A Flexible New Technique for Camera Calibration

Size: px
Start display at page:

Download "A Flexible New Technique for Camera Calibration"

Transcription

1 A Flexible New Technique for Camera Calibration Zhengyou Zhang December 2, 1998 (updated on December 14, 1998) (updated on March 25, 1999) (updated on Aug. 1, 22; a typo in Appendix B) (updated on Aug. 13, 28; a typo in Section 3.3) (last updated on Dec. 5, 29; a typo in Section 2.4) Technical Report MSR-TR Citation: Z. Zhang, A flexible new technique for camera calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11): , 2. Microsoft Research Microsoft Corporation One Microsoft Way Redmond, WA zhang

2 A Flexible New Technique for Camera Calibration Zhengyou Zhang Microsoft Research, One Microsoft Way, Redmond, WA , USA zhang Contents 1 Motivations 2 2 Basic Equations Notation Homography between the model plane and its image Constraints on the intrinsic parameters Geometric Interpretation Solving Camera Calibration Closed-form solution Maximum likelihood estimation Dealing with radial distortion Summary Degenerate Configurations 8 5 Experimental Results Computer Simulations Real Data Sensitivity with Respect to Model Imprecision Random noise in the model points Systematic non-planarity of the model pattern Conclusion 17 A Estimation of the Homography Between the Model Plane and its Image 17 B Extraction of the Intrinsic Parameters from Matrix B 18 C Approximating a 3 3 matrix by a Rotation Matrix 18 D Camera Calibration Under Known Pure Translation 19 added on December 14, 1998 added on December 28, 1998; added results on systematic non-planarity on March 25, 1998 added on December 14, 1998, corrected (based on the comments from Andrew Zisserman) on January 7,

3 A Flexible New Technique for Camera Calibration Abstract We propose a flexible new technique to easily calibrate a camera. It is well suited for use without specialized knowledge of 3D geometry or computer vision. The technique only requires the camera to observe a planar pattern shown at a few (at least two) different orientations. Either the camera or the planar pattern can be freely moved. The motion need not be known. Radial lens distortion is modeled. The proposed procedure consists of a closed-form solution, followed by a nonlinear refinement based on the maximum likelihood criterion. Both computer simulation and real data have been used to test the proposed technique, and very good results have been obtained. Compared with classical techniques which use expensive equipment such as two or three orthogonal planes, the proposed technique is easy to use and flexible. It advances 3D computer vision one step from laboratory environments to real world use. Index Terms Camera calibration, calibration from planes, 2D pattern, absolute conic, projective mapping, lens distortion, closed-form solution, maximum likelihood estimation, flexible setup. 1 Motivations Camera calibration is a necessary step in 3D computer vision in order to extract metric information from 2D images. Much work has been done, starting in the photogrammetry community (see [2, 4] to cite a few), and more recently in computer vision ([9, 8, 23, 7, 26, 24, 17, 6] to cite a few). We can classify those techniques roughly into two categories: photogrammetric calibration and selfcalibration. Photogrammetric calibration. Camera calibration is performed by observing a calibration object whose geometry in 3-D space is known with very good precision. Calibration can be done very efficiently [5]. The calibration object usually consists of two or three planes orthogonal to each other. Sometimes, a plane undergoing a precisely known translation is also used [23]. These approaches require an expensive calibration apparatus, and an elaborate setup. Self-calibration. Techniques in this category do not use any calibration object. Just by moving a camera in a static scene, the rigidity of the scene provides in general two constraints [17, 15] on the cameras internal parameters from one camera displacement by using image information alone. Therefore, if images are taken by the same camera with fixed internal parameters, correspondences between three images are sufficient to recover both the internal and external parameters which allow us to reconstruct 3-D structure up to a similarity [16, 13]. While this approach is very flexible, it is not yet mature [1]. Because there are many parameters to estimate, we cannot always obtain reliable results. Other techniques exist: vanishing points for orthogonal directions [3, 14], and calibration from pure rotation [11, 21]. Our current research is focused on a desktop vision system (DVS) since the potential for using DVSs is large. Cameras are becoming cheap and ubiquitous. A DVS aims at the general public, who are not experts in computer vision. A typical computer user will perform vision tasks only from time to time, so will not be willing to invest money for expensive equipment. Therefore, flexibility, robustness and low cost are important. The camera calibration technique described in this paper was developed with these considerations in mind. 2

4 The proposed technique only requires the camera to observe a planar pattern shown at a few (at least two) different orientations. The pattern can be printed on a laser printer and attached to a reasonable planar surface (e.g., a hard book cover). Either the camera or the planar pattern can be moved by hand. The motion need not be known. The proposed approach lies between the photogrammetric calibration and self-calibration, because we use 2D metric information rather than 3D or purely implicit one. Both computer simulation and real data have been used to test the proposed technique, and very good results have been obtained. Compared with classical techniques, the proposed technique is considerably more flexible. Compared with self-calibration, it gains considerable degree of robustness. We believe the new technique advances 3D computer vision one step from laboratory environments to the real world. Note that Bill Triggs [22] recently developed a self-calibration technique from at least 5 views of a planar scene. His technique is more flexible than ours, but has difficulty to initialize. Liebowitz and Zisserman [14] described a technique of metric rectification for perspective images of planes using metric information such as a known angle, two equal though unknown angles, and a known length ratio. They also mentioned that calibration of the internal camera parameters is possible provided at least three such rectified planes, although no experimental results were shown. The paper is organized as follows. Section 2 describes the basic constraints from observing a single plane. Section 3 describes the calibration procedure. We start with a closed-form solution, followed by nonlinear optimization. Radial lens distortion is also modeled. Section 4 studies configurations in which the proposed calibration technique fails. It is very easy to avoid such situations in practice. Section 5 provides the experimental results. Both computer simulation and real data are used to validate the proposed technique. In the Appendix, we provides a number of details, including the techniques for estimating the homography between the model plane and its image. 2 Basic Equations We examine the constraints on the camera s intrinsic parameters provided by observing a single plane. We start with the notation used in this paper. 2.1 Notation A 2D point is denoted by m = [u, v] T. A 3D point is denoted by M = [X, Y, Z] T. We use x to denote the augmented vector by adding 1 as the last element: m = [u, v, 1] T and M = [X, Y, Z, 1] T. A camera is modeled by the usual pinhole: the relationship between a 3D point M and its image projection m is given by s m = A [ R t ] M, (1) where s is an arbitrary scale factor, (R, t), called the extrinsic parameters, is the rotation and translation which relates the world coordinate system to the camera coordinate system, and A, called the camera intrinsic matrix, is given by α γ u A = β v 1 with (u, v ) the coordinates of the principal point, α and β the scale factors in image u and v axes, and γ the parameter describing the skewness of the two image axes. We use the abbreviation A T for (A 1 ) T or (A T ) 1. 3

5 2.2 Homography between the model plane and its image Without loss of generality, we assume the model plane is on Z = of the world coordinate system. Let s denote the i th column of the rotation matrix R by r i. From (1), we have X u s v = A [ r 1 r 2 r 3 t ] Y 1 1 = A [ r 1 r 2 t ] X Y. 1 By abuse of notation, we still use M to denote a point on the model plane, but M = [X, Y ] T since Z is always equal to. In turn, M = [X, Y, 1] T. Therefore, a model point M and its image m is related by a homography H: s m = H M with H = A [ r 1 r 2 t ]. (2) As is clear, the 3 3 matrix H is defined up to a scale factor. 2.3 Constraints on the intrinsic parameters Given an image of the model plane, an homography can be estimated (see Appendix A). Let s denote it by H = [ h 1 h 2 h 3 ]. From (2), we have [ h1 h 2 h 3 ] = λa [ r1 r 2 t ], where λ is an arbitrary scalar. Using the knowledge that r 1 and r 2 are orthonormal, we have h T 1 A T A 1 h 2 = (3) h T 1 A T A 1 h 1 = h T 2 A T A 1 h 2. (4) These are the two basic constraints on the intrinsic parameters, given one homography. Because a homography has 8 degrees of freedom and there are 6 extrinsic parameters (3 for rotation and 3 for translation), we can only obtain 2 constraints on the intrinsic parameters. Note that A T A 1 actually describes the image of the absolute conic [16]. In the next subsection, we will give an geometric interpretation. 2.4 Geometric Interpretation We are now relating (3) and (4) to the absolute conic. It is not difficult to verify that the model plane, under our convention, is described in the camera coordinate system by the following equation: [ ] T [ r3 xy ] r T 3 t z =, w where w = for points at infinity[ and ] w = [ 1 otherwise. ] This plane intersects the plane at infinity at r1 r2 a line, and we can easily see that and are two particular points on that line. Any point on it 4

6 is a linear combination of these two points, i.e., [ ] r1 x = a + b [ ] r2 = [ ] ar1 + br 2 Now, let s compute the intersection of the above line with the absolute conic. By definition, the point x, known as the circular point, satisfies: x T x =, i.e., (ar 1 + br 2 ) T (ar 1 + br 2 ) =, or a 2 + b 2 =. The solution is b = ±ai, where i 2 = 1. That is, the two intersection points are [ ] r1 ± ir x = a 2. Their projection in the image plane is then given, up to a scale factor, by m = A(r 1 ± ir 2 ) = h 1 ± ih 2. Point m is on the image of the absolute conic, described by A T A 1 [16]. This gives (h 1 ± ih 2 ) T A T A 1 (h 1 ± ih 2 ) =. Requiring that both real and imaginary parts be zero yields (3) and (4).. 3 Solving Camera Calibration This section provides the details how to effectively solve the camera calibration problem. We start with an analytical solution, followed by a nonlinear optimization technique based on the maximum likelihood criterion. Finally, we take into account lens distortion, giving both analytical and nonlinear solutions. 3.1 Closed-form solution Let B 11 B 12 B 13 B = A T A 1 B 12 B 22 B 23 B 13 B 23 B 33 = 1 α 2 γ α 2 β γ α 2 β Note that B is symmetric, defined by a 6D vector v γ u β α 2 β γ 2 α 2 β β 2 γ(v γ u β) α 2 β 2 v β 2 v γ u β α 2 β γ(v γ u β) α 2 β 2 v β 2 (v γ u β) 2 α 2 β 2 + v2 β (5) b = [B 11, B 12, B 22, B 13, B 23, B 33 ] T. (6) Let the i th column vector of H be h i = [h i1, h i2, h i3 ] T. Then, we have h T i Bh j = v T ijb (7) 5

7 with v ij = [h i1 h j1, h i1 h j2 + h i2 h j1, h i2 h j2, h i3 h j1 + h i1 h j3, h i3 h j2 + h i2 h j3, h i3 h j3 ] T. Therefore, the two fundamental constraints (3) and (4), from a given homography, can be rewritten as 2 homogeneous equations in b: [ v12 T ] (v 11 v 22 ) T b =. (8) If n images of the model plane are observed, by stacking n such equations as (8) we have Vb =, (9) where V is a 2n 6 matrix. If n 3, we will have in general a unique solution b defined up to a scale factor. If n = 2, we can impose the skewless constraint γ =, i.e., [, 1,,,, ]b =, which is added as an additional equation to (9). (If n = 1, we can only solve two camera intrinsic parameters, e.g., α and β, assuming u and v are known (e.g., at the image center) and γ =, and that is indeed what we did in [19] for head pose determination based on the fact that eyes and mouth are reasonably coplanar.) The solution to (9) is well known as the eigenvector of V T V associated with the smallest eigenvalue (equivalently, the right singular vector of V associated with the smallest singular value). Once b is estimated, we can compute all camera intrinsic matrix A. See Appendix B for the details. Once A is known, the extrinsic parameters for each image is readily computed. From (2), we have r 1 = λa 1 h 1 r 2 = λa 1 h 2 r 3 = r 1 r 2 t = λa 1 h 3 with λ = 1/ A 1 h 1 = 1/ A 1 h 2. Of course, because of noise in data, the so-computed matrix R = [r 1, r 2, r 3 ] does not in general satisfy the properties of a rotation matrix. Appendix C describes a method to estimate the best rotation matrix from a general 3 3 matrix. 3.2 Maximum likelihood estimation The above solution is obtained through minimizing an algebraic distance which is not physically meaningful. We can refine it through maximum likelihood inference. We are given n images of a model plane and there are m points on the model plane. Assume that the image points are corrupted by independent and identically distributed noise. The maximum likelihood estimate can be obtained by minimizing the following functional: n m m ij ˆm(A, R i, t i, M j ) 2, (1) i=1 j=1 where ˆm(A, R i, t i, M j ) is the projection of point M j in image i, according to equation (2). A rotation R is parameterized by a vector of 3 parameters, denoted by r, which is parallel to the rotation axis and whose magnitude is equal to the rotation angle. R and r are related by the Rodrigues formula [5]. Minimizing (1) is a nonlinear minimization problem, which is solved with the Levenberg-Marquardt Algorithm as implemented in Minpack [18]. It requires an initial guess of A, {R i, t i i = 1..n} which can be obtained using the technique described in the previous subsection. 6

8 3.3 Dealing with radial distortion Up to now, we have not considered lens distortion of a camera. However, a desktop camera usually exhibits significant lens distortion, especially radial distortion. In this section, we only consider the first two terms of radial distortion. The reader is referred to [2, 2, 4, 26] for more elaborated models. Based on the reports in the literature [2, 23, 25], it is likely that the distortion function is totally dominated by the radial components, and especially dominated by the first term. It has also been found that any more elaborated modeling not only would not help (negligible when compared with sensor quantization), but also would cause numerical instability [23, 25]. Let (u, v) be the ideal (nonobservable distortion-free) pixel image coordinates, and (ŭ, v) the corresponding real observed image coordinates. The ideal points are the projection of the model points according to the pinhole model. Similarly, (x, y) and ( x, y) are the ideal (distortion-free) and real (distorted) normalized image coordinates. We have [2, 25] x = x + x[k 1 (x 2 + y 2 ) + k 2 (x 2 + y 2 ) 2 ] y = y + y[k 1 (x 2 + y 2 ) + k 2 (x 2 + y 2 ) 2 ], where k 1 and k 2 are the coefficients of the radial distortion. The center of the radial distortion is the same as the principal point. From ŭ = u + α x + γ y and v = v + β y and assuming γ =, we have ŭ = u + (u u )[k 1 (x 2 + y 2 ) + k 2 (x 2 + y 2 ) 2 ] (11) v = v + (v v )[k 1 (x 2 + y 2 ) + k 2 (x 2 + y 2 ) 2 ]. (12) Estimating Radial Distortion by Alternation. As the radial distortion is expected to be small, one would expect to estimate the other five intrinsic parameters, using the technique described in Sect. 3.2, reasonable well by simply ignoring distortion. One strategy is then to estimate k 1 and k 2 after having estimated the other parameters, which will give us the ideal pixel coordinates (u, v). Then, from (11) and (12), we have two equations for each point in each image: [ (u u )(x 2 +y 2 ) (u u )(x 2 +y 2 ) 2 ] [ ] [ŭ u ] k1 (v v )(x 2 +y 2 ) (v v )(x 2 +y 2 ) 2 =. v v Given m points in n images, we can stack all equations together to obtain in total 2mn equations, or in matrix form as Dk = d, where k = [k 1, k 2 ] T. The linear least-squares solution is given by k 2 k = (D T D) 1 D T d. (13) Once k 1 and k 2 are estimated, one can refine the estimate of the other parameters by solving (1) with ˆm(A, R i, t i, M j ) replaced by (11) and (12). We can alternate these two procedures until convergence. Complete Maximum Likelihood Estimation. Experimentally, we found the convergence of the above alternation technique is slow. A natural extension to (1) is then to estimate the complete set of parameters by minimizing the following functional: n i=1 j=1 m m ij m(a, k 1, k 2, R i, t i, M j ) 2, (14) A typo was reported by Johannes Koester via on Aug. 13, 28. 7

9 where m(a, k1, k2, R i, t i, M j ) is the projection of point M j in image i according to equation (2), followed by distortion according to (11) and (12). This is a nonlinear minimization problem, which is solved with the Levenberg-Marquardt Algorithm as implemented in Minpack [18]. A rotation is again parameterized by a 3-vector r, as in Sect An initial guess of A and {R i, t i i = 1..n} can be obtained using the technique described in Sect. 3.1 or in Sect An initial guess of k 1 and k 2 can be obtained with the technique described in the last paragraph, or simply by setting them to. 3.4 Summary The recommended calibration procedure is as follows: 1. Print a pattern and attach it to a planar surface; 2. Take a few images of the model plane under different orientations by moving either the plane or the camera; 3. Detect the feature points in the images; 4. Estimate the five intrinsic parameters and all the extrinsic parameters using the closed-form solution as described in Sect. 3.1; 5. Estimate the coefficients of the radial distortion by solving the linear least-squares (13); 6. Refine all parameters by minimizing (14). 4 Degenerate Configurations We study in this section configurations in which additional images do not provide more constraints on the camera intrinsic parameters. Because (3) and (4) are derived from the properties of the rotation matrix, if R 2 is not independent of R 1, then image 2 does not provide additional constraints. In particular, if a plane undergoes a pure translation, then R 2 = R 1 and image 2 is not helpful for camera calibration. In the following, we consider a more complex configuration. Proposition 1. If the model plane at the second position is parallel to its first position, then the second homography does not provide additional constraints. Proof. Under our convention, R 2 and R 1 are related by a rotation around z-axis. That is, cos θ sin θ R 1 sin θ cos θ = R 2, 1 where θ is the angle of the relative rotation. We will use superscript (1) and (2) to denote vectors related to image 1 and 2, respectively. It is clear that we have h (2) 1 = λ (2) (Ar (1) cos θ + Ar (2) sin θ) = λ(2) λ (1) (h(1) h (2) 2 = λ (2) ( Ar (1) sin θ + Ar (2) cos θ) = λ(2) λ Then, the first constraint (3) from image 2 becomes: h (2) T 1 A T A 1 h (2) 2 =λ(2) cos θ sin θ(h (1) 1 1 cos θ + h (1) 2 sin θ) (1) ( h(1) λ (1) [(cos2 θ sin 2 θ)(h (1) 1 T A T A 1 h (1) 1 h (1) 2 1 sin θ + h (1) 2 cos θ). T A T A 1 h (1) 2 ) T A T A 1 h (1) 2 )], 8

10 which is a linear combination of the two constraints provided by H 1. Similarly, we can show that the second constraint from image 2 is also a linear combination of the two constraints provided by H 1. Therefore, we do not gain any constraint from H 2. The result is self-evident because parallel planes intersect with the plane at infinity at the same circular points, and thus according to Sect. 2.4 they provide the same constraints. In practice, it is very easy to avoid the degenerate configuration: we only need to change the orientation of the model plane from one snapshot to another. Although the proposed technique will not work if the model plane undergoes pure translation, camera calibration is still possible if the translation is known. Please refer to Appendix D. 5 Experimental Results The proposed algorithm has been tested on both computer simulated data and real data. The closedform solution involves finding a singular value decomposition of a small 2n 6 matrix, where n is the number of images. The nonlinear refinement within the Levenberg-Marquardt algorithm takes 3 to 5 iterations to converge. 5.1 Computer Simulations The simulated camera has the following property: α = 125, β = 9, γ = (equivalent to ), u = 255, v = 255. The image resolution is The model plane is a checker pattern containing 1 14 = 14 corner points (so we usually have more data in the v direction than in the u direction). The size of pattern is 18cm 25cm. The orientation of the plane is represented by a 3D vector r, which is parallel to the rotation axis and whose magnitude is equal to the rotation angle. Its position is represented by a 3D vector t (unit in centimeters). Performance w.r.t. the noise level. In this experiment, we use three planes with r 1 = [2,, ] T, t 1 = [ 9, 12.5, 5] T, r 2 = [, 2, ] T, t 2 = [ 9, 12.5, 51] T, r 3 = 1 5 [ 3, 3, 15 ] T, t 3 = [ 1.5, 12.5, 525] T. Gaussian noise with mean and σ standard deviation is added to the projected image points. The estimated camera parameters are then compared with the ground truth. We measure the relative error for α and β, and absolute error for u and v. We vary the noise level from.1 pixels to 1.5 pixels. For each noise level, we perform 1 independent trials, and the results shown are the average. As we can see from Fig. 1, errors increase linearly with the noise level. (The error for γ is not shown, but has the same property.) For σ =.5 (which is larger than the normal noise in practical calibration), the errors in α and β are less than.3%, and the errors in u and v are around 1 pixel. The error in u is larger than that in v. The main reason is that there are less data in the u direction than in the v direction, as we said before. Performance w.r.t. the number of planes. This experiment investigates the performance with respect to the number of planes (more precisely, the number of images of the model plane). The orientation and position of the model plane for the first three images are the same as in the last subsection. From the fourth image, we first randomly choose a rotation axis in a uniform sphere, then apply a rotation angle of 3. We vary the number of images from 2 to 16. For each number, 1 trials of independent plane orientations (except for the first three) and independent noise with mean and 9

11 Relative error (%) alpha.2 beta Noise level (pixels) Absolute error (pixels) Noise level (pixels) u v Figure 1: Errors vs. the noise level of the image points Relative error (%) alpha beta Absolute error (pixels) u v number of planes number of planes Figure 2: Errors vs. the number of images of the model plane standard deviation.5 pixels are conducted. The average result is shown in Fig. 2. The errors decrease when more images are used. From 2 to 3, the errors decrease significantly. Performance w.r.t. the orientation of the model plane. This experiment examines the influence of the orientation of the model plane with respect to the image plane. Three images are used. The orientation of the plane is chosen as follows: the plane is initially parallel to the image plane; a rotation axis is randomly chosen from a uniform sphere; the plane is then rotated around that axis with angle θ. Gaussian noise with mean and standard deviation.5 pixels is added to the projected image points. We repeat this process 1 times and compute the average errors. The angle θ varies from 5 to 75, and the result is shown in Fig. 3. When θ = 5, 4% of the trials failed because the planes are almost parallel to each other (degenerate configuration), and the result shown has excluded those trials. Best performance seems to be achieved with an angle around 45. Note that in practice, when the angle increases, foreshortening makes the corner detection less precise, but this is not considered in this experiment. 5.2 Real Data The proposed technique is now routinely used in our vision group and also in the graphics group at Microsoft Research. Here, we provide the result with one example. The camera to be calibrated is an off-the-shelf PULNiX CCD camera with 6 mm lens. The image resolution is The model plane contains a pattern of 8 8 squares, so there are 256 corners. The size of the pattern is 17cm 17cm. It was printed with a high-quality printer and put on a glass. 1

12 Relative error (%) alpha beta Absolute error (pixels) u v Angle with the image plane (degrees) Angle with the image plane (degrees) Figure 3: Errors vs. the angle of the model plane w.r.t. the image plane Table 1: Results with real data of 2 through 5 images nb 2 images 3 images 4 images 5 images initial final σ initial final σ initial final σ initial final σ α β γ u v k k RMS Five images of the plane under different orientations were taken, as shown in Fig. 4. We can observe a significant lens distortion in the images. The corners were detected as the intersection of straight lines fitted to each square. We applied our calibration algorithm to the first 2, 3, 4 and all 5 images. The results are shown in Table 1. For each configuration, three columns are given. The first column (initial) is the estimation of the closed-form solution. The second column (final) is the maximum likelihood estimation (MLE), and the third column (σ) is the estimated standard deviation, representing the uncertainty of the final result. As is clear, the closed-form solution is reasonable, and the final estimates are very consistent with each other whether we use 2, 3, 4 or 5 images. We also note that the uncertainty of the final estimate decreases with the number of images. The last row of Table 1, indicated by RMS, displays the root of mean squared distances, in pixels, between detected image points and projected ones. The MLE improves considerably this measure. The careful reader may remark the inconsistency for k 1 and k 2 between the closed-form solution and the MLE. The reason is that for the closed-form solution, camera intrinsic parameters are estimated assuming no distortion, and the predicted outer points lie closer to the image center than the detected ones. The subsequent distortion estimation tries to spread the outer points and increase the scale in order to reduce the distances, although the distortion shape (with positive k 1, called pincushion distortion) does not correspond to the real distortion (with negative k 1, called barrel distortion). The nonlinear refinement (MLE) finally recovers the correct distortion shape. The estimated distortion parameters allow us to correct the distortion in the original images. Figure 5 displays the first two such distortion-corrected images, which should be compared with the first two images shown in Figure 4. We see clearly that the curved pattern in the original images is straightened. 11

13 relative errors (%) alpha beta absolute errors (pixels) u v noise level in model points (%) noise level in model points (%) relative error (% ) noise level in model points (%) k1 Figure 8: Sensitivity of camera calibration with respect to Gaussian noise in the model points Relative errors (% ) alpha beta aspect Systematic error in the model (%) absolute error (pixels) Systematic error in the model (%) u v Figure 9: Sensitivity of camera calibration with respect to systematic spherical non-planarity shown in Table 1) were calculated, and are depicted in Fig. 8. Obviously, all errors increase with the level of noise added to the model points. The pixel scale factors (α and β) remain very stable: the error is less than.2%. The coordinates of the principal point are quite stable: the errors are about 2 pixels for the noise level 15%. The estimated radial distortion coefficient k 1 becomes less useful, and the second term k 2 (not shown) is even less than k 1. In our current formulation, we assume that the exact position of the points in the model plane is known. If the model points are only known within certain precision, we can reformulate the problem, and we could expect smaller errors than reported here Systematic non-planarity of the model pattern In this section, we consider systematic non-planarity of the model pattern, e.g., when a printed pattern is attached to a soft book cover. We used the same configuration as in Sect The model plane 15

14 Relative errors (% ) alpha beta aspect Systematic error in the model (%) absolute errors (pixels) u 4 v Systematic error in the model (%) Figure 1: Sensitivity of camera calibration with respect to systematic cylindrical non-planarity was distorted in two systematic ways to simulate the non-planarity: spherical and cylindrical. With spherical distortion, points away from the center of the pattern are displaced in z according to z = p x 2 + y 2, where p indicates the non-planarity (the model points are coplanar when p = ). The displacement is symmetric around the center. With Cylindrical distortion, points are displaced in z according to z = px. Again, p indicates the non-planarity. This simulates bending of the model pattern around the vertical axis. Four images of the model pattern were used: the first is parallel to the image plane; the second is rotated from the first around the horizontal axis by 3 degrees; the third is rotated from the first around the vertical axis by 3 degrees; the fourth is rotated from the first around the diagonal axis by 3 degrees. Although model points are not coplanar, they were treated as coplanar, and the proposed calibration technique was applied. Gaussian noise with standard deviation.5 pixels was added to the image points, and 1 independent trials were conducted. The average calibration errors of the 1 trials are shown in Fig. 9 for spherical non-planarity and in Fig. 1 for cylindrical non-planarity. The horizontal axis indicates the increase in the non-planarity, which is measured as the ratio of the maximum z displacement to the size of the pattern. Therefore, 1% of non-planarity is equivalent to maximum 2.5cm of displacement in z, which does not likely happen in practice. Several observations can be made: Systematic non-planarity of the model has more effect on the calibration precision than random errors in the positions as described in the last subsection; Aspect ratio is very stable (.4% of error for 1% of non-planarity); Systematic cylindrical non-planarity is worse than systematic spherical non-planarity, especially for the coordinates of the principal point (u, v ). The reason is that cylindrical nonplanarity is only symmetric in one axis. That is also why the error in u is much larger than in v in our simulation; The result seems still usable in practice if there is only a few percents (say, less than 3%) of systematic non-planarity. The error in (u, v ) has been found by many researchers to have little effect in 3D reconstruction. As pointed out by Triggs in [22], the absolute error in (u, v ) is not geometrically meaningful. He proposes to measure the relative error with respect to the focal length, i.e., u /α and v /α. This is equivalent to measuring the angle between the true optical axis and the estimated one. Then, for 1% of cylindrical non-planarity (see Fig. 1), the relative error for u is 7.6%, comparable with those of α and β. 16

15 6 Conclusion In this paper, we have developed a flexible new technique to easily calibrate a camera. The technique only requires the camera to observe a planar pattern from a few (at least two) different orientations. We can move either the camera or the planar pattern. The motion does not need to be known. Radial lens distortion is modeled. The proposed procedure consists of a closed-form solution, followed by a nonlinear refinement based on maximum likelihood criterion. Both computer simulation and real data have been used to test the proposed technique, and very good results have been obtained. Compared with classical techniques which use expensive equipment such as two or three orthogonal planes, the proposed technique gains considerable flexibility. Acknowledgment Thanks go to Brian Guenter for his software of corner extraction and for many discussions, and to Bill Triggs for insightful comments. Thanks go to Andrew Zisserman for bringing his CVPR98 work [14] to my attention, which uses the same constraint but in different form, and for pointing out an error in my discussion on the case of pure translation. Thanks go to Bill Triggs and Gideon Stein for suggesting experiments described in Sect Thanks also go to the members of the Vision Group at MSR for encouragement and discussions. Anandan and Charles Loop have checked the English. A Estimation of the Homography Between the Model Plane and its Image There are many ways to estimate the homography between the model plane and its image. Here, we present a technique based on maximum likelihood criterion. Let M i and m i be the model and image points, respectively. Ideally, they should satisfy (2). In practice, they don t because of noise in the extracted image points. Let s assume that m i is corrupted by Gaussian noise with mean and covariance matrix Λ mi. Then, the maximum likelihood estimation of H is obtained by minimizing the following functional (m i ˆm i ) T Λ 1 m i (m i ˆm i ), i where ˆm i = 1 ] [ ht 1 M i h T 3 M i h T 2 M with h i, the i th row of H. i In practice, we simply assume Λ mi = σ 2 I for all i. This is reasonable if points are extracted independently with the same procedure. In this case, the above problem becomes a nonlinear least-squares one, i.e., min H i m i ˆm i 2. The nonlinear minimization is conducted with the Levenberg- Marquardt Algorithm as implemented in Minpack [18]. This requires an initial guess, which can be obtained as follows. Let x = [ h T 1, h T 2, h T 3 ]T. Then equation (2) can be rewritten as [ M T T u M T T M T v M T ] x =. When we are given n points, we have n above equations, which can be written in matrix equation as Lx =, where L is a 2n 9 matrix. As x is defined up to a scale factor, the solution is well known 17

16 to be the right singular vector of L associated with the smallest singular value (or equivalently, the eigenvector of L T L associated with the smallest eigenvalue). In L, some elements are constant 1, some are in pixels, some are in world coordinates, and some are multiplication of both. This makes L poorly conditioned numerically. Much better results can be obtained by performing a simple data normalization, such as the one proposed in [12], prior to running the above procedure. B Extraction of the Intrinsic Parameters from Matrix B Matrix B, as described in Sect. 3.1, is estimated up to a scale factor, i.e.,, B = λa T A with λ an arbitrary scale. Without difficulty, we can uniquely extract the intrinsic parameters from matrix B. v = (B 12 B 13 B 11 B 23 )/(B 11 B 22 B 2 12) λ = B 33 [B v (B 12 B 13 B 11 B 23 )]/B 11 α = λ/b 11 β = λb 11 /(B 11 B 22 B12 2 ) γ = B 12 α 2 β/λ u = γv /β B 13 α 2 /λ. C Approximating a 3 3 matrix by a Rotation Matrix The problem considered in this section is to solve the best rotation matrix R to approximate a given 3 3 matrix Q. Here, best is in the sense of the smallest Frobenius norm of the difference R Q. That is, we are solving the following problem: Since min R R Q 2 F subject to R T R = I. (15) R Q 2 F = trace((r Q) T (R Q)) = 3 + trace(q T Q) 2trace(R T Q), problem (15) is equivalent to the one of maximizing trace(r T Q). Let the singular value decomposition of Q be USV T, where S = diag (σ 1, σ 2, σ 3 ). If we define an orthogonal matrix Z by Z = V T R T U, then trace(r T Q) = trace(r T USV T ) = trace(v T R T US) 3 3 = trace(zs) = z ii σ i σ i. It is clear that the maximum is achieved by setting R = UV T because then Z = I. This gives the solution to (15). An excellent reference on matrix computations is the one by Golub and van Loan [1]. A typo was reported in formula u by Jiyong Ma via an on April 18, 22. i=1 i=1 18

17 D Camera Calibration Under Known Pure Translation As said in Sect. 4, if the model plane undergoes a pure translation, the technique proposed in this paper will not work. However, camera calibration is possible if the translation is known like the setup in Tsai s technique [23]. From (2), we have t = αa 1 h 3, where α = 1/ A 1 h 1. The translation between two positions i and j is then given by t (ij) = t (i) t (j) = A 1 (α (i) h (i) 3 α(j) h (j) 3 ). (Note that although both H (i) and H (j) are estimated up to their own scale factors, they can be rescaled up to a single common scale factor using the fact that it is a pure translation.) If only the translation direction is known, we get two constraints on A. If we know additionally the translation magnitude, then we have another constraint on A. Full calibration is then possible from two planes. 19

18 References [1] S. Bougnoux. From projective to euclidean space under any practical situation, a criticism of self-calibration. In Proceedings of the 6th International Conference on Computer Vision, pages , Jan [2] D. C. Brown. Close-range camera calibration. Photogrammetric Engineering, 37(8): , [3] B. Caprile and V. Torre. Using Vanishing Points for Camera Calibration. The International Journal of Computer Vision, 4(2):127 14, Mar [4] W. Faig. Calibration of close-range photogrammetry systems: Mathematical formulation. Photogrammetric Engineering and Remote Sensing, 41(12): , [5] O. Faugeras. Three-Dimensional Computer Vision: a Geometric Viewpoint. MIT Press, [6] O. Faugeras, T. Luong, and S. Maybank. Camera self-calibration: theory and experiments. In G. Sandini, editor, Proc 2nd ECCV, volume 588 of Lecture Notes in Computer Science, pages , Santa Margherita Ligure, Italy, May Springer-Verlag. [7] O. Faugeras and G. Toscani. The calibration problem for stereo. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 15 2, Miami Beach, FL, June IEEE. [8] S. Ganapathy. Decomposition of transformation matrices for robot vision. Pattern Recognition Letters, 2:41 412, Dec [9] D. Gennery. Stereo-camera calibration. In Proceedings of the 1th Image Understanding Workshop, pages 11 18, [1] G. Golub and C. van Loan. Matrix Computations. The John Hopkins University Press, Baltimore, Maryland, 3 edition, [11] R. Hartley. Self-calibration from multiple views with a rotating camera. In J.-O. Eklundh, editor, Proceedings of the 3rd European Conference on Computer Vision, volume 8-81 of Lecture Notes in Computer Science, pages , Stockholm, Sweden, May Springer-Verlag. [12] R. Hartley. In defence of the 8-point algorithm. In Proceedings of the 5th International Conference on Computer Vision, pages , Boston, MA, June IEEE Computer Society Press. [13] R. I. Hartley. An algorithm for self calibration from several views. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages , Seattle, WA, June IEEE. [14] D. Liebowitz and A. Zisserman. Metric rectification for perspective images of planes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages , Santa Barbara, California, June IEEE Computer Society. 2

19 [15] Q.-T. Luong. Matrice Fondamentale et Calibration Visuelle sur l Environnement-Vers une plus grande autonomie des systèmes robotiques. PhD thesis, Université de Paris-Sud, Centre d Orsay, Dec [16] Q.-T. Luong and O. Faugeras. Self-calibration of a moving camera from point correspondences and fundamental matrices. The International Journal of Computer Vision, 22(3): , [17] S. J. Maybank and O. D. Faugeras. A theory of self-calibration of a moving camera. The International Journal of Computer Vision, 8(2): , Aug [18] J. More. The levenberg-marquardt algorithm, implementation and theory. In G. A. Watson, editor, Numerical Analysis, Lecture Notes in Mathematics 63. Springer-Verlag, [19] I. Shimizu, Z. Zhang, S. Akamatsu, and K. Deguchi. Head pose determination from one image using a generic model. In Proceedings of the IEEE Third International Conference on Automatic Face and Gesture Recognition, pages 1 15, Nara, Japan, Apr [2] C. C. Slama, editor. Manual of Photogrammetry. American Society of Photogrammetry, fourth edition, 198. [21] G. Stein. Accurate internal camera calibration using rotation, with analysis of sources of error. In Proc. Fifth International Conference on Computer Vision, pages , Cambridge, Massachusetts, June [22] B. Triggs. Autocalibration from planar scenes. In Proceedings of the 5th European Conference on Computer Vision, pages 89 15, Freiburg, Germany, June [23] R. Y. Tsai. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf tv cameras and lenses. IEEE Journal of Robotics and Automation, 3(4): , Aug [24] G. Wei and S. Ma. A complete two-plane camera calibration method and experimental comparisons. In Proc. Fourth International Conference on Computer Vision, pages , Berlin, May [25] G. Wei and S. Ma. Implicit and explicit camera calibration: Theory and experiments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(5):469 48, [26] J. Weng, P. Cohen, and M. Herniou. Camera calibration with distortion models and accuracy evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(1):965 98, Oct [27] Z. Zhang. Motion and structure from two perspective views: From essential parameters to euclidean motion via fundamental matrix. Journal of the Optical Society of America A, 14(11): ,

Relating Vanishing Points to Catadioptric Camera Calibration

Relating Vanishing Points to Catadioptric Camera Calibration Relating Vanishing Points to Catadioptric Camera Calibration Wenting Duan* a, Hui Zhang b, Nigel M. Allinson a a Laboratory of Vision Engineering, University of Lincoln, Brayford Pool, Lincoln, U.K. LN6

More information

Wii Remote Calibration Using the Sensor Bar

Wii Remote Calibration Using the Sensor Bar Wii Remote Calibration Using the Sensor Bar Alparslan Yildiz Abdullah Akay Yusuf Sinan Akgul GIT Vision Lab - http://vision.gyte.edu.tr Gebze Institute of Technology Kocaeli, Turkey {yildiz, akay, akgul}@bilmuh.gyte.edu.tr

More information

Introduction Epipolar Geometry Calibration Methods Further Readings. Stereo Camera Calibration

Introduction Epipolar Geometry Calibration Methods Further Readings. Stereo Camera Calibration Stereo Camera Calibration Stereo Camera Calibration Stereo Camera Calibration Stereo Camera Calibration 12.10.2004 Overview Introduction Summary / Motivation Depth Perception Ambiguity of Correspondence

More information

Projective Reconstruction from Line Correspondences

Projective Reconstruction from Line Correspondences Projective Reconstruction from Line Correspondences Richard I. Hartley G.E. CRD, Schenectady, NY, 12301. Abstract The paper gives a practical rapid algorithm for doing projective reconstruction of a scene

More information

Camera calibration and epipolar geometry. Odilon Redon, Cyclops, 1914

Camera calibration and epipolar geometry. Odilon Redon, Cyclops, 1914 Camera calibration and epipolar geometry Odilon Redon, Cyclops, 94 Review: Alignment What is the geometric relationship between pictures taken by cameras that share the same center? How many points do

More information

Metric Measurements on a Plane from a Single Image

Metric Measurements on a Plane from a Single Image TR26-579, Dartmouth College, Computer Science Metric Measurements on a Plane from a Single Image Micah K. Johnson and Hany Farid Department of Computer Science Dartmouth College Hanover NH 3755 Abstract

More information

Component Ordering in Independent Component Analysis Based on Data Power

Component Ordering in Independent Component Analysis Based on Data Power Component Ordering in Independent Component Analysis Based on Data Power Anne Hendrikse Raymond Veldhuis University of Twente University of Twente Fac. EEMCS, Signals and Systems Group Fac. EEMCS, Signals

More information

Calibration of a trinocular system formed with wide angle lens cameras

Calibration of a trinocular system formed with wide angle lens cameras Calibration of a trinocular system formed with wide angle lens cameras Carlos Ricolfe-Viala,* Antonio-Jose Sanchez-Salmeron, and Angel Valera Instituto de Automática e Informática Industrial, Universitat

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribes: Jia Mao, Andrew Rabinovich LECTURE 9 Affine and Euclidean Reconstruction 9.1. Stratified reconstruction Recall that in 3D reconstruction from

More information

Solution Guide III-C. 3D Vision. Building Vision for Business. MVTec Software GmbH

Solution Guide III-C. 3D Vision. Building Vision for Business. MVTec Software GmbH Solution Guide III-C 3D Vision MVTec Software GmbH Building Vision for Business Machine vision in 3D world coordinates, Version 10.0.4 All rights reserved. No part of this publication may be reproduced,

More information

Metrics on SO(3) and Inverse Kinematics

Metrics on SO(3) and Inverse Kinematics Mathematical Foundations of Computer Graphics and Vision Metrics on SO(3) and Inverse Kinematics Luca Ballan Institute of Visual Computing Optimization on Manifolds Descent approach d is a ascent direction

More information

521493S Computer Graphics. Exercise 2 & course schedule change

521493S Computer Graphics. Exercise 2 & course schedule change 521493S Computer Graphics Exercise 2 & course schedule change Course Schedule Change Lecture from Wednesday 31th of March is moved to Tuesday 30th of March at 16-18 in TS128 Question 2.1 Given two nonparallel,

More information

Can we calibrate a camera using an image of a flat, textureless Lambertian surface?

Can we calibrate a camera using an image of a flat, textureless Lambertian surface? Can we calibrate a camera using an image of a flat, textureless Lambertian surface? Sing Bing Kang 1 and Richard Weiss 2 1 Cambridge Research Laboratory, Compaq Computer Corporation, One Kendall Sqr.,

More information

Experiment #1, Analyze Data using Excel, Calculator and Graphs.

Experiment #1, Analyze Data using Excel, Calculator and Graphs. Physics 182 - Fall 2014 - Experiment #1 1 Experiment #1, Analyze Data using Excel, Calculator and Graphs. 1 Purpose (5 Points, Including Title. Points apply to your lab report.) Before we start measuring

More information

The Image Deblurring Problem

The Image Deblurring Problem page 1 Chapter 1 The Image Deblurring Problem You cannot depend on your eyes when your imagination is out of focus. Mark Twain When we use a camera, we want the recorded image to be a faithful representation

More information

CHAPTER 8 FACTOR EXTRACTION BY MATRIX FACTORING TECHNIQUES. From Exploratory Factor Analysis Ledyard R Tucker and Robert C.

CHAPTER 8 FACTOR EXTRACTION BY MATRIX FACTORING TECHNIQUES. From Exploratory Factor Analysis Ledyard R Tucker and Robert C. CHAPTER 8 FACTOR EXTRACTION BY MATRIX FACTORING TECHNIQUES From Exploratory Factor Analysis Ledyard R Tucker and Robert C MacCallum 1997 180 CHAPTER 8 FACTOR EXTRACTION BY MATRIX FACTORING TECHNIQUES In

More information

Module 6: Pinhole camera model Lecture 30: Intrinsic camera parameters, Perspective projection using homogeneous coordinates

Module 6: Pinhole camera model Lecture 30: Intrinsic camera parameters, Perspective projection using homogeneous coordinates The Lecture Contains: Pinhole camera model 6.1 Intrinsic camera parameters A. Perspective projection using homogeneous coordinates B. Principal-point offset C. Image-sensor characteristics file:///d /...0(Ganesh%20Rana)/MY%20COURSE_Ganesh%20Rana/Prof.%20Sumana%20Gupta/FINAL%20DVSP/lecture%2030/30_1.htm[12/31/2015

More information

Geometric Camera Parameters

Geometric Camera Parameters Geometric Camera Parameters What assumptions have we made so far? -All equations we have derived for far are written in the camera reference frames. -These equations are valid only when: () all distances

More information

Epipolar Geometry. Readings: See Sections 10.1 and 15.6 of Forsyth and Ponce. Right Image. Left Image. e(p ) Epipolar Lines. e(q ) q R.

Epipolar Geometry. Readings: See Sections 10.1 and 15.6 of Forsyth and Ponce. Right Image. Left Image. e(p ) Epipolar Lines. e(q ) q R. Epipolar Geometry We consider two perspective images of a scene as taken from a stereo pair of cameras (or equivalently, assume the scene is rigid and imaged with a single camera from two different locations).

More information

Automated Pose Determination for Unrestrained, Non-anesthetized Small Animal Micro-SPECT and Micro-CT Imaging

Automated Pose Determination for Unrestrained, Non-anesthetized Small Animal Micro-SPECT and Micro-CT Imaging Automated Pose Determination for Unrestrained, Non-anesthetized Small Animal Micro-SPECT and Micro-CT Imaging Shaun S. Gleason, Ph.D. 1, James Goddard, Ph.D. 1, Michael Paulus, Ph.D. 1, Ryan Kerekes, B.S.

More information

PHOTOGRAMMETRIC TECHNIQUES FOR MEASUREMENTS IN WOODWORKING INDUSTRY

PHOTOGRAMMETRIC TECHNIQUES FOR MEASUREMENTS IN WOODWORKING INDUSTRY PHOTOGRAMMETRIC TECHNIQUES FOR MEASUREMENTS IN WOODWORKING INDUSTRY V. Knyaz a, *, Yu. Visilter, S. Zheltov a State Research Institute for Aviation System (GosNIIAS), 7, Victorenko str., Moscow, Russia

More information

Least-Squares Intersection of Lines

Least-Squares Intersection of Lines Least-Squares Intersection of Lines Johannes Traa - UIUC 2013 This write-up derives the least-squares solution for the intersection of lines. In the general case, a set of lines will not intersect at a

More information

Monocular Model-Based 3D Tracking of Rigid Objects: A Survey

Monocular Model-Based 3D Tracking of Rigid Objects: A Survey Foundations and Trends R in Computer Graphics and Vision Vol. 1, No 1 (2005) 1 89 c 2005 V. Lepetit and P. Fua Monocular Model-Based 3D Tracking of Rigid Objects: A Survey Vincent Lepetit 1 and Pascal

More information

Nonlinear Iterative Partial Least Squares Method

Nonlinear Iterative Partial Least Squares Method Numerical Methods for Determining Principal Component Analysis Abstract Factors Béchu, S., Richard-Plouet, M., Fernandez, V., Walton, J., and Fairley, N. (2016) Developments in numerical treatments for

More information

Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

More information

Shape Measurement of a Sewer Pipe. Using a Mobile Robot with Computer Vision

Shape Measurement of a Sewer Pipe. Using a Mobile Robot with Computer Vision International Journal of Advanced Robotic Systems ARTICLE Shape Measurement of a Sewer Pipe Using a Mobile Robot with Computer Vision Regular Paper Kikuhito Kawasue 1,* and Takayuki Komatsu 1 1 Department

More information

Interactive 3D Scanning Without Tracking

Interactive 3D Scanning Without Tracking Interactive 3D Scanning Without Tracking Matthew J. Leotta, Austin Vandergon, Gabriel Taubin Brown University Division of Engineering Providence, RI 02912, USA {matthew leotta, aev, taubin}@brown.edu Abstract

More information

CALIBRATION OF A ROBUST 2 DOF PATH MONITORING TOOL FOR INDUSTRIAL ROBOTS AND MACHINE TOOLS BASED ON PARALLEL KINEMATICS

CALIBRATION OF A ROBUST 2 DOF PATH MONITORING TOOL FOR INDUSTRIAL ROBOTS AND MACHINE TOOLS BASED ON PARALLEL KINEMATICS CALIBRATION OF A ROBUST 2 DOF PATH MONITORING TOOL FOR INDUSTRIAL ROBOTS AND MACHINE TOOLS BASED ON PARALLEL KINEMATICS E. Batzies 1, M. Kreutzer 1, D. Leucht 2, V. Welker 2, O. Zirn 1 1 Mechatronics Research

More information

PASSENGER SAFETY is one of the most important. Calibration of an embedded camera for driver-assistant systems

PASSENGER SAFETY is one of the most important. Calibration of an embedded camera for driver-assistant systems 1 Calibration of an embedded camera for driver-assistant systems Mario Bellino, Frédéric Holzmann, Sascha Kolski, Yuri Lopez de Meneses, Jacques Jacot Abstract One of the main technical goals in the actual

More information

B4 Computational Geometry

B4 Computational Geometry 3CG 2006 / B4 Computational Geometry David Murray david.murray@eng.o.ac.uk www.robots.o.ac.uk/ dwm/courses/3cg Michaelmas 2006 3CG 2006 2 / Overview Computational geometry is concerned with the derivation

More information

Subspace Analysis and Optimization for AAM Based Face Alignment

Subspace Analysis and Optimization for AAM Based Face Alignment Subspace Analysis and Optimization for AAM Based Face Alignment Ming Zhao Chun Chen College of Computer Science Zhejiang University Hangzhou, 310027, P.R.China zhaoming1999@zju.edu.cn Stan Z. Li Microsoft

More information

Projective Geometry: A Short Introduction. Lecture Notes Edmond Boyer

Projective Geometry: A Short Introduction. Lecture Notes Edmond Boyer Projective Geometry: A Short Introduction Lecture Notes Edmond Boyer Contents 1 Introduction 2 11 Objective 2 12 Historical Background 3 13 Bibliography 4 2 Projective Spaces 5 21 Definitions 5 22 Properties

More information

DETECTION OF PLANAR PATCHES IN HANDHELD IMAGE SEQUENCES

DETECTION OF PLANAR PATCHES IN HANDHELD IMAGE SEQUENCES DETECTION OF PLANAR PATCHES IN HANDHELD IMAGE SEQUENCES Olaf Kähler, Joachim Denzler Friedrich-Schiller-University, Dept. Mathematics and Computer Science, 07743 Jena, Germany {kaehler,denzler}@informatik.uni-jena.de

More information

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space 11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of

More information

V-PITS : VIDEO BASED PHONOMICROSURGERY INSTRUMENT TRACKING SYSTEM. Ketan Surender

V-PITS : VIDEO BASED PHONOMICROSURGERY INSTRUMENT TRACKING SYSTEM. Ketan Surender V-PITS : VIDEO BASED PHONOMICROSURGERY INSTRUMENT TRACKING SYSTEM by Ketan Surender A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Electrical Engineering)

More information

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number

More information

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

Which Pattern? Biasing Aspects of Planar Calibration Patterns and Detection Methods

Which Pattern? Biasing Aspects of Planar Calibration Patterns and Detection Methods Which Pattern? Biasing Aspects of Planar Calibration Patterns and Detection Methods John Mallon Paul F. Whelan Vision Systems Group, Dublin City University, Dublin 9, Ireland Abstract This paper provides

More information

DYNAMIC RANGE IMPROVEMENT THROUGH MULTIPLE EXPOSURES. Mark A. Robertson, Sean Borman, and Robert L. Stevenson

DYNAMIC RANGE IMPROVEMENT THROUGH MULTIPLE EXPOSURES. Mark A. Robertson, Sean Borman, and Robert L. Stevenson c 1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or

More information

THREE DIMENSIONAL GEOMETRY

THREE DIMENSIONAL GEOMETRY Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

More information

We shall turn our attention to solving linear systems of equations. Ax = b

We shall turn our attention to solving linear systems of equations. Ax = b 59 Linear Algebra We shall turn our attention to solving linear systems of equations Ax = b where A R m n, x R n, and b R m. We already saw examples of methods that required the solution of a linear system

More information

Automatic Calibration of an In-vehicle Gaze Tracking System Using Driver s Typical Gaze Behavior

Automatic Calibration of an In-vehicle Gaze Tracking System Using Driver s Typical Gaze Behavior Automatic Calibration of an In-vehicle Gaze Tracking System Using Driver s Typical Gaze Behavior Kenji Yamashiro, Daisuke Deguchi, Tomokazu Takahashi,2, Ichiro Ide, Hiroshi Murase, Kazunori Higuchi 3,

More information

Towards Auto-calibration of Smart Phones Using Orientation Sensors

Towards Auto-calibration of Smart Phones Using Orientation Sensors 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops Towards Auto-calibration of Smart Phones Using Orientation Sensors Philip Saponaro and Chandra Kambhamettu Video/Image Modeling

More information

Projection Center Calibration for a Co-located Projector Camera System

Projection Center Calibration for a Co-located Projector Camera System Projection Center Calibration for a Co-located Camera System Toshiyuki Amano Department of Computer and Communication Science Faculty of Systems Engineering, Wakayama University Sakaedani 930, Wakayama,

More information

3D Model based Object Class Detection in An Arbitrary View

3D Model based Object Class Detection in An Arbitrary View 3D Model based Object Class Detection in An Arbitrary View Pingkun Yan, Saad M. Khan, Mubarak Shah School of Electrical Engineering and Computer Science University of Central Florida http://www.eecs.ucf.edu/

More information

The Characteristic Polynomial

The Characteristic Polynomial Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem

More information

8. Linear least-squares

8. Linear least-squares 8. Linear least-squares EE13 (Fall 211-12) definition examples and applications solution of a least-squares problem, normal equations 8-1 Definition overdetermined linear equations if b range(a), cannot

More information

EXPERIMENTAL EVALUATION OF RELATIVE POSE ESTIMATION ALGORITHMS

EXPERIMENTAL EVALUATION OF RELATIVE POSE ESTIMATION ALGORITHMS EXPERIMENTAL EVALUATION OF RELATIVE POSE ESTIMATION ALGORITHMS Marcel Brückner, Ferid Bajramovic, Joachim Denzler Chair for Computer Vision, Friedrich-Schiller-University Jena, Ernst-Abbe-Platz, 7743 Jena,

More information

A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA

A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA N. Zarrinpanjeh a, F. Dadrassjavan b, H. Fattahi c * a Islamic Azad University of Qazvin - nzarrin@qiau.ac.ir

More information

VRSPATIAL: DESIGNING SPATIAL MECHANISMS USING VIRTUAL REALITY

VRSPATIAL: DESIGNING SPATIAL MECHANISMS USING VIRTUAL REALITY Proceedings of DETC 02 ASME 2002 Design Technical Conferences and Computers and Information in Conference Montreal, Canada, September 29-October 2, 2002 DETC2002/ MECH-34377 VRSPATIAL: DESIGNING SPATIAL

More information

Integrated sensors for robotic laser welding

Integrated sensors for robotic laser welding Proceedings of the Third International WLT-Conference on Lasers in Manufacturing 2005,Munich, June 2005 Integrated sensors for robotic laser welding D. Iakovou *, R.G.K.M Aarts, J. Meijer University of

More information

Inner Product Spaces and Orthogonality

Inner Product Spaces and Orthogonality Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,

More information

Optical Tracking Using Projective Invariant Marker Pattern Properties

Optical Tracking Using Projective Invariant Marker Pattern Properties Optical Tracking Using Projective Invariant Marker Pattern Properties Robert van Liere, Jurriaan D. Mulder Department of Information Systems Center for Mathematics and Computer Science Amsterdam, the Netherlands

More information

3D Tranformations. CS 4620 Lecture 6. Cornell CS4620 Fall 2013 Lecture 6. 2013 Steve Marschner (with previous instructors James/Bala)

3D Tranformations. CS 4620 Lecture 6. Cornell CS4620 Fall 2013 Lecture 6. 2013 Steve Marschner (with previous instructors James/Bala) 3D Tranformations CS 4620 Lecture 6 1 Translation 2 Translation 2 Translation 2 Translation 2 Scaling 3 Scaling 3 Scaling 3 Scaling 3 Rotation about z axis 4 Rotation about z axis 4 Rotation about x axis

More information

STUDIES IN ROBOTIC VISION, OPTICAL ILLUSIONS AND NONLINEAR DIFFUSION FILTERING

STUDIES IN ROBOTIC VISION, OPTICAL ILLUSIONS AND NONLINEAR DIFFUSION FILTERING STUDIES IN ROBOTIC VISION, OPTICAL ILLUSIONS AND NONLINEAR DIFFUSION FILTERING HENRIK MALM Centre for Mathematical Sciences Mathematics Mathematics Centre for Mathematical Sciences Lund University Box

More information

Spatial location in 360 of reference points over an object by using stereo vision

Spatial location in 360 of reference points over an object by using stereo vision EDUCATION Revista Mexicana de Física E 59 (2013) 23 27 JANUARY JUNE 2013 Spatial location in 360 of reference points over an object by using stereo vision V. H. Flores a, A. Martínez a, J. A. Rayas a,

More information

We can display an object on a monitor screen in three different computer-model forms: Wireframe model Surface Model Solid model

We can display an object on a monitor screen in three different computer-model forms: Wireframe model Surface Model Solid model CHAPTER 4 CURVES 4.1 Introduction In order to understand the significance of curves, we should look into the types of model representations that are used in geometric modeling. Curves play a very significant

More information

Common Core Unit Summary Grades 6 to 8

Common Core Unit Summary Grades 6 to 8 Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations

More information

Path Tracking for a Miniature Robot

Path Tracking for a Miniature Robot Path Tracking for a Miniature Robot By Martin Lundgren Excerpt from Master s thesis 003 Supervisor: Thomas Hellström Department of Computing Science Umeå University Sweden 1 Path Tracking Path tracking

More information

CS 4204 Computer Graphics

CS 4204 Computer Graphics CS 4204 Computer Graphics 3D views and projection Adapted from notes by Yong Cao 1 Overview of 3D rendering Modeling: *Define object in local coordinates *Place object in world coordinates (modeling transformation)

More information

THE problem of visual servoing guiding a robot using

THE problem of visual servoing guiding a robot using 582 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 4, AUGUST 1997 A Modular System for Robust Positioning Using Feedback from Stereo Vision Gregory D. Hager, Member, IEEE Abstract This paper

More information

1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,

1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v, 1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It

More information

Computer Vision - part II

Computer Vision - part II Computer Vision - part II Review of main parts of Section B of the course School of Computer Science & Statistics Trinity College Dublin Dublin 2 Ireland www.scss.tcd.ie Lecture Name Course Name 1 1 2

More information

Segmentation of building models from dense 3D point-clouds

Segmentation of building models from dense 3D point-clouds Segmentation of building models from dense 3D point-clouds Joachim Bauer, Konrad Karner, Konrad Schindler, Andreas Klaus, Christopher Zach VRVis Research Center for Virtual Reality and Visualization, Institute

More information

α = u v. In other words, Orthogonal Projection

α = u v. In other words, Orthogonal Projection Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

More information

Projective Geometry. Projective Geometry

Projective Geometry. Projective Geometry Euclidean versus Euclidean geometry describes sapes as tey are Properties of objects tat are uncanged by rigid motions» Lengts» Angles» Parallelism Projective geometry describes objects as tey appear Lengts,

More information

Depth from a single camera

Depth from a single camera Depth from a single camera Fundamental Matrix Essential Matrix Active Sensing Methods School of Computer Science & Statistics Trinity College Dublin Dublin 2 Ireland www.scss.tcd.ie 1 1 Geometry of two

More information

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions. 3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms

More information

Lecture 2: Homogeneous Coordinates, Lines and Conics

Lecture 2: Homogeneous Coordinates, Lines and Conics Lecture 2: Homogeneous Coordinates, Lines and Conics 1 Homogeneous Coordinates In Lecture 1 we derived the camera equations λx = P X, (1) where x = (x 1, x 2, 1), X = (X 1, X 2, X 3, 1) and P is a 3 4

More information

1 VECTOR SPACES AND SUBSPACES

1 VECTOR SPACES AND SUBSPACES 1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such

More information

Critical Motions for Auto-Calibration When Some Intrinsic Parameters Can Vary

Critical Motions for Auto-Calibration When Some Intrinsic Parameters Can Vary Critical Motions for Auto-Calibration When Some Intrinsic Parameters Can Vary Fredrik Kahl (fredrik@maths.lth.se), Bill Triggs (bill.triggs@inrialpes.fr) and Kalle Åström (kalle@maths.lth.se) Centre for

More information

3 Orthogonal Vectors and Matrices

3 Orthogonal Vectors and Matrices 3 Orthogonal Vectors and Matrices The linear algebra portion of this course focuses on three matrix factorizations: QR factorization, singular valued decomposition (SVD), and LU factorization The first

More information

Euclidean Structure from N 2 Parallel Circles: Theory and Algorithms

Euclidean Structure from N 2 Parallel Circles: Theory and Algorithms Euclidean Structure from N 2 Parallel Circles: Theory and Algorithms Pierre Gurdjos 1, Peter Sturm 2, and Yihong Wu 3 1 IRIT-TCI, UPS, 118 route de Narbonne, 31062 Toulouse, cedex 9, France Pierre.Gurdjos@irit.fr

More information

AP Physics 1 and 2 Lab Investigations

AP Physics 1 and 2 Lab Investigations AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks

More information

Single Image 3D Reconstruction of Ball Motion and Spin From Motion Blur

Single Image 3D Reconstruction of Ball Motion and Spin From Motion Blur Single Image 3D Reconstruction of Ball Motion and Spin From Motion Blur An Experiment in Motion from Blur Giacomo Boracchi, Vincenzo Caglioti, Alessandro Giusti Objective From a single image, reconstruct:

More information

Reflection and Refraction

Reflection and Refraction Equipment Reflection and Refraction Acrylic block set, plane-concave-convex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,

More information

State of Stress at Point

State of Stress at Point State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

More information

DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II. Matrix Algorithms DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

More information

The Basics of FEA Procedure

The Basics of FEA Procedure CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

More information

Essential Mathematics for Computer Graphics fast

Essential Mathematics for Computer Graphics fast John Vince Essential Mathematics for Computer Graphics fast Springer Contents 1. MATHEMATICS 1 Is mathematics difficult? 3 Who should read this book? 4 Aims and objectives of this book 4 Assumptions made

More information

x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0.

x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0. Cross product 1 Chapter 7 Cross product We are getting ready to study integration in several variables. Until now we have been doing only differential calculus. One outcome of this study will be our ability

More information

The Trimmed Iterative Closest Point Algorithm

The Trimmed Iterative Closest Point Algorithm Image and Pattern Analysis (IPAN) Group Computer and Automation Research Institute, HAS Budapest, Hungary The Trimmed Iterative Closest Point Algorithm Dmitry Chetverikov and Dmitry Stepanov http://visual.ipan.sztaki.hu

More information

Linear Algebra: Vectors

Linear Algebra: Vectors A Linear Algebra: Vectors A Appendix A: LINEAR ALGEBRA: VECTORS TABLE OF CONTENTS Page A Motivation A 3 A2 Vectors A 3 A2 Notational Conventions A 4 A22 Visualization A 5 A23 Special Vectors A 5 A3 Vector

More information

An Iterative Image Registration Technique with an Application to Stereo Vision

An Iterative Image Registration Technique with an Application to Stereo Vision An Iterative Image Registration Technique with an Application to Stereo Vision Bruce D. Lucas Takeo Kanade Computer Science Department Carnegie-Mellon University Pittsburgh, Pennsylvania 15213 Abstract

More information

Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches

Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches PhD Thesis by Payam Birjandi Director: Prof. Mihai Datcu Problematic

More information

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system 1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables

More information

Geometric and Radiometric Camera Calibration

Geometric and Radiometric Camera Calibration Geometric and Radiometric Camera Calibration Shape From Stereo requires geometric knowledge of: Cameras extrinsic parameters, i.e. the geometric relationship between the two cameras. Camera intrinsic parameters,

More information

Shape from Single Stripe Pattern Illumination

Shape from Single Stripe Pattern Illumination Published in Luc Van Gool (Editor): Pattern Recognition, Lecture Notes in Computer Science 2449, Springer 2002, page 240-247. Shape from Single Stripe Pattern Illumination S. Winkelbach and F. M. Wahl

More information

A PAIR OF MEASURES OF ROTATIONAL ERROR FOR AXISYMMETRIC ROBOT END-EFFECTORS

A PAIR OF MEASURES OF ROTATIONAL ERROR FOR AXISYMMETRIC ROBOT END-EFFECTORS A PAIR OF MEASURES OF ROTATIONAL ERROR FOR AXISYMMETRIC ROBOT END-EFFECTORS Sébastien Briot, Ilian A. Bonev Department of Automated Manufacturing Engineering École de technologie supérieure (ÉTS), Montreal,

More information

Mehtap Ergüven Abstract of Ph.D. Dissertation for the degree of PhD of Engineering in Informatics

Mehtap Ergüven Abstract of Ph.D. Dissertation for the degree of PhD of Engineering in Informatics INTERNATIONAL BLACK SEA UNIVERSITY COMPUTER TECHNOLOGIES AND ENGINEERING FACULTY ELABORATION OF AN ALGORITHM OF DETECTING TESTS DIMENSIONALITY Mehtap Ergüven Abstract of Ph.D. Dissertation for the degree

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka kosecka@cs.gmu.edu http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length

More information

Bayesian Image Super-Resolution

Bayesian Image Super-Resolution Bayesian Image Super-Resolution Michael E. Tipping and Christopher M. Bishop Microsoft Research, Cambridge, U.K..................................................................... Published as: Bayesian

More information

A Reliability Point and Kalman Filter-based Vehicle Tracking Technique

A Reliability Point and Kalman Filter-based Vehicle Tracking Technique A Reliability Point and Kalman Filter-based Vehicle Tracing Technique Soo Siang Teoh and Thomas Bräunl Abstract This paper introduces a technique for tracing the movement of vehicles in consecutive video

More information

FURTHER VECTORS (MEI)

FURTHER VECTORS (MEI) Mathematics Revision Guides Further Vectors (MEI) (column notation) Page of MK HOME TUITION Mathematics Revision Guides Level: AS / A Level - MEI OCR MEI: C FURTHER VECTORS (MEI) Version : Date: -9-7 Mathematics

More information

A System for Capturing High Resolution Images

A System for Capturing High Resolution Images A System for Capturing High Resolution Images G.Voyatzis, G.Angelopoulos, A.Bors and I.Pitas Department of Informatics University of Thessaloniki BOX 451, 54006 Thessaloniki GREECE e-mail: pitas@zeus.csd.auth.gr

More information

15.062 Data Mining: Algorithms and Applications Matrix Math Review

15.062 Data Mining: Algorithms and Applications Matrix Math Review .6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

More information

A neural approach to zoom-lens camera calibration from data with outliers

A neural approach to zoom-lens camera calibration from data with outliers Image and Vision Computing 20 (2002) 619 630 www.elsevier.com/locate/imavis A neural approach to zoom-lens camera calibration from data with outliers Moumen Ahmed, Aly Farag* CVIP Laboratory, University

More information

IMPROVEMENT OF DIGITAL IMAGE RESOLUTION BY OVERSAMPLING

IMPROVEMENT OF DIGITAL IMAGE RESOLUTION BY OVERSAMPLING ABSTRACT: IMPROVEMENT OF DIGITAL IMAGE RESOLUTION BY OVERSAMPLING Hakan Wiman Department of Photogrammetry, Royal Institute of Technology S - 100 44 Stockholm, Sweden (e-mail hakanw@fmi.kth.se) ISPRS Commission

More information

CS3220 Lecture Notes: QR factorization and orthogonal transformations

CS3220 Lecture Notes: QR factorization and orthogonal transformations CS3220 Lecture Notes: QR factorization and orthogonal transformations Steve Marschner Cornell University 11 March 2009 In this lecture I ll talk about orthogonal matrices and their properties, discuss

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

More information