# High School Algebra Reasoning with Equations and Inequalities Solve equations and inequalities in one variable.

Save this PDF as:

Size: px
Start display at page:

Download "High School Algebra Reasoning with Equations and Inequalities Solve equations and inequalities in one variable."

## Transcription

1 Performance Assessment Task Quadratic (2009) Grade 9 The task challenges a student to demonstrate an understanding of quadratic functions in various forms. A student must make sense of the meaning of relations and functions and select, convert flexibly among, and use various representations for them. A student must be able to approximate and interpret rates of change from graphic and numeric data. A student must be able to identify minimum point and solutions of a quadratic. A student must determine the solutions to a quadratic equation by using algebra. Common Core State Standards Math Content Standards High School Reasoning with Equations and Inequalities Solve equations and inequalities in one variable. A REI.4 Solve quadratic equations in one variable. a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form (x p)2 = q that has the same solutions. Derive the quadratic formula from this form. b. Solve quadratic equations by inspection (e.g., for x2 = 49), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b. High School Functions Interpreting Functions Interpret functions that arise in applications in terms of the context. F IF.4 For a function that models a relationship between two quantities, interpret key features of a graphs and tables in terms of quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function in increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Analyze functions using different representations. F IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicates cases. a. Graph linear and quadratic functions and show intercepts, maxima, and minima. c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior. F IF.8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context. Common Core State Standards Math Standards of Mathematical Practice MP.1 Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends Noyce Foundation

2 Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, Does this make sense? They can understand the approaches of others to solving complex problems and identify correspondences between different approaches. MP.5 Use appropriate tools strategically. Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts. Assessment Results This task was developed by the Mathematics Assessment Resource Service and administered as part of a national, normed math assessment. For comparison purposes, teachers may be interested in the results of the national assessment, including the total points possible for the task, the number of core points, and the percent of students that scored at standard on the task. Related materials, including the scoring rubric, student work, and discussions of student understandings and misconceptions on the task, are included in the task packet. Grade Level Year Total Points Core Points % At Standard % 2012 Noyce Foundation

3 Quadratic This problem gives you the chance to: work with a quadratic function in various forms This is a quadratic number machine. x Subtract 1 Square the result Subtract 9 y 1. a. Show that, if x is 5, y is 7. b. What is y if x is 0? c. Use algebra to show that, for this machine, y = x 2 2x 8. The diagram on the next page shows the graph of the machine s quadratic function y = x 2 2x 8 and the graphs of y = 3 and y = x. 2. a. Which point on the diagram shows the minimum value of y? b. Which point(s) on the diagram show(s) the solution(s) to the equation 3 = x 2 2x 8? c. Which point(s) on the diagram show(s) the solution(s) to the equation x = x 2 2x 8? Copyright 2009 by Mathematics Assessment Resource Service. Quadratic 27

4 3. a. Use the graph to solve the equation x 2 2x 8 = 0. Mark the solutions on the graph. x = or x = b. Use algebra to solve the same equation. y A B -5 D E x -10 C Copyright 2009 by Mathematics Assessment Resource Service. Quadratic 28

5 Quadratic Rubric The core elements of performance required by this task are: work with a quadratic function in various forms Based on these, credit for specific aspects of performance should be assigned as follows points section points 1. a. Gives a correct answer: b. Gives a correct answer: - 8 c. Gives a correct answer: y = (x 1) 2 9 = x 2 2x = x 2 2x a. Gives a correct answer: C b. Gives a correct answer: A and E c. Gives a correct answer: B and D a. Gives a correct answer: -2, 4 b. Gives a correct answer such as: (x+2)(x-4) = 0, so x = -2 or 4 or uses completing the square to find 1 or 2 correct answers or uses quadratic formula. 1 2 Total Points 9 1 Copyright 2009 by Mathematics Assessment Resource Service. 29

6 Quadratic Work the task and look at the rubric. What are the key mathematical ideas being assessed? Look at student work on part 1b, using the using the number machine. How many of your students put: Other What caused some of the student errors? What did they struggle with? Now look at work on part 1c, using algebra to show that the number machine is equivalent to the equation y = x 2 2x 8. How many of your students: Wrote an expression for the number machine and then carried out the algebraic manipulations to show that the result was equal to the equation? How many tried to use substitution of values to show that both would give the same answer? How many students were unwilling to attempt this part of the task? How often do students in your class get opportunities to use algebra to make a proof or justification? Do students get opportunities to rectify different equations that come up when identifying patterns? What do students in your class seem to understand about justification? Look at work on part 2b. How many of your students put: A & E E B & D B C All No answer Other What are some of the misconceptions behind these responses? Now look at work on part 2c. How many of your students put: B &D D C B A &E All No answer Other Now look at student work on part 3a. How many of your students could use the graph to find the correct values for x? How many students made errors with the signs for x? How many of the students were not able to give a response? What other errors did you see? 30

7 Now look at student work for solving the quadratic for x. How many of your students: Used factoring? Used substitution? Attempted the quadratic formula? Had no strategies for using the equation? How much work have your students had with factoring? Do you see evidence that they understand or see the purpose for factoring to solve an equation? What are the big ideas or underlying conceptual knowledge that we want students to have about quadratics and their solutions? 31

8 Looking at Student Work on Quadratic Student A is able to use the number machine to calculate values for y. The student understands how to encode the number machine into an algebraic expression. In trying to prove that the machine is equal to the equation y = x 2 2 8, the student sets it equal to the expression representing the machine. The student doesn t understand that the steps for transforming the expression need to be shown to complete the argument. The student is able to use factoring and setting the factors equal to zero to find the solutions to the quadratic equation. Student A 32

9 Student A, continued 33

10 Student B tries to use substitution to prove that the number machine is equal to the equation y = x To find the solution to the equation x = x 2 2 8, the student uses factoring. However when needing the same information in part 3b, the student uses the quadratic equation. Do you think the student knows that both are yielding the same solution? What question would you like to pose to the student to probe for understanding? Student B 34

11 Student B, continued Student C is able to calculate y using the number machine. The student does not attempt to show why the number machine is equal to the equation y = x The student understands the minimum value on the parabola. But the student doesn t connect the equations to solutions on the graph in part 2. In part 3, the student does seem to understand that the solution of a quadratic is the value of x when y = 0. However the student has not mastered how to find these solutions using algebra. Instead the student uses guess and check to find the solution. 35

12 Student C 36

13 Student D tries to use examples to prove the equality between the equation y = x and the number machine. While the student can identify solutions on a graph in part 2, the student can t name the solutions in 3a. The student attempts to use the quadratic equation to solve in part 3b, but struggles with the computations. Student D 37

14 Student D, continued Student E struggles with detail and signs. In 1b the student either doesn t square the 1 or adds 1 and 9 incorrectly. In 1c the student factors the equation y = x 2 2 8, which yields an equality, but doesn t connect the equation to the number machine. The student loses track of what needs to be proved. In part 3 the student understands that the equation needs to be factored, but doesn t use the factors to set up equations equal to zero. Thus, the student s solutions have incorrect signs. Student E 38

15 Student E, continued Student F is able to do the calculations in 1a and 1b. The student doesn t seem to understand what is meant by proving that the calculations in the number machine are the same as the equation. The student writes about what is confusing in the equation. While the student answers part of 2 correctly, the uncertainty or tentativeness of the solution is clear. In part 3, the student attempts to manipulate the equation in a manner that would solve for x. However when solving a quadratic the equation needs to be in the form 0 = ax 2 +bx +cy 2. The scorer should not have given the process point. 39

16 Student F 40

17 Student G struggles with representing ideas symbolically. The student can do the stepby-step calculations in the number machine. When attempting to express those actions in algebra the student only squares the (-1) rather than the whole quantity (x-1). The student doesn t know how to connect solutions to the graphical representation in part 2. Student G also understands that the solution for a quadratic can be found by factoring, but doesn t know how to complete the process. Student G 41

18 Student G, continued Student H is also confused by the graphical representations. First the student doesn t seem to connect the description of the graph with the idea that 3 different equations are being displayed. The student doesn t realize that minimum is a term used with quadratics and parabolas. The student does lots of symbolic manipulation but can t make sense of the information. Student H 42

19 Student H, continued 43

20 Student I struggles with calculations. The student should not be given credit for the solution in 1a because the 4 is never squared The student also errs in solving 1b. The student does not realize that the solution given in part 1c is not equal. While the student is able to guess one of the 2 points correctly in 2b and 2c, it is unclear if this is just luck. What do you think this student needs? What would be your next steps? Student I 44

21 Task 2 Quadratic Student Task Core Idea 3 ic Properties and Representations Core Idea 1 Functions and Relations Work with a quadratic function in various forms. Represent and analyze mathematical situations and structures using algebraic symbols. Approximate and interpret rates of change, from graphic and numeric data. Understand relations and functions and select, convert flexibly among, and use various representations for them. Mathematics of the task: Calculations with exponents and negative numbers Codifying calculations into a symbolic string Rectifying two forms of an equation Interpreting graphical representations of linear and quadratic equations and identifying minimum point and solutions Using algebra to find the solution to a quadratic equation (using factoring or the quadratic equation) Based on teacher observation, this is what algebra students know and are able to do: Calculate using the number machine Identify the minimum point on a parabola using a graph Areas of difficulty for algebra students: Using algebra to show that two equations are equal Finding solutions to two equations on a graph Using algebra to find the solutions to a quadratic equation 45

22 The maximum score available on this task is 9 points. The minimum score needed for a level 3 response, meeting standards, is 5 points. Most students, 92%, could either identify the minimum or use the number machine to prove that an input of 5 equals an output of 7. 82% could do both calculations with the number machine. More than half the students, 66%, could use the number machine and find the minimum point on a parabola. Some students, 30%, could calculate with the number machine, find minimum, locate solutions to two equations on a graph, and use the graph to identify the solutions of the quadratic. About 2% of the students could meet all the demands of the task including showing that two equations are equal and using algebra to solve a quadratic. 8% of the students scored no points on this task. All the students in the sample with this score attempted the task. 46

23 Quadratic Points Understandings Misunderstandings 0 All the students in the sample with this score attempted the task. Students did not know how to square numbers or calculate with negative numbers. They could not interpret the 1 Students could either solve the first number machine or locate the minimum on the graph. 2 Students could solve both number machines or solve the first number machine and find the minimum. 3 Students could use the number machine and find the minimum. 5 Students could use the number machine, find the minimum, and locate solutions to two equations on a graph. 7 Students could use the number machine, find the minimum, and locate solutions to two equations on a graph. 9 Students could use the number machine, find the minimum, and locate solutions to two equations on a graph. Students could solve quadratics graphically and algebraically. They could also use algebra to show that two expressions were equal. directions on the number machine. Students struggled with the second number machine. 8% got an answer of % got an answer of 0. Most students who struggled with the minimum put a value of 8 rather than identifying point C. Students struggled with finding solutions to two equations on the graph. For the equation 3=x 2 2x 8 common errors were D & B, E, E &D, and no attempt. For the equation x = x 2 2x 8 common errors were no attempt, D, C, B, and A & E. Students struggled with identifying the solution to a quadratic on a graph and using algebra to find the solution to a quadratic. 16% did not attempt a graphical solution. 26% did not attempt an algebraic solution. 19% used substitution from the graphical solution as their algebraic strategy. Students struggled with using algebra to prove that the number machine was equal to the equation = x 2 2x 8. 40% tried to use substitution for their proof. 19% did not attempt this part of the task. 47

24 Implications for Instruction Students need more experience using algebra as a tool. While many students may have been able to square an algebraic expression, they didn t think to pull out this tool to help show why two expressions are equal. Students didn t seem to understand how to put together algebra to make a convincing proof. They relied on the logic of proof by discrete examples. One of the big ideas of algebra is its usefulness in making and proving generalizations. This is a huge part of algebra. Students need to be able to think about what solutions mean to quadratics or to two equations. They need experiences relating solutions graphically and algebraically. Students seemed unfamiliar with using the graph to find solutions. Students also had difficult with the idea of solving quadratics. Some students knew that part of the procedure was to factor the expression, but then did not set the factors equal to zero and solve. Many students tried to solve the equation similar to the strategy of solving a linear equation putting the variable on one side and number values on the other. Other students have this idea that using substitution is a proof. Students need more experience with quadratics. Ideas for Action Research To help students learn to make generalizations and rectify equations give them an interesting pattern problem, like finding the perimeter of any number of squares in a row. As students work the task, they will come up with a variety of solutions or generalizations for the pattern. Here is a very natural way to have students work with the idea of proving the two equations are equal. Depending on how students see the pattern, they might write different description for the generalization. The first pattern might be described as every square has two sides (top and bottom) plus two additional pieces at the end. This might be expressed algebraically as p = 2x + 2. The second pattern might be described as the end squares have 3 sides and the middle squares have two sides. This might be expressed algebraically as p = 2 (x-2) + 6. The third pattern might be described as the first square has 3 sides and all other squares have 2 sides with a final end side. This might be expressed as p = 2(x-1) + 4. Now students have organic expressions to work with and try to show the equality between the equations. 48

25 Now students have some background to help them re-engage with the mathematics of the task. Students did not understand what it meant to use algebra to prove that the number machine is the same as y=x 2 2x 8. I might start by showing them the work of Student B: I saw this work on a student s paper. What do you think the student was doing? I would give students first some individual think time and then let them share their ideas with a neighbor. The idea of re-engagement is to maximize the amount of talking students get to do, so that they can talk their way into understanding the concept. After everyone has had a chance to form and verbalize an opinion, I would then open up the question to a group discussion. If it doesn t come out naturally, I would also add a prompt to get students to question whether or not this is a proof. We want students at this age to understand that it is impossible to test for every possible case and that proving it for one or even many cases is not a proof. A good reading on this topic is found in Thinking Mathematically by Carpenter, Franke, and Levi, chapter 7 Justification and Proof along with videos of young students making justifications. It has some good questions to push students thinking about proof. Is that always true? How do you know that is true for all numbers? Okay, so we have seen that it works for a lot of numbers, but how do we know that there is not some number maybe a very, very big number that it will not work for? How would you get students to move from this idea to actually setting up an equality? Work with colleagues to think about the types of questions that would help students know what to set equal and how to rectify the two sides. Are there any snippets of student work that you could use from your own student work or the toolkit that would help you? Students also had difficulty with the idea of using algebra to find the solution to the equation y=x 2 2x 8. Many students used substitution, which only works if you already know the answer or can read the answer off the graph. How can we push students to think beyond this. I might start with a prompt: Dawn says that she can use factoring to find the solution to the equation. What do you think she did? This prompt gives a strategy but allows all students now the opportunity to try and apply what they know. A follow up question might be: How does this help her find a solution? 49

26 Next I might want students to confront a common misconception. So I might use the work of Student E: Why do you think Earl s paper is marked incorrect? What mistake has Earl made? Finally, I might push students by saying that Anita said that it was just easier to use the quadratic formula. What do you think she did? How did this help her? After students have had a chance to think through this strategy, I think it is important for them to compare strategies. I might ask them to say which strategy they think is easier and why? Then I might give them a different equation that is not factorable so that they can see that sometimes the quadratic is a better choice. I want them to start to see the purpose for knowing more than one strategy and for thinking about making decisions up front about picking a strategy that is convenient and easy for the particular situation. Look through your student work and work in the toolkits. Are there any other misconceptions that you want students to discuss explicitly? Are there some more important mathematical ideas that you want to address? How could you use student work to pose questions to address those issues? What kind of question do you want to pose at the end of lesson to get students to reflect on what they have learned? Is there a follow up problem that you want to use in a few days to see if students can transfer what they have discussed to a new situation? Would you consider giving students back their original work with a red pen and allow them to edit their papers? How would this help further their understanding? 50

### High School Functions Interpreting Functions Understand the concept of a function and use function notation.

Performance Assessment Task Printing Tickets Grade 9 The task challenges a student to demonstrate understanding of the concepts representing and analyzing mathematical situations and structures using algebra.

### High School Algebra Reasoning with Equations and Inequalities Solve systems of equations.

Performance Assessment Task Graphs (2006) Grade 9 This task challenges a student to use knowledge of graphs and their significant features to identify the linear equations for various lines. A student

### Grade Level Year Total Points Core Points % At Standard 9 2003 10 5 7 %

Performance Assessment Task Number Towers Grade 9 The task challenges a student to demonstrate understanding of the concepts of algebraic properties and representations. A student must make sense of the

### G C.3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.

Performance Assessment Task Circle and Squares Grade 10 This task challenges a student to analyze characteristics of 2 dimensional shapes to develop mathematical arguments about geometric relationships.

### Performance Assessment Task Which Shape? Grade 3. Common Core State Standards Math - Content Standards

Performance Assessment Task Which Shape? Grade 3 This task challenges a student to use knowledge of geometrical attributes (such as angle size, number of angles, number of sides, and parallel sides) to

### Performance Assessment Task Picking Fractions Grade 4. Common Core State Standards Math - Content Standards

Performance Assessment Task Picking Fractions Grade 4 The task challenges a student to demonstrate understanding of the concept of equivalent fractions. A student must understand how the number and size

### Geometry Solve real life and mathematical problems involving angle measure, area, surface area and volume.

Performance Assessment Task Pizza Crusts Grade 7 This task challenges a student to calculate area and perimeters of squares and rectangles and find circumference and area of a circle. Students must find

### Performance Assessment Task Gym Grade 6. Common Core State Standards Math - Content Standards

Performance Assessment Task Gym Grade 6 This task challenges a student to use rules to calculate and compare the costs of memberships. Students must be able to work with the idea of break-even point to

### Polynomial Operations and Factoring

Algebra 1, Quarter 4, Unit 4.1 Polynomial Operations and Factoring Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Identify terms, coefficients, and degree of polynomials.

### Operations and Algebraic Thinking Represent and solve problems involving addition and subtraction. Add and subtract within 20. MP.

Performance Assessment Task Incredible Equations Grade 2 The task challenges a student to demonstrate understanding of concepts involved in addition and subtraction. A student must be able to understand

### Performance Assessment Task Baseball Players Grade 6. Common Core State Standards Math - Content Standards

Performance Assessment Task Baseball Players Grade 6 The task challenges a student to demonstrate understanding of the measures of center the mean, median and range. A student must be able to use the measures

### Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities

Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned

### Balanced Assessment Test Algebra 2008

Balanced Assessment Test Algebra 2008 Core Idea Task Score Representations Expressions This task asks students find algebraic expressions for area and perimeter of parallelograms and trapezoids. Successful

### How Old Are They? This problem gives you the chance to: form expressions form and solve an equation to solve an age problem. Will is w years old.

How Old Are They? This problem gives you the chance to: form expressions form and solve an equation to solve an age problem Will is w years old. Ben is 3 years older. 1. Write an expression, in terms of

### Performance Assessment Task Bikes and Trikes Grade 4. Common Core State Standards Math - Content Standards

Performance Assessment Task Bikes and Trikes Grade 4 The task challenges a student to demonstrate understanding of concepts involved in multiplication. A student must make sense of equal sized groups of

### Operations and Algebraic Thinking Represent and solve problems involving multiplication and division.

Performance Assessment Task The Answer is 36 Grade 3 The task challenges a student to use knowledge of operations and their inverses to complete number sentences that equal a given quantity. A student

### Performance Assessment Task Leapfrog Fractions Grade 4 task aligns in part to CCSSM grade 3. Common Core State Standards Math Content Standards

Performance Assessment Task Leapfrog Fractions Grade 4 task aligns in part to CCSSM grade 3 This task challenges a student to use their knowledge and understanding of ways of representing numbers and fractions

### Total Student Count: 3170. Grade 8 2005 pg. 2

Grade 8 2005 pg. 1 Total Student Count: 3170 Grade 8 2005 pg. 2 8 th grade Task 1 Pen Pal Student Task Core Idea 3 Algebra and Functions Core Idea 2 Mathematical Reasoning Convert cake baking temperatures

### N Q.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.

Performance Assessment Task Swimming Pool Grade 9 The task challenges a student to demonstrate understanding of the concept of quantities. A student must understand the attributes of trapezoids, how to

### For example, estimate the population of the United States as 3 times 10⁸ and the

CCSS: Mathematics The Number System CCSS: Grade 8 8.NS.A. Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1. Understand informally that every number

### Parallelogram. This problem gives you the chance to: use measurement to find the area and perimeter of shapes

Parallelogram This problem gives you the chance to: use measurement to find the area and perimeter of shapes 1. This parallelogram is drawn accurately. Make any measurements you need, in centimeters, and

### 0.75 75% ! 3 40% 0.65 65% Percent Cards. This problem gives you the chance to: relate fractions, decimals and percents

Percent Cards This problem gives you the chance to: relate fractions, decimals and percents Mrs. Lopez makes sets of cards for her math class. All the cards in a set have the same value. Set A 3 4 0.75

### 1 ST GRADE COMMON CORE STANDARDS FOR SAXON MATH

1 ST GRADE COMMON CORE STANDARDS FOR SAXON MATH Calendar The following tables show the CCSS focus of The Meeting activities, which appear at the beginning of each numbered lesson and are taught daily,

### Algebra I. In this technological age, mathematics is more important than ever. When students

In this technological age, mathematics is more important than ever. When students leave school, they are more and more likely to use mathematics in their work and everyday lives operating computer equipment,

### Using Algebra Tiles from Polynomials to Factoring

Using Algebra Tiles from Polynomials to Factoring For more information about the materials you find in this packet, contact: Chris Mikles (888) 808-4276 mikles@cpm.org CPM Educational Program 203, all

### CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

### Pearson Algebra 1 Common Core 2015

A Correlation of Pearson Algebra 1 Common Core 2015 To the Common Core State Standards for Mathematics Traditional Pathways, Algebra 1 High School Copyright 2015 Pearson Education, Inc. or its affiliate(s).

### PA Common Core Standards Standards for Mathematical Practice Grade Level Emphasis*

Habits of Mind of a Productive Thinker Make sense of problems and persevere in solving them. Attend to precision. PA Common Core Standards The Pennsylvania Common Core Standards cannot be viewed and addressed

### Using the Area Model to Teach Multiplying, Factoring and Division of Polynomials

visit us at www.cpm.org Using the Area Model to Teach Multiplying, Factoring and Division of Polynomials For more information about the materials presented, contact Chris Mikles mikles@cpm.org From CCA

### Tom wants to find two real numbers, a and b, that have a sum of 10 and have a product of 10. He makes this table.

Sum and Product This problem gives you the chance to: use arithmetic and algebra to represent and analyze a mathematical situation solve a quadratic equation by trial and improvement Tom wants to find

### Mathematics Assessment Collaborative Tool Kits for Teachers Looking and Learning from Student Work 2009 Grade Eight

Mathematics Assessment Collaborative Tool Kits for Teachers Looking and Learning from Student Work 2009 Grade Eight Contents by Grade Level: Overview of Exam Grade Level Results Cut Score and Grade History

### Evaluation Tool for Assessment Instrument Quality

REPRODUCIBLE Figure 4.4: Evaluation Tool for Assessment Instrument Quality Assessment indicators Description of Level 1 of the Indicator Are Not Present Limited of This Indicator Are Present Substantially

### PowerTeaching i3: Algebra I Mathematics

PowerTeaching i3: Algebra I Mathematics Alignment to the Common Core State Standards for Mathematics Standards for Mathematical Practice and Standards for Mathematical Content for Algebra I Key Ideas and

### South Carolina College- and Career-Ready (SCCCR) Algebra 1

South Carolina College- and Career-Ready (SCCCR) Algebra 1 South Carolina College- and Career-Ready Mathematical Process Standards The South Carolina College- and Career-Ready (SCCCR) Mathematical Process

### Unit 1: Place value and operations with whole numbers and decimals

Unit 1: Place value and operations with whole numbers and decimals Content Area: Mathematics Course(s): Generic Course Time Period: 1st Marking Period Length: 10 Weeks Status: Published Unit Overview Students

### Integer Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions

Grade 7 Mathematics, Quarter 1, Unit 1.1 Integer Operations Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Describe situations in which opposites combine to make zero.

### Standards for Mathematical Practice: Commentary and Elaborations for 6 8

Standards for Mathematical Practice: Commentary and Elaborations for 6 8 c Illustrative Mathematics 6 May 2014 Suggested citation: Illustrative Mathematics. (2014, May 6). Standards for Mathematical Practice:

### Georgia Standards of Excellence 2015-2016 Mathematics

Georgia Standards of Excellence 2015-2016 Mathematics Standards GSE Coordinate Algebra K-12 Mathematics Introduction Georgia Mathematics focuses on actively engaging the student in the development of mathematical

### Problem of the Month The Wheel Shop

Problem of the Month The Wheel Shop The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core

### GRADE 8 MATH: TALK AND TEXT PLANS

GRADE 8 MATH: TALK AND TEXT PLANS UNIT OVERVIEW This packet contains a curriculum-embedded Common Core standards aligned task and instructional supports. The task is embedded in a three week unit on systems

### Mathematics. Accelerated GSE Analytic Geometry B/Advanced Algebra Unit 1: Quadratic Functions

Georgia Standards of Excellence Frameworks Mathematics Accelerated GSE Analytic Geometry B/Advanced Algebra Unit 1: Quadratic Functions These materials are for nonprofit educational purposes only. Any

### Learning Objectives 9.2. Media Run Times 9.3

Unit 9 Table of Contents Unit 9: Factoring Video Overview Learning Objectives 9.2 Media Run Times 9.3 Instructor Notes 9.4 The Mathematics of Factoring Polynomials Teaching Tips: Conceptual Challenges

### This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course

### Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

### Measurement with Ratios

Grade 6 Mathematics, Quarter 2, Unit 2.1 Measurement with Ratios Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Use ratio reasoning to solve real-world and mathematical

### Problem of the Month: Perfect Pair

Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:

### Problem of the Month Through the Grapevine

The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of problems

### In this section, you will develop a method to change a quadratic equation written as a sum into its product form (also called its factored form).

CHAPTER 8 In Chapter 4, you used a web to organize the connections you found between each of the different representations of lines. These connections enabled you to use any representation (such as a graph,

### Georgia Standards of Excellence Mathematics

Georgia Standards of Excellence Mathematics Standards GSE Algebra I K-12 Mathematics Introduction Georgia Mathematics focuses on actively engaging the student in the development of mathematical understanding

### Wentzville School District Algebra 1: Unit 8 Stage 1 Desired Results

Wentzville School District Algebra 1: Unit 8 Stage 1 Desired Results Unit Title: Quadratic Expressions & Equations Course: Algebra I Unit 8 - Quadratic Expressions & Equations Brief Summary of Unit: At

### Curriculum Alignment Project

Curriculum Alignment Project Math Unit Date: Unit Details Title: Solving Linear Equations Level: Developmental Algebra Team Members: Michael Guy Mathematics, Queensborough Community College, CUNY Jonathan

### Grades K-6. Correlated to the Common Core State Standards

Grades K-6 Correlated to the Common Core State Standards Kindergarten Standards for Mathematical Practice Common Core State Standards Standards for Mathematical Practice Kindergarten The Standards for

### DRAFT. Algebra 1 EOC Item Specifications

DRAFT Algebra 1 EOC Item Specifications The draft Florida Standards Assessment (FSA) Test Item Specifications (Specifications) are based upon the Florida Standards and the Florida Course Descriptions as

### Examples of Tasks from CCSS Edition Course 3, Unit 5

Examples of Tasks from CCSS Edition Course 3, Unit 5 Getting Started The tasks below are selected with the intent of presenting key ideas and skills. Not every answer is complete, so that teachers can

### Multiplying and Factoring Notes

Multiplying/Factoring 3 Multiplying and Factoring Notes I. Content: This lesson is going to focus on wrapping up and solidifying concepts that we have been discovering and working with. The students have

### Solving Equations with Algebra Tiles and Expression Mats

Solving Equations with Algebra Tiles and Epression Mats MCTM Spring Conference April 26 27, 2013 La Fher-Comfort, Math Teacher Westwood Middle School Spring Lake Park, MN All problems are from Core Connections

### Division with Whole Numbers and Decimals

Grade 5 Mathematics, Quarter 2, Unit 2.1 Division with Whole Numbers and Decimals Overview Number of Instructional Days: 15 (1 day = 45 60 minutes) Content to be Learned Divide multidigit whole numbers

### Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

### Unit 12: Introduction to Factoring. Learning Objectives 12.2

Unit 1 Table of Contents Unit 1: Introduction to Factoring Learning Objectives 1. Instructor Notes The Mathematics of Factoring Teaching Tips: Challenges and Approaches Additional Resources Instructor

### Problem of the Month: William s Polygons

Problem of the Month: William s Polygons The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common

### Prentice Hall Algebra 2 2011 Correlated to: Colorado P-12 Academic Standards for High School Mathematics, Adopted 12/2009

Content Area: Mathematics Grade Level Expectations: High School Standard: Number Sense, Properties, and Operations Understand the structure and properties of our number system. At their most basic level

### Describing and Solving for Area and Perimeter

Grade 3 Mathematics, Quarter 2,Unit 2.2 Describing and Solving for Area and Perimeter Overview Number of instruction days: 8-10 (1 day = 90 minutes) Content to Be Learned Distinguish between linear and

### Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c

Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c Lesson Outline BIG PICTURE Students will: manipulate algebraic expressions, as needed to understand quadratic relations; identify characteristics

### Infinite Algebra 1 supports the teaching of the Common Core State Standards listed below.

Infinite Algebra 1 Kuta Software LLC Common Core Alignment Software version 2.05 Last revised July 2015 Infinite Algebra 1 supports the teaching of the Common Core State Standards listed below. High School

### Chapter 12 Making Meaning in Algebra Examining Students Understandings and Misconceptions

Assessing Mathematical Proficiency MSRI Publications Volume 53, 2007 Chapter 12 Making Meaning in Algebra Examining Students Understandings and Misconceptions DAVID FOSTER Students often get confused and

### Nancy Rubino, PhD Senior Director, Office of Academic Initiatives The College Board

Nancy Rubino, PhD Senior Director, Office of Academic Initiatives The College Board Amy Charleroy Director of Arts, Office of Academic Initiatives The College Board Two approaches to alignment: Identifying

### Investigating Area Under a Curve

Mathematics Investigating Area Under a Curve About this Lesson This lesson is an introduction to areas bounded by functions and the x-axis on a given interval. Since the functions in the beginning of the

### Indiana Academic Standards Mathematics: Algebra I

Indiana Academic Standards Mathematics: Algebra I 1 I. Introduction The college and career ready Indiana Academic Standards for Mathematics: Algebra I are the result of a process designed to identify,

### Prentice Hall: Middle School Math, Course 1 2002 Correlated to: New York Mathematics Learning Standards (Intermediate)

New York Mathematics Learning Standards (Intermediate) Mathematical Reasoning Key Idea: Students use MATHEMATICAL REASONING to analyze mathematical situations, make conjectures, gather evidence, and construct

### Successful completion of Math 7 or Algebra Readiness along with teacher recommendation.

MODESTO CITY SCHOOLS COURSE OUTLINE COURSE TITLE:... Basic Algebra COURSE NUMBER:... RECOMMENDED GRADE LEVEL:... 8-11 ABILITY LEVEL:... Basic DURATION:... 1 year CREDIT:... 5.0 per semester MEETS GRADUATION

Beads Under the Cloud Intermediate/Middle School Grades Problem Solving Mathematics Formative Assessment Lesson Designed and revised by Kentucky Department of Education Mathematics Specialists Field-tested

### Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

### #1 Make sense of problems and persevere in solving them.

#1 Make sense of problems and persevere in solving them. 1. Make sense of problems and persevere in solving them. Interpret and make meaning of the problem looking for starting points. Analyze what is

### Algebra 2 Year-at-a-Glance Leander ISD 2007-08. 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks

Algebra 2 Year-at-a-Glance Leander ISD 2007-08 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks Essential Unit of Study 6 weeks 3 weeks 3 weeks 6 weeks 3 weeks 3 weeks

### Polynomials and Polynomial Functions

Algebra II, Quarter 1, Unit 1.4 Polynomials and Polynomial Functions Overview Number of instruction days: 13-15 (1 day = 53 minutes) Content to Be Learned Mathematical Practices to Be Integrated Prove

### Problem of the Month: Digging Dinosaurs

: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of

### Algebra II. Weeks 1-3 TEKS

Algebra II Pacing Guide Weeks 1-3: Equations and Inequalities: Solve Linear Equations, Solve Linear Inequalities, Solve Absolute Value Equations and Inequalities. Weeks 4-6: Linear Equations and Functions:

### Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)

Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify

### Prentice Hall Mathematics: Algebra 1 2007 Correlated to: Michigan Merit Curriculum for Algebra 1

STRAND 1: QUANTITATIVE LITERACY AND LOGIC STANDARD L1: REASONING ABOUT NUMBERS, SYSTEMS, AND QUANTITATIVE SITUATIONS Based on their knowledge of the properties of arithmetic, students understand and reason

### Algebra 1 Course Information

Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through

### CORE Assessment Module Module Overview

CORE Assessment Module Module Overview Content Area Mathematics Title Speedy Texting Grade Level Grade 7 Problem Type Performance Task Learning Goal Students will solve real-life and mathematical problems

### Absolute Value of Reasoning

About Illustrations: Illustrations of the Standards for Mathematical Practice (SMP) consist of several pieces, including a mathematics task, student dialogue, mathematical overview, teacher reflection

### Indiana Academic Standards Mathematics: Algebra II

Indiana Academic Standards Mathematics: Algebra II 1 I. Introduction The college and career ready Indiana Academic Standards for Mathematics: Algebra II are the result of a process designed to identify,

### Problem of the Month Pick a Pocket

The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of problems

### LAKE ELSINORE UNIFIED SCHOOL DISTRICT

LAKE ELSINORE UNIFIED SCHOOL DISTRICT Title: PLATO Algebra 1-Semester 2 Grade Level: 10-12 Department: Mathematics Credit: 5 Prerequisite: Letter grade of F and/or N/C in Algebra 1, Semester 2 Course Description:

### Task: Will and Latisha s Tile Problem Algebra I

Tennessee Department of Education Task: Will and Latisha s Tile Problem Algebra I In math class, Will and Latisha were challenged to create their own pattern with tiles. Latisha built the first three arrangements

### Overview. Essential Questions. Grade 4 Mathematics, Quarter 1, Unit 1.1 Applying Place Value Up to the 100,000s Place

to the 100,000s Place Overview Number of instruction days: 8 10 (1 day = 90 minutes) Content to Be Learned Compare whole numbers within 1,000,000 using >,

### Solving Quadratic Equations by Factoring

4.7 Solving Quadratic Equations by Factoring 4.7 OBJECTIVE 1. Solve quadratic equations by factoring The factoring techniques you have learned provide us with tools for solving equations that can be written

### Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary

Shape, Space, and Measurement- Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two- and three-dimensional shapes by demonstrating an understanding of:

### DELAWARE MATHEMATICS CONTENT STANDARDS GRADES 9-10. PAGE(S) WHERE TAUGHT (If submission is not a book, cite appropriate location(s))

Prentice Hall University of Chicago School Mathematics Project: Advanced Algebra 2002 Delaware Mathematics Content Standards (Grades 9-10) STANDARD #1 Students will develop their ability to SOLVE PROBLEMS

### Problem of the Month: On Balance

Problem of the Month: On Balance The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core

### Problem of the Month: Fair Games

Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:

### SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS

SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS Assume f ( x) is a nonconstant polynomial with real coefficients written in standard form. PART A: TECHNIQUES WE HAVE ALREADY SEEN Refer to: Notes 1.31

### Tennessee Department of Education

Tennessee Department of Education Task: Pool Patio Problem Algebra I A hotel is remodeling their grounds and plans to improve the area around a 20 foot by 40 foot rectangular pool. The owner wants to use

### Lines, Lines, Lines!!! Slope-Intercept Form ~ Lesson Plan

Lines, Lines, Lines!!! Slope-Intercept Form ~ Lesson Plan I. Topic: Slope-Intercept Form II. III. Goals and Objectives: A. The student will write an equation of a line given information about its graph.