 1 ;:::;x D b is the average bx of b 1 ;:::;b. The matrix A is a column of 1 s. Problem 1 gives the expected error.bx x/ as.a T A/ 1 D. By averaging, the variance drops from to =. 16 If you know the average bx 9 of 9 numbers b 1 ;:::;b 9, how can you quickly find the average bx 10 with one more number b 10? The idea of recursive least squares is to avoid adding 10 numbers. What number multiplies bx 9 in computing bx 10? bx 10 D 1 10 b 10 C bx 9 D 1 10.b 1 CCb 10 / as in Worked Example : C. Questions 17 give more practice with bx and p and e. 17 Write down three equations for the line b D C C Dt to go through b D 7 at t D 1, b D 7 at t D 1, and b D 1 at t D. Find the least squares solution bx D.C; D/ and draw the closest line. 18 Find the projection p D Abx in Problem 17. This gives the three heights of the closest line. Show that the error vector is e D.; 6; /. Why is P e D 0? 19 Suppose the measurements at t D 1; 1; are the errors ; 6; in Problem 18. Compute bx and the closest line to these new measurements. Explain the answer: b D.; 6; / is perpendicular to so the projection is p D 0. 0 Suppose the measurements at t D 1; 1; are b D.5; 13; 17/. Compute bx and the closest line and e. The error is e D 0 because this b is. 1 Which of the four subspaces contains the error vector e? Which contains p? Which contains bx? What is the nullspace of A?

12 .3. Least Squares Approximations 9 Find the best line C C Dt to fit b D ; ; 1; 0; 0 at times t D ; 1; 0; 1;. 3 Is the error vector e orthogonal to b or p or e or bx? Show that kek equals e T b which equals b T b p T b. This is the smallest total error E. The partial derivatives of kaxk with respect to x 1 ;:::;x n fill the vector A T Ax. The derivatives of b T Ax fill the vector A T b. So the derivatives of kax bk are zero when. Challenge Problems 5 What condition on.t 1 ;b 1 /;.t ;b /;.t 3 ;b 3 / puts those three points onto a straight line? A column space answer is: (b 1 ;b ;b 3 ) must be a combination of.1;1;1/and.t 1 ;t ;t 3 /. Try to reach a specific equation connecting the t s and b s. I should have thought of this question sooner! 6 Find the plane that gives the best fit to the values b D.0;1;3;/ at the corners.1; 0/ and.0; 1/ and. 1; 0/ and.0; 1/ of a square. The equations C CDxCEy D b at those points are Ax D b with 3 unknowns x D.C;D;E/. What is A? At the center.0; 0/ of the square, show that C C Dx C Ey D average of the b s. 7 (Distance between lines) The points P D.x;x;x/and Q D.y; 3y; 1/ are on two lines in space that don t meet. Choose x and y to minimize the squared distance kp Qk. The line connecting the closest P and Q is perpendicular to. 8 Suppose the columns of A are not independent. How could you find a matrix B so that P D B.B T B/ 1 B T does give the projection onto the column space of A? (The usual formula will fail when A T A is not ivertible.) 9 Usually there will be exactly one hyperplane in R n that contains the n given points x D 0; a 1 ;:::;a n 1 : (Example for n D 3: There will be one plane containing 0; a 1 ; a unless.) What is the test to have exactly one plane in R n?

### 1 2 3 1 1 2 x = + x 2 + x 4 1 0 1

(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which

### Section 1.1. Introduction to R n

The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

### Eigenvalues and Eigenvectors

Chapter 6 Eigenvalues and Eigenvectors 6. Introduction to Eigenvalues Linear equations Ax D b come from steady state problems. Eigenvalues have their greatest importance in dynamic problems. The solution

### Recall that two vectors in are perpendicular or orthogonal provided that their dot

Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

### Orthogonal Projections

Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors

### 1 Introduction to Matrices

1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns

### Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables

The Calculus of Functions of Several Variables Section 1.4 Lines, Planes, Hyperplanes In this section we will add to our basic geometric understing of R n by studying lines planes. If we do this carefully,

### Math 215 HW #6 Solutions

Math 5 HW #6 Solutions Problem 34 Show that x y is orthogonal to x + y if and only if x = y Proof First, suppose x y is orthogonal to x + y Then since x, y = y, x In other words, = x y, x + y = (x y) T

### Portable Assisted Study Sequence ALGEBRA IIA

SCOPE This course is divided into two semesters of study (A & B) comprised of five units each. Each unit teaches concepts and strategies recommended for intermediate algebra students. The first half of

### 1.3 Algebraic Expressions

1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

### MAT 242 Test 3 SOLUTIONS, FORM A

MAT Test SOLUTIONS, FORM A. Let v =, v =, and v =. Note that B = { v, v, v } is an orthogonal set. Also, let W be the subspace spanned by { v, v, v }. A = 8 a. [5 points] Find the orthogonal projection

### CURVE FITTING LEAST SQUARES APPROXIMATION

CURVE FITTING LEAST SQUARES APPROXIMATION Data analysis and curve fitting: Imagine that we are studying a physical system involving two quantities: x and y Also suppose that we expect a linear relationship

### Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

### A matrix over a field F is a rectangular array of elements from F. The symbol

Chapter MATRICES Matrix arithmetic A matrix over a field F is a rectangular array of elements from F The symbol M m n (F) denotes the collection of all m n matrices over F Matrices will usually be denoted

### LINEAR ALGEBRA. September 23, 2010

LINEAR ALGEBRA September 3, 00 Contents 0. LU-decomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................

### 1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,

1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It

### Solving Quadratic Equations by Completing the Square

9. Solving Quadratic Equations by Completing the Square 9. OBJECTIVES 1. Solve a quadratic equation by the square root method. Solve a quadratic equation by completing the square. Solve a geometric application

### 18.06 Problem Set 4 Solution Due Wednesday, 11 March 2009 at 4 pm in 2-106. Total: 175 points.

806 Problem Set 4 Solution Due Wednesday, March 2009 at 4 pm in 2-06 Total: 75 points Problem : A is an m n matrix of rank r Suppose there are right-hand-sides b for which A x = b has no solution (a) What

### 1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each)

Math 33 AH : Solution to the Final Exam Honors Linear Algebra and Applications 1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each) (1) If A is an invertible

### Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Chapter 3 Linear Least Squares Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

### Vector algebra Christian Miller CS Fall 2011

Vector algebra Christian Miller CS 354 - Fall 2011 Vector algebra A system commonly used to describe space Vectors, linear operators, tensors, etc. Used to build classical physics and the vast majority

### 3. INNER PRODUCT SPACES

. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

### ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola

### Inner Product Spaces

Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

### Geometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi

Geometry of Vectors Carlo Tomasi This note explores the geometric meaning of norm, inner product, orthogonality, and projection for vectors. For vectors in three-dimensional space, we also examine the

### Section 5.3. Section 5.3. u m ] l jj. = l jj u j + + l mj u m. v j = [ u 1 u j. l mj

Section 5. l j v j = [ u u j u m ] l jj = l jj u j + + l mj u m. l mj Section 5. 5.. Not orthogonal, the column vectors fail to be perpendicular to each other. 5..2 his matrix is orthogonal. Check that

### Linear Equations and Inverse Matrices

Chapter 4 Linear Equations and Inverse Matrices 4. Two Pictures of Linear Equations The central problem of linear algebra is to solve a system of equations. Those equations are linear, which means that

### α = u v. In other words, Orthogonal Projection

Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

### We know a formula for and some properties of the determinant. Now we see how the determinant can be used.

Cramer s rule, inverse matrix, and volume We know a formula for and some properties of the determinant. Now we see how the determinant can be used. Formula for A We know: a b d b =. c d ad bc c a Can we

### UNIT 2 MATRICES - I 2.0 INTRODUCTION. Structure

UNIT 2 MATRICES - I Matrices - I Structure 2.0 Introduction 2.1 Objectives 2.2 Matrices 2.3 Operation on Matrices 2.4 Invertible Matrices 2.5 Systems of Linear Equations 2.6 Answers to Check Your Progress

### THREE DIMENSIONAL GEOMETRY

Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

### 2. Perform elementary row operations to get zeros below the diagonal.

Gaussian Elimination We list the basic steps of Gaussian Elimination, a method to solve a system of linear equations. Except for certain special cases, Gaussian Elimination is still state of the art. After

### Chapter 19. General Matrices. An n m matrix is an array. a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm. The matrix A has n row vectors

Chapter 9. General Matrices An n m matrix is an array a a a m a a a m... = [a ij]. a n a n a nm The matrix A has n row vectors and m column vectors row i (A) = [a i, a i,..., a im ] R m a j a j a nj col

### Factor Polynomials Completely

9.8 Factor Polynomials Completely Before You factored polynomials. Now You will factor polynomials completely. Why? So you can model the height of a projectile, as in Ex. 71. Key Vocabulary factor by grouping

### Principal Component Analysis Application to images

Principal Component Analysis Application to images Václav Hlaváč Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics Center for Machine Perception http://cmp.felk.cvut.cz/

### 7. The solutions of a quadratic equation are called roots. SOLUTION: The solutions of a quadratic equation are called roots. The statement is true.

State whether each sentence is true or false. If false, replace the underlined term to make a true sentence. 1. The axis of symmetry of a quadratic function can be found by using the equation x =. The

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

### x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3

CORE 4 Summary Notes Rational Expressions Factorise all expressions where possible Cancel any factors common to the numerator and denominator x + 5x x(x + 5) x 5 (x + 5)(x 5) x x 5 To add or subtract -

### Summary of week 8 (Lectures 22, 23 and 24)

WEEK 8 Summary of week 8 (Lectures 22, 23 and 24) This week we completed our discussion of Chapter 5 of [VST] Recall that if V and W are inner product spaces then a linear map T : V W is called an isometry

### 1 VECTOR SPACES AND SUBSPACES

1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such

### Chapter 4: Systems of Equations and Ineq. Lecture notes Math 1010

Section 4.1: Systems of Equations Systems of equations A system of equations consists of two or more equations involving two or more variables { ax + by = c dx + ey = f A solution of such a system is an

### FACTORING QUADRATICS 8.1.1 and 8.1.2

FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.

### Similar matrices and Jordan form

Similar matrices and Jordan form We ve nearly covered the entire heart of linear algebra once we ve finished singular value decompositions we ll have seen all the most central topics. A T A is positive

### Linear Algebra Review Part 2: Ax=b

Linear Algebra Review Part 2: Ax=b Edwin Olson University of Michigan The Three-Day Plan Geometry of Linear Algebra Vectors, matrices, basic operations, lines, planes, homogeneous coordinates, transformations

### Equations Involving Lines and Planes Standard equations for lines in space

Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity

### Ordered Pairs. Graphing Lines and Linear Inequalities, Solving System of Linear Equations. Cartesian Coordinates System.

Ordered Pairs Graphing Lines and Linear Inequalities, Solving System of Linear Equations Peter Lo All equations in two variables, such as y = mx + c, is satisfied only if we find a value of x and a value

### Catenary Curves. Bruce Harvey, SSIS UNSW 23/09/2011

Catenary Curves Bruce Harvey, SSIS UNSW 23/09/2011 These notes are a worked example of least squares data analysis for students. Background Some background reading about catenary curves will yield information

### 1.3. Maximum or Minimum of a Quadratic Function. Investigate A

< P1-6 photo of a large arched bridge, similar to the one on page 292 or p 360-361of the fish book> Maximum or Minimum of a Quadratic Function 1.3 Some bridge arches are defined by quadratic functions.

### Basics Inversion and related concepts Random vectors Matrix calculus. Matrix algebra. Patrick Breheny. January 20

Matrix algebra January 20 Introduction Basics The mathematics of multiple regression revolves around ordering and keeping track of large arrays of numbers and solving systems of equations The mathematical

### 3.2 Sources, Sinks, Saddles, and Spirals

3.2. Sources, Sinks, Saddles, and Spirals 6 3.2 Sources, Sinks, Saddles, and Spirals The pictures in this section show solutions to Ay 00 C By 0 C Cy D 0. These are linear equations with constant coefficients

476 CHAPTER 7 Graphs, Equations, and Inequalities 7. Quadratic Equations Now Work the Are You Prepared? problems on page 48. OBJECTIVES 1 Solve Quadratic Equations by Factoring (p. 476) Solve Quadratic

### Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.

Math 312, Fall 2012 Jerry L. Kazdan Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. In addition to the problems below, you should also know how to solve

### Algebra I. In this technological age, mathematics is more important than ever. When students

In this technological age, mathematics is more important than ever. When students leave school, they are more and more likely to use mathematics in their work and everyday lives operating computer equipment,

### Vector Math Computer Graphics Scott D. Anderson

Vector Math Computer Graphics Scott D. Anderson 1 Dot Product The notation v w means the dot product or scalar product or inner product of two vectors, v and w. In abstract mathematics, we can talk about

### Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013

Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,

### MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =

MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix 2 2 0 A = 0 3 0 3 0 Answer: det A = 3. The most efficient way is to develop the determinant along the

### Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

### December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

### 6. Vectors. 1 2009-2016 Scott Surgent (surgent@asu.edu)

6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,

### REVISED GCSE Scheme of Work Mathematics Higher Unit T3. For First Teaching September 2010 For First Examination Summer 2011

REVISED GCSE Scheme of Work Mathematics Higher Unit T3 For First Teaching September 2010 For First Examination Summer 2011 Version 1: 28 April 10 Version 1: 28 April 10 Unit T3 Unit T3 This is a working

### Notes on Elastic and Inelastic Collisions

Notes on Elastic and Inelastic Collisions In any collision of 2 bodies, their net momentus conserved. That is, the net momentum vector of the bodies just after the collision is the same as it was just

### REVIEW SHEETS INTERMEDIATE ALGEBRA MATH 95

REVIEW SHEETS INTERMEDIATE ALGEBRA MATH 95 A Summary of Concepts Needed to be Successful in Mathematics The following sheets list the key concepts which are taught in the specified math course. The sheets

### Linear Least Squares

Linear Least Squares Suppose we are given a set of data points {(x i,f i )}, i = 1,...,n. These could be measurements from an experiment or obtained simply by evaluating a function at some points. One

### Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors

1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number

### MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

### Simple Regression Theory I 2010 Samuel L. Baker

SIMPLE REGRESSION THEORY I 1 Simple Regression Theory I 2010 Samuel L. Baker Regression analysis lets you use data to explain and predict. A simple regression line drawn through data points In Assignment

### Warm-Up Oct. 22. Daily Agenda:

Evaluate y = 2x 3x + 5 when x = 1, 0, and 2. Daily Agenda: Grade Assignment Go over Ch 3 Test; Retakes must be done by next Tuesday 5.1 notes / assignment Graphing Quadratic Functions 5.2 notes / assignment

### 1 Orthogonal projections and the approximation

Math 1512 Fall 2010 Notes on least squares approximation Given n data points (x 1, y 1 ),..., (x n, y n ), we would like to find the line L, with an equation of the form y = mx + b, which is the best fit

### Manifold Learning Examples PCA, LLE and ISOMAP

Manifold Learning Examples PCA, LLE and ISOMAP Dan Ventura October 14, 28 Abstract We try to give a helpful concrete example that demonstrates how to use PCA, LLE and Isomap, attempts to provide some intuition

### Chapter 10: Topics in Analytic Geometry

Chapter 10: Topics in Analytic Geometry 10.1 Parabolas V In blue we see the parabola. It may be defined as the locus of points in the plane that a equidistant from a fixed point (F, the focus) and a fixed

### Exam 1 Sample Question SOLUTIONS. y = 2x

Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

### P.E.R.T. Math Study Guide

A guide to help you prepare for the Math subtest of Florida s Postsecondary Education Readiness Test or P.E.R.T. P.E.R.T. Math Study Guide www.perttest.com PERT - A Math Study Guide 1. Linear Equations

### Linear Algebra Review. Vectors

Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka kosecka@cs.gmu.edu http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length

### RIT scores between 191 and 200

Measures of Academic Progress for Mathematics RIT scores between 191 and 200 Number Sense and Operations Whole Numbers Solve simple addition word problems Find and extend patterns Demonstrate the associative,

### Mathematics on the Soccer Field

Mathematics on the Soccer Field Katie Purdy Abstract: This paper takes the everyday activity of soccer and uncovers the mathematics that can be used to help optimize goal scoring. The four situations that

### Inverses and powers: Rules of Matrix Arithmetic

Contents 1 Inverses and powers: Rules of Matrix Arithmetic 1.1 What about division of matrices? 1.2 Properties of the Inverse of a Matrix 1.2.1 Theorem (Uniqueness of Inverse) 1.2.2 Inverse Test 1.2.3

### MATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix.

MATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix. Matrices Definition. An m-by-n matrix is a rectangular array of numbers that has m rows and n columns: a 11

### Elementary Statistics. Scatter Plot, Regression Line, Linear Correlation Coefficient, and Coefficient of Determination

Scatter Plot, Regression Line, Linear Correlation Coefficient, and Coefficient of Determination What is a Scatter Plot? A Scatter Plot is a plot of ordered pairs (x, y) where the horizontal axis is used

### ( % . This matrix consists of \$ 4 5 " 5' the coefficients of the variables as they appear in the original system. The augmented 3 " 2 2 # 2 " 3 4&

Matrices define matrix We will use matrices to help us solve systems of equations. A matrix is a rectangular array of numbers enclosed in parentheses or brackets. In linear algebra, matrices are important

### Polynomial Degree and Finite Differences

CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial

### What are the place values to the left of the decimal point and their associated powers of ten?

The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

### 9.1 Solving Quadratic Equations by Finding Square Roots Objectives 1. Evaluate and approximate square roots.

9.1 Solving Quadratic Equations by Finding Square Roots 1. Evaluate and approximate square roots. 2. Solve a quadratic equation by finding square roots. Key Terms Square Root Radicand Perfect Squares Irrational

### Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

### 5.3 The Cross Product in R 3

53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or

### Chapter 8. Quadratic Equations and Functions

Chapter 8. Quadratic Equations and Functions 8.1. Solve Quadratic Equations KYOTE Standards: CR 0; CA 11 In this section, we discuss solving quadratic equations by factoring, by using the square root property

### 15.062 Data Mining: Algorithms and Applications Matrix Math Review

.6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

### Sect 6.7 - Solving Equations Using the Zero Product Rule

Sect 6.7 - Solving Equations Using the Zero Product Rule 116 Concept #1: Definition of a Quadratic Equation A quadratic equation is an equation that can be written in the form ax 2 + bx + c = 0 (referred

### Chapter 6. Orthogonality

6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be

### Exercise 1.12 (Pg. 22-23)

Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.

Lecture 5: Linear least-squares Regression III: Advanced Methods William G. Jacoby Department of Political Science Michigan State University http://polisci.msu.edu/jacoby/icpsr/regress3 Simple Linear Regression

### TWO DIMENSIONAL VECTORS AND MOTION

TWO DIMENSIONAL VECTORS AND MOTION 1. Two nonzero vectors have unequal magnitudes of X and Y. Which of the following could be the length of their sum? (i) 0 (ii) X+Y (iii) X (iv) Y a. (i), (iii), and (iv)

### 2After completing this chapter you should be able to

After completing this chapter you should be able to solve problems involving motion in a straight line with constant acceleration model an object moving vertically under gravity understand distance time

### Linear Algebraic Equations, SVD, and the Pseudo-Inverse

Linear Algebraic Equations, SVD, and the Pseudo-Inverse Philip N. Sabes October, 21 1 A Little Background 1.1 Singular values and matrix inversion For non-smmetric matrices, the eigenvalues and singular

### LECTURE 1 I. Inverse matrices We return now to the problem of solving linear equations. Recall that we are trying to find x such that IA = A

LECTURE I. Inverse matrices We return now to the problem of solving linear equations. Recall that we are trying to find such that A = y. Recall: there is a matri I such that for all R n. It follows that

Review Session #5 Quadratics Discriminant How can you determine the number and nature of the roots without solving the quadratic equation? 1. Prepare the quadratic equation for solving in other words,

### Lesson 19. Triangle Properties. Objectives

Student Name: Date: Contact Person Name: Phone Number: Lesson 19 Triangle Properties Objectives Understand the definition of a triangle Distinguish between different types of triangles Use the Pythagorean