Mathematical goals. Starting points. Materials required. Time needed
|
|
|
- Paulina Welch
- 9 years ago
- Views:
Transcription
1 Level A7 of challenge: C A7 Interpreting functions, graphs and tables tables Mathematical goals Starting points Materials required Time needed To enable learners to understand: the relationship between graphical, algebraic and tabular representations of functions; the nature of proportional, linear, quadratic and inverse functions; doubling and squaring, and the effect on positive and negative numbers. Learners should alread be familiar with algebraic smbols such as those representing squares, square roots and fractions. This will be revised during the introduction. Most learners will alread be familiar with making tabular representations of functions and drawing graphs, but the ma not have considered the relations between different representations of functions. For each learner ou will need: calculator; mini-whiteboard. For each small group of learners ou will need: Card set A Introductor activit; Card set B Formulae; Card set C Words; Card set D Graphs; Card set E Tables; Card set F Variations. At least 1 hour. The computer program Machines ma be used to enrich the work in this session. It is included on the DVD and is also available, with man others, at the Freudenthal Institute website (on the website it is called Algebra arrows, or Algebra pijlen ). It is used here with kind permission. Instructions for using this program are given on Sheet 1 Instructions for using the software: machines. Level of challenge: C A7 1
2 Level of challenge: C Suggested approach Beginning the session The first part of the session aims to help learners recall the meaning of algebraic representations. Arrange learners into pairs. Give each pair Card set A Introductor activit. Ask them to imagine that n = and then tr to place the cards in order of size. If the struggle, ask them to sa in their own words what each smbol means. When the have placed the cards in order, ask them to repeat the task when n takes other values, for eample n = 9, then n = 1. Allow the use of calculators for this activit. To enliven the activit, invite si learners out to the front and give each one a large version of a card. The must then place themselves in order, using suggested substitutions from the rest of the group. To make things more difficult, ou could ask the group to nominate one standing learner and then find a substitution that will make this person stand at one end of the line. Working in groups Hand out Card sets B Formulae and C Words to each pair of learners. Ask learners to take it in turns to tr to match a pair of cards and to eplain wh these two cards are equivalent. This process will help learners to articulate the meaning of the cards. Where there are blank cards, learners should complete these themselves. It is helpful if learners are asked to place the cards side b side so that ou can monitor their work as ou move round the room. Some of the cards are more difficult in that the require the formula to be slightl rearranged. When the have completed this, give learners Card sets D Graphs and E Tables, to be matched with those alread on the table. These cards encourage learners to substitute numbers into each algebraic representation and to link it with a graphical representation. If the table becomes too cluttered at this point, ou ma suggest that learners remove the Words cards. If learners find the work difficult, suggest that the work with the easier cards first: sa, =, = +, =, =, =. Once the have correctl matched these cards, the ma be read to match the remaining cards. A7
3 What learners might do net Further ideas Learners who complete the activit quickl ma enjo tring to match Card set F Variations with the sets on the table. These invite learners to consider the effect on one variable as the other is changed. Reviewing and etending learning During the final part of the session, use mini-whiteboards and questioning to see if learners can begin to generalise. Show me a graph of: = + 3; = + 3; = 3. Show me: an equation of a straight line graph that goes through the origin;... and another; and another; now a steeper line; an equation of a straight line graph that goes through (0,);... and another; and another; now a steeper line; an equation of a line with a negative gradient; an equation of a parabola that goes through (0,3); and so on... Learners ma use the computer program Machines to construct function machines and eplore their graphs. Instructions are given on Sheet 1 Instructions for using the software: machines. This activit uses multiple representations to deepen understanding of functions. This tpe of activit ma be used in an topic where a range of representations is used. Eamples in this pack include: A Interpreting distance time graphs; SS Representing 3D shapes. Level of challenge: C A7 3
4 Level of challenge: C BLANK PAGE FOR NOTES A7
5 A7 Card set A Introductor activit n n n 8n 3 n n + 1 A7 5
6 A7 Card set B Formulae = = = = + = = = = =± + = = = = + =± A7
7 A7 Card set C Words is one half the size of is more than added to is equal to multiplied b is equal to is less than is double the size of is alwas equal to is the same as multiplied b is the same as divided b is the same as multiplied b is the square root of is the same as divided b A7 7
8 A7 Card set D Graphs A7 8
9 A7 Card set E Tables ±1 ± ±3 ± ± A7 9
10 A7 Card set F Variations If ou double, doubles. If ou add 1 to, is added to. If ou double, halves. If ou add 1 to, 1 is added to. If ou add 1 to, one half is added to. If ou double, doesn t change. If ou double, is multiplied b. If ou multipl b, is multiplied b. A7 10
11 A7 Sheet 1 Instructions for using the software: machines This program provides an interactive wa of creating function machines with one instance of the variable. It allows learners to eplore connections between the machines, algebraic formulae, tables of numbers and graphs. Running the program As an eample, suppose ou want to make a machine for the function = ( + ) + 1. Drag an input bo onto the white screen area. The operations ou want to do, in order are: +, square, +1. At the moment, these are not all shown on the left hand side, so ou must make them. Drag a ellow +3 bo into the white screen. Now click on the +3 and change it to +. Drag the arrow from the right hand side of the input bo to the + ellow bo. It should attach itself. Drag the ellow function bo for squaring [... ] onto the white screen and attach an arrow from the + function to this bo. Finall repeat the process and create the +1 function. Now join this onto an output bo. You now have finished making the machine. If ou want to remove anthing from the screen, just drag it off. Tr tping a number into the input bo. Do ou get the number ou epect in the output bo? Tr tping into the input bo. Do ou get the correct formula in the output bo? With in the input bo, tr clicking on the Table button. What happens? Click on a number in the Table bo and see what happens now. You can scroll up and down the table boes b clicking on the arrows at the top and bottom. Click on the Graph button and join the arrow from the output bo onto the graph. Drag the inside of the graph around and adjust the scales b clicking on the arrows until ou can see it clearl. A7 11
12 A7 Sheet 1 Instructions for using the software: machines (continued) You can of course have more than one function machine on the graph at the same time. This is useful when solving simultaneous equations. For eample, ou can solve = and = 5 graphicall: If ou click on the Back button, the operations are all reversed. This is useful when showing inverse functions. For eample, the inverse function for = + is = A7 1
Mathematical goals. Starting points. Materials required. Time needed
Level C1 of challenge: D C1 Linking the properties and forms of quadratic of quadratic functions functions Mathematical goals Starting points Materials required Time needed To enable learners to: identif
INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1
Chapter 1 INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4 This opening section introduces the students to man of the big ideas of Algebra 2, as well as different was of thinking and various problem solving strategies.
Classifying Solutions to Systems of Equations
CONCEPT DEVELOPMENT Mathematics Assessment Project CLASSROOM CHALLENGES A Formative Assessment Lesson Classifing Solutions to Sstems of Equations Mathematics Assessment Resource Service Universit of Nottingham
C3: Functions. Learning objectives
CHAPTER C3: Functions Learning objectives After studing this chapter ou should: be familiar with the terms one-one and man-one mappings understand the terms domain and range for a mapping understand the
Mathematical goals. Starting points. Materials required. Time needed
Level SS6 of challenge: B SS6 Mathematical goals Starting points Materials required Time needed Representing 3D shapes To enable learners to: interpret 2D representations of 3D shapes; analyse 3D shapes
Find the Relationship: An Exercise in Graphing Analysis
Find the Relationship: An Eercise in Graphing Analsis Computer 5 In several laborator investigations ou do this ear, a primar purpose will be to find the mathematical relationship between two variables.
Mathematical goals. Starting points. Materials required. Time needed
Level A0 of challenge: D A0 Mathematical goals Starting points Materials required Time needed Connecting perpendicular lines To help learners to: identify perpendicular gradients; identify, from their
Mathematical goals. Starting points. Materials required. Time needed
Level A3 of challenge: C A3 Creating and solving harder equations equations Mathematical goals Starting points Materials required Time needed To enable learners to: create and solve equations, where the
LESSON EIII.E EXPONENTS AND LOGARITHMS
LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS OVERVIEW Here s what ou ll learn in this lesson: Eponential Functions a. Graphing eponential functions b. Applications of eponential
Higher. Polynomials and Quadratics 64
hsn.uk.net Higher Mathematics UNIT OUTCOME 1 Polnomials and Quadratics Contents Polnomials and Quadratics 64 1 Quadratics 64 The Discriminant 66 3 Completing the Square 67 4 Sketching Parabolas 70 5 Determining
Downloaded from www.heinemann.co.uk/ib. equations. 2.4 The reciprocal function x 1 x
Functions and equations Assessment statements. Concept of function f : f (); domain, range, image (value). Composite functions (f g); identit function. Inverse function f.. The graph of a function; its
Solving Absolute Value Equations and Inequalities Graphically
4.5 Solving Absolute Value Equations and Inequalities Graphicall 4.5 OBJECTIVES 1. Draw the graph of an absolute value function 2. Solve an absolute value equation graphicall 3. Solve an absolute value
Graphing Quadratic Equations
.4 Graphing Quadratic Equations.4 OBJECTIVE. Graph a quadratic equation b plotting points In Section 6.3 ou learned to graph first-degree equations. Similar methods will allow ou to graph quadratic equations
To Be or Not To Be a Linear Equation: That Is the Question
To Be or Not To Be a Linear Equation: That Is the Question Linear Equation in Two Variables A linear equation in two variables is an equation that can be written in the form A + B C where A and B are not
5.1. A Formula for Slope. Investigation: Points and Slope CONDENSED
CONDENSED L E S S O N 5.1 A Formula for Slope In this lesson ou will learn how to calculate the slope of a line given two points on the line determine whether a point lies on the same line as two given
Chapter 6 Quadratic Functions
Chapter 6 Quadratic Functions Determine the characteristics of quadratic functions Sketch Quadratics Solve problems modelled b Quadratics 6.1Quadratic Functions A quadratic function is of the form where
Zero and Negative Exponents and Scientific Notation. a a n a m n. Now, suppose that we allow m to equal n. We then have. a am m a 0 (1) a m
0. E a m p l e 666SECTION 0. OBJECTIVES. Define the zero eponent. Simplif epressions with negative eponents. Write a number in scientific notation. Solve an application of scientific notation We must have
Exponential and Logarithmic Functions
Chapter 6 Eponential and Logarithmic Functions Section summaries Section 6.1 Composite Functions Some functions are constructed in several steps, where each of the individual steps is a function. For eample,
Use order of operations to simplify. Show all steps in the space provided below each problem. INTEGER OPERATIONS
ORDER OF OPERATIONS In the following order: 1) Work inside the grouping smbols such as parenthesis and brackets. ) Evaluate the powers. 3) Do the multiplication and/or division in order from left to right.
POLYNOMIAL FUNCTIONS
POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a
STRAND: ALGEBRA Unit 3 Solving Equations
CMM Subject Support Strand: ALGEBRA Unit Solving Equations: Tet STRAND: ALGEBRA Unit Solving Equations TEXT Contents Section. Algebraic Fractions. Algebraic Fractions and Quadratic Equations. Algebraic
Zeros of Polynomial Functions. The Fundamental Theorem of Algebra. The Fundamental Theorem of Algebra. zero in the complex number system.
_.qd /7/ 9:6 AM Page 69 Section. Zeros of Polnomial Functions 69. Zeros of Polnomial Functions What ou should learn Use the Fundamental Theorem of Algebra to determine the number of zeros of polnomial
Graphing Linear Equations
6.3 Graphing Linear Equations 6.3 OBJECTIVES 1. Graph a linear equation b plotting points 2. Graph a linear equation b the intercept method 3. Graph a linear equation b solving the equation for We are
1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model
. Piecewise Functions YOU WILL NEED graph paper graphing calculator GOAL Understand, interpret, and graph situations that are described b piecewise functions. LEARN ABOUT the Math A cit parking lot uses
1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model
1. Piecewise Functions YOU WILL NEED graph paper graphing calculator GOAL Understand, interpret, and graph situations that are described b piecewise functions. LEARN ABOUT the Math A cit parking lot uses
Why should we learn this? One real-world connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY
Wh should we learn this? The Slope of a Line Objectives: To find slope of a line given two points, and to graph a line using the slope and the -intercept. One real-world connection is to find the rate
7.3 Solving Systems by Elimination
7. Solving Sstems b Elimination In the last section we saw the Substitution Method. It turns out there is another method for solving a sstem of linear equations that is also ver good. First, we will need
Year 9 set 1 Mathematics notes, to accompany the 9H book.
Part 1: Year 9 set 1 Mathematics notes, to accompany the 9H book. equations 1. (p.1), 1.6 (p. 44), 4.6 (p.196) sequences 3. (p.115) Pupils use the Elmwood Press Essential Maths book by David Raymer (9H
I think that starting
. Graphs of Functions 69. GRAPHS OF FUNCTIONS One can envisage that mathematical theor will go on being elaborated and etended indefinitel. How strange that the results of just the first few centuries
Mathematical goals. Starting points. Materials required. Time needed
Level N9 of challenge: B N9 Evaluating directed number statements statements Mathematical goals Starting points Materials required Time needed To enable learners to: make valid generalisations about the
Mathematical goals. Starting points. Materials required. Time needed
Level N7 of challenge: A/B N7 Using percentages to increase quantities quantities Mathematical goals Starting points Materials required Time needed To enable learners to: make links between percentages,
10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED
CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations
A Quick Algebra Review
1. Simplifying Epressions. Solving Equations 3. Problem Solving 4. Inequalities 5. Absolute Values 6. Linear Equations 7. Systems of Equations 8. Laws of Eponents 9. Quadratics 10. Rationals 11. Radicals
Imagine a cube with any side length. Imagine increasing the height by 2 cm, the. Imagine a cube. x x
OBJECTIVES Eplore functions defined b rddegree polnomials (cubic functions) Use graphs of polnomial equations to find the roots and write the equations in factored form Relate the graphs of polnomial equations
Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form
SECTION 11.3 Solving Quadratic Equations b Graphing 11.3 OBJECTIVES 1. Find an ais of smmetr 2. Find a verte 3. Graph a parabola 4. Solve quadratic equations b graphing 5. Solve an application involving
Core Maths C1. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the
Solving Systems of Equations
Solving Sstems of Equations When we have or more equations and or more unknowns, we use a sstem of equations to find the solution. Definition: A solution of a sstem of equations is an ordered pair that
For each learner you will need: mini-whiteboard. For each small group of learners you will need: Card set A Factors; Card set B True/false.
Level A11 of challenge: D A11 Mathematical goals Starting points Materials required Time needed Factorising cubics To enable learners to: associate x-intercepts with finding values of x such that f (x)
Linear Inequality in Two Variables
90 (7-) Chapter 7 Sstems of Linear Equations and Inequalities In this section 7.4 GRAPHING LINEAR INEQUALITIES IN TWO VARIABLES You studied linear equations and inequalities in one variable in Chapter.
Implicit Differentiation
Revision Notes 2 Calculus 1270 Fall 2007 INSTRUCTOR: Peter Roper OFFICE: LCB 313 [EMAIL: [email protected]] Standard Disclaimer These notes are not a complete review of the course thus far, and some
THE POWER RULES. Raising an Exponential Expression to a Power
8 (5-) Chapter 5 Eponents and Polnomials 5. THE POWER RULES In this section Raising an Eponential Epression to a Power Raising a Product to a Power Raising a Quotient to a Power Variable Eponents Summar
Mathematical goals. Starting points. Materials required. Time needed
Level A6 of challenge: C A6 Mathematical goals Starting points Materials required Time needed Interpreting distance time graphs To enable learners to: interpret and construct distance time graphs, including:
Algebra 1 Course Title
Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept
SECTION 2.2. Distance and Midpoint Formulas; Circles
SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation
Representing Polynomials
CONCEPT DEVELOPMENT Mathematics Assessment Project CLASSROOM CHALLENGES A Formative Assessment Lesson Representing Polnomials Mathematics Assessment Resource Service Universit of Nottingham & UC Berkele
Example 1: Model A Model B Total Available. Gizmos. Dodads. System:
Lesson : Sstems of Equations and Matrices Outline Objectives: I can solve sstems of three linear equations in three variables. I can solve sstems of linear inequalities I can model and solve real-world
5.2 Inverse Functions
78 Further Topics in Functions. Inverse Functions Thinking of a function as a process like we did in Section., in this section we seek another function which might reverse that process. As in real life,
7.3 Parabolas. 7.3 Parabolas 505
7. Parabolas 0 7. Parabolas We have alread learned that the graph of a quadratic function f() = a + b + c (a 0) is called a parabola. To our surprise and delight, we ma also define parabolas in terms of
Pre Calculus Math 40S: Explained!
Pre Calculus Math 0S: Eplained! www.math0s.com 0 Logarithms Lesson PART I: Eponential Functions Eponential functions: These are functions where the variable is an eponent. The first tpe of eponential graph
Core Maths C2. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...
GCSE MATHEMATICS. 43602H Unit 2: Number and Algebra (Higher) Report on the Examination. Specification 4360 November 2014. Version: 1.
GCSE MATHEMATICS 43602H Unit 2: Number and Algebra (Higher) Report on the Examination Specification 4360 November 2014 Version: 1.0 Further copies of this Report are available from aqa.org.uk Copyright
Introduction to Matrices for Engineers
Introduction to Matrices for Engineers C.T.J. Dodson, School of Mathematics, Manchester Universit 1 What is a Matrix? A matrix is a rectangular arra of elements, usuall numbers, e.g. 1 0-8 4 0-1 1 0 11
Shake, Rattle and Roll
00 College Board. All rights reserved. 00 College Board. All rights reserved. SUGGESTED LEARNING STRATEGIES: Shared Reading, Marking the Tet, Visualization, Interactive Word Wall Roller coasters are scar
Slope-Intercept Form and Point-Slope Form
Slope-Intercept Form and Point-Slope Form In this section we will be discussing Slope-Intercept Form and the Point-Slope Form of a line. We will also discuss how to graph using the Slope-Intercept Form.
MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60
MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60 A Summar of Concepts Needed to be Successful in Mathematics The following sheets list the ke concepts which are taught in the specified math course. The sheets
2.1 Three Dimensional Curves and Surfaces
. Three Dimensional Curves and Surfaces.. Parametric Equation of a Line An line in two- or three-dimensional space can be uniquel specified b a point on the line and a vector parallel to the line. The
Polynomial Degree and Finite Differences
CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial
Key Topics What will ALL students learn? What will the most able students learn?
2013 2014 Scheme of Work Subject MATHS Year 9 Course/ Year Term 1 Key Topics What will ALL students learn? What will the most able students learn? Number Written methods of calculations Decimals Rounding
2.4. Factoring Quadratic Expressions. Goal. Explore 2.4. Launch 2.4
2.4 Factoring Quadratic Epressions Goal Use the area model and Distributive Property to rewrite an epression that is in epanded form into an equivalent epression in factored form The area of a rectangle
Indiana State Core Curriculum Standards updated 2009 Algebra I
Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and
Functions and Graphs CHAPTER INTRODUCTION. The function concept is one of the most important ideas in mathematics. The study
Functions and Graphs CHAPTER 2 INTRODUCTION The function concept is one of the most important ideas in mathematics. The stud 2-1 Functions 2-2 Elementar Functions: Graphs and Transformations 2-3 Quadratic
SYSTEMS OF LINEAR EQUATIONS
SYSTEMS OF LINEAR EQUATIONS Sstems of linear equations refer to a set of two or more linear equations used to find the value of the unknown variables. If the set of linear equations consist of two equations
Warm-Up y. What type of triangle is formed by the points A(4,2), B(6, 1), and C( 1, 3)? A. right B. equilateral C. isosceles D.
CST/CAHSEE: Warm-Up Review: Grade What tpe of triangle is formed b the points A(4,), B(6, 1), and C( 1, 3)? A. right B. equilateral C. isosceles D. scalene Find the distance between the points (, 5) and
When I was 3.1 POLYNOMIAL FUNCTIONS
146 Chapter 3 Polnomial and Rational Functions Section 3.1 begins with basic definitions and graphical concepts and gives an overview of ke properties of polnomial functions. In Sections 3.2 and 3.3 we
Polynomials. Jackie Nicholas Jacquie Hargreaves Janet Hunter
Mathematics Learning Centre Polnomials Jackie Nicholas Jacquie Hargreaves Janet Hunter c 26 Universit of Sdne Mathematics Learning Centre, Universit of Sdne 1 1 Polnomials Man of the functions we will
y intercept Gradient Facts Lines that have the same gradient are PARALLEL
CORE Summar Notes Linear Graphs and Equations = m + c gradient = increase in increase in intercept Gradient Facts Lines that have the same gradient are PARALLEL If lines are PERPENDICULAR then m m = or
Reasoning with Equations and Inequalities
Instruction Goal: To provide opportunities for students to develop concepts and skills related to solving quadratic equations using the square root property. The quadratic equations will have two solutions,
2013 MBA Jump Start Program
2013 MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Algebra Review Calculus Permutations and Combinations [Online Appendix: Basic Mathematical Concepts] 2 1 Equation of
Mathematical goals. Starting points. Materials required. Time needed
Level N of challenge: B N Mathematical goals Starting points Materials required Time needed Ordering fractions and decimals To help learners to: interpret decimals and fractions using scales and areas;
SAMPLE. Polynomial functions
Objectives C H A P T E R 4 Polnomial functions To be able to use the technique of equating coefficients. To introduce the functions of the form f () = a( + h) n + k and to sketch graphs of this form through
More Equations and Inequalities
Section. Sets of Numbers and Interval Notation 9 More Equations and Inequalities 9 9. Compound Inequalities 9. Polnomial and Rational Inequalities 9. Absolute Value Equations 9. Absolute Value Inequalities
Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:
Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than
Core Maths C3. Revision Notes
Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...
EQUATIONS OF LINES IN SLOPE- INTERCEPT AND STANDARD FORM
. Equations of Lines in Slope-Intercept and Standard Form ( ) 8 In this Slope-Intercept Form Standard Form section Using Slope-Intercept Form for Graphing Writing the Equation for a Line Applications (0,
ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite
ALGEBRA Pupils should be taught to: Generate and describe sequences As outcomes, Year 7 pupils should, for example: Use, read and write, spelling correctly: sequence, term, nth term, consecutive, rule,
Mathematics Online Instructional Materials Correlation to the 2009 Algebra I Standards of Learning and Curriculum Framework
Provider York County School Division Course Syllabus URL http://yorkcountyschools.org/virtuallearning/coursecatalog.aspx Course Title Algebra I AB Last Updated 2010 - A.1 The student will represent verbal
In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.
MATHEMATICS: THE LEVEL DESCRIPTIONS In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. Attainment target
Systems of Equations Involving Circles and Lines
Name: Systems of Equations Involving Circles and Lines Date: In this lesson, we will be solving two new types of Systems of Equations. Systems of Equations Involving a Circle and a Line Solving a system
Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test
Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important
Decimals and Percentages
Decimals and Percentages Specimen Worksheets for Selected Aspects Paul Harling b recognise the number relationship between coordinates in the first quadrant of related points Key Stage 2 (AT2) on a line
Name Class Date. Additional Vocabulary Support
- Additional Vocabular Support Rate of Change and Slope Concept List negative slope positive slope rate of change rise run slope slope formula slope of horizontal line slope of vertical line Choose the
Mathematics Placement Packet Colorado College Department of Mathematics and Computer Science
Mathematics Placement Packet Colorado College Department of Mathematics and Computer Science Colorado College has two all college requirements (QR and SI) which can be satisfied in full, or part, b taking
ax 2 by 2 cxy dx ey f 0 The Distance Formula The distance d between two points (x 1, y 1 ) and (x 2, y 2 ) is given by d (x 2 x 1 )
SECTION 1. The Circle 1. OBJECTIVES The second conic section we look at is the circle. The circle can be described b using the standard form for a conic section, 1. Identif the graph of an equation as
x x y y Then, my slope is =. Notice, if we use the slope formula, we ll get the same thing: m =
Slope and Lines The slope of a line is a ratio that measures the incline of the line. As a result, the smaller the incline, the closer the slope is to zero and the steeper the incline, the farther the
3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style
Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.
Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress
Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation
Math, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image.
Math, Trigonometr and Vectors Geometr Trig Definitions Here's a familiar image. To make predictive models of the phsical world, we'll need to make visualizations, which we can then turn into analtical
MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS
MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS This the fourth and final tutorial on bending of beams. You should judge our progress b completing the self assessment exercises.
The Distance Formula and the Circle
10.2 The Distance Formula and the Circle 10.2 OBJECTIVES 1. Given a center and radius, find the equation of a circle 2. Given an equation for a circle, find the center and radius 3. Given an equation,
SECTION 7-4 Algebraic Vectors
7-4 lgebraic Vectors 531 SECTIN 7-4 lgebraic Vectors From Geometric Vectors to lgebraic Vectors Vector ddition and Scalar Multiplication Unit Vectors lgebraic Properties Static Equilibrium Geometric vectors
Mathematical goals. Starting points. Materials required. Time needed
Level S6 of challenge: B/C S6 Interpreting frequency graphs, cumulative cumulative frequency frequency graphs, graphs, box and box whisker and plots whisker plots Mathematical goals Starting points Materials
Direct Variation. 1. Write an equation for a direct variation relationship 2. Graph the equation of a direct variation relationship
6.5 Direct Variation 6.5 OBJECTIVES 1. Write an equation for a direct variation relationship 2. Graph the equation of a direct variation relationship Pedro makes $25 an hour as an electrician. If he works
Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.
8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent
High School Algebra Reasoning with Equations and Inequalities Solve equations and inequalities in one variable.
Performance Assessment Task Quadratic (2009) Grade 9 The task challenges a student to demonstrate an understanding of quadratic functions in various forms. A student must make sense of the meaning of relations
CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA
We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical
So, using the new notation, P X,Y (0,1) =.08 This is the value which the joint probability function for X and Y takes when X=0 and Y=1.
Joint probabilit is the probabilit that the RVs & Y take values &. like the PDF of the two events, and. We will denote a joint probabilit function as P,Y (,) = P(= Y=) Marginal probabilit of is the probabilit
Using the Area Model to Teach Multiplying, Factoring and Division of Polynomials
visit us at www.cpm.org Using the Area Model to Teach Multiplying, Factoring and Division of Polynomials For more information about the materials presented, contact Chris Mikles [email protected] From CCA
SOLVING QUADRATIC EQUATIONS BY THE DIAGONAL SUM METHOD
SOLVING QUADRATIC EQUATIONS BY THE DIAGONAL SUM METHOD A quadratic equation in one variable has as standard form: ax^2 + bx + c = 0. Solving it means finding the values of x that make the equation true.
6. The given function is only drawn for x > 0. Complete the function for x < 0 with the following conditions:
Precalculus Worksheet 1. Da 1 1. The relation described b the set of points {(-, 5 ),( 0, 5 ),(,8 ),(, 9) } is NOT a function. Eplain wh. For questions - 4, use the graph at the right.. Eplain wh the graph
