# SAS/STAT. 9.2 User s Guide. Introduction to. Nonparametric Analysis. (Book Excerpt) SAS Documentation

Save this PDF as:

Size: px
Start display at page:

Download "SAS/STAT. 9.2 User s Guide. Introduction to. Nonparametric Analysis. (Book Excerpt) SAS Documentation"

## Transcription

1 SAS/STAT Introduction to 9.2 User s Guide Nonparametric Analysis (Book Excerpt) SAS Documentation

3 Chapter 16 Introduction to Nonparametric Analysis Contents Overview: Nonparametric Analysis Testing for Normality Comparing Distributions One-Sample Tests Two-Sample Tests Comparing Two Independent Samples Comparing Two Related Samples Tests for k Samples Comparing k Independent Samples Comparing k Dependent Samples Measures of Correlation and Associated Tests Obtaining Ranks Kernel Density Estimation References Overview: Nonparametric Analysis In statistical inference, or hypothesis testing, the traditional tests are called parametric tests because they depend on the specification of a probability distribution (such as the normal) except for a set of free parameters. Parametric tests are said to depend on distributional assumptions. Nonparametric tests, on the other hand, do not require any strict distributional assumptions. Even if the data are distributed normally, nonparametric methods are often almost as powerful as parametric methods. Many nonparametric methods analyze the ranks of a variable rather than the original values. Procedures such as PROC NPAR1WAY calculate the ranks for you and then perform appropriate nonparametric tests. However, there are some situations in which you use a procedure such as PROC RANK to calculate ranks and then use another procedure to perform the appropriate test. See the section Obtaining Ranks on page 297 for details. Although the NPAR1WAY procedure is specifically targeted for nonparametric analysis, many other procedures also perform nonparametric analyses. Some general references on nonparametrics include Hollander and Wolfe (1999), Conover (1999), Gibbons and Chakraborti (1992), Hettmansperger (1984), Randles and Wolfe (1979), and Lehmann (1975).

4 292 Chapter 16: Introduction to Nonparametric Analysis Testing for Normality Many parametric tests assume an underlying normal distribution for the population. If your data do not meet this assumption, you might prefer to use a nonparametric analysis. Base SAS software provides several tests for normality in the UNIVARIATE procedure. Depending on your sample size, PROC UNIVARIATE performs the Kolmogorov-Smirnov, Shapiro-Wilk, Anderson-Darling, and Cramér-von Mises tests. For more information, see the chapter The UNI- VARIATE Procedure in the Base SAS Procedures Guide. Comparing Distributions To test the hypothesis that two or more groups of observations have identical distributions, use the NPAR1WAY procedure, which provides empirical distribution function (EDF) statistics. The procedure calculates the Kolmogorov-Smirnov test, the Cramér-von Mises test, and, when the data are classified into only two samples, the Kuiper test. Exact p-values are available for the two-sample Kolmogorov-Smirnov test. To obtain these tests, use the EDF option in the PROC NPAR1WAY statement. See Chapter 62, The NPAR1WAY Procedure, for details. One-Sample Tests Base SAS software provides two one-sample tests in the UNIVARIATE procedure: a sign test and the Wilcoxon signed rank test. Both tests are designed for situations where you want to make an inference about the location (median) of a population. For example, suppose you want to test whether the median resting pulse rate of marathon runners differs from a specified value. By default, both of these tests examine the hypothesis that the median of the population from which the sample is drawn is equal to a specified value, which is zero by default. The Wilcoxon signed rank test requires that the distribution be symmetric; the sign test does not require this assumption. These tests can also be used for the case of two related samples; see the section Comparing Two Independent Samples on page 293 for more information. These two tests are automatically provided by the UNIVARIATE procedure. For details, formulas, and examples, see the chapter The UNIVARIATE Procedure in the Base SAS Procedures Guide.

6 294 Chapter 16: Introduction to Nonparametric Analysis Tests in the FREQ Procedure The FREQ procedure provides nonparametric tests that compare the location of two groups and that test for independence between two variables. The situation in which you want to compare the location of two groups of observations corresponds to a table with two rows. In this case, the asymptotic Wilcoxon rank sum test can be obtained by using SCORES=RANK in the TABLES statement and by looking at either of the following: the Mantel-Haenszel statistic in the list of tests for no association. This is labeled as Mantel Haenszel Chi-Square, and PROC FREQ displays the statistic, the degrees of freedom, and the p-value. To obtain this statistic, specify the CHISQ option in the TABLES statement. the CMH statistic 2 in the section on Cochran-Mantel-Haenszel statistics. PROC FREQ displays the statistic, the degrees of freedom, and the p-value. To obtain this statistic, specify the CMH2 option in the TABLES statement. When you test for independence, the question being answered is whether the two variables of interest are related in some way. For example, you might want to know if student scores on a standard test are related to whether students attended a public or private school. One way to think of this situation is to consider the data as a two-way table; the hypothesis of interest is whether the rows and columns are independent. In the preceding example, the groups of students would form the two rows, and the scores would form the columns. The special case of a two-category response (Pass/Fail) leads to a 2 2 table; the case of more than two categories for the response (A/B/C/D/F) leads to a 2 c table, where c is the number of response categories. For testing whether two variables are independent, PROC FREQ provides Fisher s exact test. For a 2 2 table, PROC FREQ automatically provides Fisher s exact test when you specify the CHISQ option in the TABLES statement. For a 2c table, use the FISHER option in the EXACT statement to obtain the test. See Chapter 35, The FREQ Procedure, for details, formulas, and examples of these tests. Comparing Two Related Samples SAS/STAT software provides the following nonparametric tests for comparing the locations of two related samples: Wilcoxon signed rank test sign test McNemar s test The first two tests are available in the UNIVARIATE procedure, and the last test is available in the FREQ procedure. When you perform these tests, your data should consist of pairs of measurements for a random sample from a single population. For example, suppose your data consist of SAT

7 Tests for k Samples 295 scores for students before and after attending a course on how to prepare for the SAT. The pairs of measurements are the scores before and after the course, and the students should be a random sample of students who attended the course. Your goal in analysis is to decide whether the median change in scores is significantly different from zero. Tests in the UNIVARIATE Procedure By default, PROC UNIVARIATE performs a Wilcoxon signed rank test and a sign test. To use these tests on two related samples, perform the following steps: 1. In the DATA step, create a new variable that contains the differences between the two related variables. 2. Run PROC UNIVARIATE, using the new variable in the VAR statement. See the chapter The UNIVARIATE Procedure in the Base SAS Procedures Guide for details and examples of these tests. Tests in the FREQ Procedure The FREQ procedure can be used to obtain McNemar s test, which is simply another special case of a Cochran-Mantel-Haenszel statistic (and also of the sign test). The AGREE option in the TABLES statement produces this test for 2 2 tables, and exact p-values are also available for this test. See Chapter 35, The FREQ Procedure, for more information. Tests for k Samples Comparing k Independent Samples One goal in comparing k independent samples is to determine whether the location parameters (medians) of the populations are different. Another goal is to determine whether the scale parameters for the populations are different. For example, suppose new employees are randomly assigned to one of three training programs. At the end of the program, the employees are given a standard test that provides a rating score of their job ability. The goal of analysis is to compare the median scores for the three groups and decide whether the differences are real or due to chance alone. To compare k independent samples, either the NPAR1WAY or the FREQ procedure provides a Kruskal-Wallis test. PROC NPAR1WAY also provides the Savage, median, and Van der Waerden (normal scores) tests. In addition, PROC NPAR1WAY produces the following tests for scale differences: Siegel-Tukey test, Ansari-Bradley test, Klotz test, and Mood test. PROC NPAR1WAY also

8 296 Chapter 16: Introduction to Nonparametric Analysis provides the Conover test, which can be used to test for differences in both location and scale. Note that you can obtain exact p-values for all of these tests. Additionally, you can specify the SCORES=DATA option to use the input data observations as scores. This enables you to produce a very wide variety of tests. You can construct any scores for your data with the DATA step, and then PROC NPAR1WAY computes the corresponding linear rank and one-way ANOVA tests. You can also analyze the raw data with the SCORES=DATA option; for two-sample data, this permutation test is known as Pitman s test. See Chapter 62, The NPAR1WAY Procedure, for details, formulas, and examples. To produce a Kruskal-Wallis test in the FREQ procedure, use SCORES=RANK and the CMH2 option in the TABLES statement. Then, look at the second Cochran-Mantel-Haenszel statistic (labeled Row Mean Scores Differ ) to obtain the Kruskal-Wallis test. The FREQ procedure also provides the Jonckheere-Terpstra test, which is more powerful than the Kruskal-Wallis test for comparing k samples against ordered alternatives. The exact test is also available. In addition, you can obtain a ridit analysis, developed by Bross (1958), by specifying SCORES=RIDIT or SCORES=MODRIDIT in the TABLES statement in the FREQ procedure. See Chapter 35, The FREQ Procedure, for more information. Comparing k Dependent Samples Friedman s test enables you to compare the locations of three or more dependent samples. You can obtain Friedman s chi-square with the FREQ procedure by using the CMH2 option and SCORES=RANK and by looking at the second CMH statistic in the output. For an example, see Chapter 35, The FREQ Procedure. This chapter also contains formulas and other details about the CMH statistics. For a discussion of how to use the RANK and GLM procedures to obtain Friedman s test, see Ipe (1987). Measures of Correlation and Associated Tests The CORR procedure in Base SAS software provides several nonparametric measures of association and associated tests. It computes Spearman s rank-order correlation, Kendall s tau-b, and Hoeffding s measure of dependence, and it provides tests for each of these statistics. PROC CORR also computes Spearman s partial rank-order correlation and Kendall s partial tau-b. Finally, PROC CORR computes Cronbach s coefficient alpha for raw and standardized variables. This statistic can be used to estimate the reliability coefficient. For a general discussion of correlations, formulas, interpretation, and examples, see the chapter The CORR Procedure in the Base SAS Procedures Guide.

9 Obtaining Ranks 297 The FREQ procedure also provides some nonparametric measures of association: gamma, Kendall s tau-b, Stuart s tau-c, Somer s D, and the Spearman rank correlation. The output includes the measure, the asymptotic standard error, confidence limits, and the asymptotic test that the measure equals zero. For the Spearman rank correlation, you can optionally request an exact p-value for the test that the correlation equals zero. For more information, see Chapter 35, The FREQ Procedure. Obtaining Ranks The primary procedure for obtaining ranks is the RANK procedure in Base SAS software. Note that the PRINQUAL and TRANSREG procedures also provide rank transformations. With all three of these procedures, you can create an output data set and use it as input to another SAS/STAT procedure or to the IML procedure. For more information, see the chapter The RANK Procedure in the Base SAS Procedures Guide. Also see Chapter 70, The PRINQUAL Procedure, and Chapter 90, The TRANSREG Procedure. In addition, you can specify SCORES=RANK in the TABLES statement in the FREQ procedure. PROC FREQ then uses ranks to perform the analyses requested and generates nonparametric analyses. For more discussion of the rank transform, see Iman and Conover (1979); Conover and Iman (1981); Hora and Conover (1984); Iman, Hora, and Conover (1984); Hora and Iman (1988); and Iman (1988). Kernel Density Estimation The KDE procedure performs either univariate or bivariate kernel density estimation. Statistical density estimation involves approximating a hypothesized probability density function from observed data. Kernel density estimation is a nonparametric technique for density estimation in which a known density function (the kernel) is averaged across the observed data points to create a smooth approximation. PROC KDE uses a Gaussian density as the kernel, and its assumed variance determines the smoothness of the resulting estimate. PROC KDE outputs the kernel density estimate to a SAS data set, which you can then use with other procedures for plotting or analysis. PROC KDE also computes a variety of common statistics, including estimates of the percentiles of the hypothesized probability density function. For more information, see Chapter 45, The KDE Procedure.

10 298 Chapter 16: Introduction to Nonparametric Analysis References Agresti, A. (2007), An Introduction to Categorical Data Analysis, Second Edition, New York: John Wiley & Sons. Bross, I. D. J. (1958), How to Use Ridit Analysis, Biometrics, 14, Conover, W. J. (1999), Practical Nonparametric Statistics, Third Edition, New York: John Wiley & Sons. Conover, W. J. and Iman, R. L. (1981), Rank Transformations as a Bridge between Parametric and Nonparametric Statistics, The American Statistician, 35, Gibbons, J. D. and Chakraborti, S. (1992), Nonparametric Statistical Inference, Third Edition, New York: Marcel Dekker. Hajek, J. (1969), A Course in Nonparametric Statistics, San Francisco: Holden-Day. Hettmansperger, T. P. (1984), Statistical Inference Based on Ranks, New York: John Wiley & Sons. Hollander, M. and Wolfe, D. A. (1999), Nonparametric Statistical Methods, Second Edition, New York: John Wiley & Sons. Hora, S. C. and Conover, W. J. (1984), The F Statistic in the Two-Way Layout with Rank-Score Transformed Data, Journal of the American Statistical Association, 79, Hora, S. C. and Iman, R. L. (1988), Asymptotic Relative Efficiencies of the Rank-Transformation Procedure in Randomized Complete Block Designs, Journal of the American Statistical Association, 83, Iman, R. L. (1988), The Analysis of Complete Blocks Using Methods Based on Ranks, Proceedings of the Thirteenth Annual SAS Users Group International Conference, Iman, R. L. and Conover, W. J. (1979), The Use of the Rank Transform in Regression, Technometrics, 21, Iman, R. L., Hora, S. C., and Conover, W. J. (1984), Comparison of Asymptotically Distribution- Free Procedures for the Analysis of Complete Blocks, Journal of the American Statistical Association, 79, Ipe, D. (1987), Performing the Friedman Test and the Associated Multiple Comparison Test Using PROC GLM, Proceedings of the Twelfth Annual SAS Users Group International Conference, Lehmann, E. L. (1975), Nonparametrics: Statistical Methods Based on Ranks, San Francisco: Holden-Day. Randles, R. H. and Wolfe, D. A. (1979), Introduction to the Theory of Nonparametric Statistics, New York: John Wiley & Sons.

11 Index comparing dependent samples (Introduction to Nonparametric Analysis), 294, 296 distributions (Introduction to Nonparametric Analysis), 292 independent samples (Introduction to Nonparametric Analysis), 293, 295 CORR procedure Introduction to Nonparametric Analysis, 296 UNIVARIATE procedure Introduction to Nonparametric Analysis, 292, 295 Wilcoxon signed rank test Introduction to Nonparametric Analysis, 295 empirical distribution function tests (Introduction to Nonparametric Analysis), 292 Fisher s exact test Introduction to Nonparametric Analysis, 294 FREQ procedure Introduction to Nonparametric Analysis, 294, 295, 297 SCORES=RANK (Introduction to Nonparametric Analysis), 294 Friedman s test Introduction to Nonparametric Analysis, 296 KDE procedure Introduction to Nonparametric Analysis, 297 Kruskal-Wallis test Introduction to Nonparametric Analysis, 296 McNemar s test Introduction to Nonparametric Analysis, 295 nonparametric measures of association Introduction to Nonparametric Analysis, 296 nonparametric tests Introduction to Nonparametric Analysis, 291 normality testing for (Introduction to Nonparametric Analysis), 292 NPAR1WAY procedure Introduction to Nonparametric Analysis, , 295 rank scores Introduction to Nonparametric Analysis, 294, 297 sign test Introduction to Nonparametric Analysis, 295

12

14

16

Chapter 12 Nonparametric Tests Chapter Table of Contents OVERVIEW...171 Testing for Normality...... 171 Comparing Distributions....171 ONE-SAMPLE TESTS...172 TWO-SAMPLE TESTS...172 ComparingTwoIndependentSamples...172

### 9.2 User s Guide SAS/STAT. Introduction. (Book Excerpt) SAS Documentation

SAS/STAT Introduction (Book Excerpt) 9.2 User s Guide SAS Documentation This document is an individual chapter from SAS/STAT 9.2 User s Guide. The correct bibliographic citation for the complete manual

### MEASURES OF LOCATION AND SPREAD

Paper TU04 An Overview of Non-parametric Tests in SAS : When, Why, and How Paul A. Pappas and Venita DePuy Durham, North Carolina, USA ABSTRACT Most commonly used statistical procedures are based on the

### Nonparametric Statistics

Nonparametric Statistics References Some good references for the topics in this course are 1. Higgins, James (2004), Introduction to Nonparametric Statistics 2. Hollander and Wolfe, (1999), Nonparametric

### Introduction to Power and Sample Size Analysis (Book Excerpt)

SAS/STAT 9.22 User s Guide Introduction to Power and Sample Size Analysis (Book Excerpt) SAS Documentation This document is an individual chapter from SAS/STAT 9.22 User s Guide. The correct bibliographic

### SPSS Tests for Versions 9 to 13

SPSS Tests for Versions 9 to 13 Chapter 2 Descriptive Statistic (including median) Choose Analyze Descriptive statistics Frequencies... Click on variable(s) then press to move to into Variable(s): list

### The general form of the PROC MEANS statement is

Describing Your Data Using PROC MEANS PROC MEANS can be used to compute various univariate descriptive statistics for specified variables including the number of observations, mean, standard deviation,

### How to choose a statistical test. Francisco J. Candido dos Reis DGO-FMRP University of São Paulo

How to choose a statistical test Francisco J. Candido dos Reis DGO-FMRP University of São Paulo Choosing the right test One of the most common queries in stats support is Which analysis should I use There

### Some Critical Information about SOME Statistical Tests and Measures of Correlation/Association

Some Critical Information about SOME Statistical Tests and Measures of Correlation/Association This information is adapted from and draws heavily on: Sheskin, David J. 2000. Handbook of Parametric and

### On Small Sample Properties of Permutation Tests: A Significance Test for Regression Models

On Small Sample Properties of Permutation Tests: A Significance Test for Regression Models Hisashi Tanizaki Graduate School of Economics Kobe University (tanizaki@kobe-u.ac.p) ABSTRACT In this paper we

### Tests of relationships between variables Chi-square Test Binomial Test Run Test for Randomness One-Sample Kolmogorov-Smirnov Test.

N. Uttam Singh, Aniruddha Roy & A. K. Tripathi ICAR Research Complex for NEH Region, Umiam, Meghalaya uttamba@gmail.com, aniruddhaubkv@gmail.com, aktripathi2020@yahoo.co.in Non Parametric Tests: Hands

### Chapter 16 Appendix. Nonparametric Tests with Excel, JMP, Minitab, SPSS, CrunchIt!, R, and TI-83-/84 Calculators

The Wilcoxon Rank Sum Test Chapter 16 Appendix Nonparametric Tests with Excel, JMP, Minitab, SPSS, CrunchIt!, R, and TI-83-/84 Calculators These nonparametric tests make no assumption about Normality.

Chapter 8 Hypothesis Tests Chapter Table of Contents Introduction...157 One-Sample t-test...158 Paired t-test...164 Two-Sample Test for Proportions...169 Two-Sample Test for Variances...172 Discussion

### SAS 3: Comparing Means

SAS 3: Comparing Means University of Guelph Revised June 2011 Table of Contents SAS Availability... 2 Goals of the workshop... 2 Data for SAS sessions... 3 Statistical Background... 4 T-test... 8 1. Independent

### Module 9: Nonparametric Tests. The Applied Research Center

Module 9: Nonparametric Tests The Applied Research Center Module 9 Overview } Nonparametric Tests } Parametric vs. Nonparametric Tests } Restrictions of Nonparametric Tests } One-Sample Chi-Square Test

### QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NON-PARAMETRIC TESTS

QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NON-PARAMETRIC TESTS This booklet contains lecture notes for the nonparametric work in the QM course. This booklet may be online at http://users.ox.ac.uk/~grafen/qmnotes/index.html.

### Chapter G08 Nonparametric Statistics

G08 Nonparametric Statistics Chapter G08 Nonparametric Statistics Contents 1 Scope of the Chapter 2 2 Background to the Problems 2 2.1 Parametric and Nonparametric Hypothesis Testing......................

### NAG C Library Chapter Introduction. g08 Nonparametric Statistics

g08 Nonparametric Statistics Introduction g08 NAG C Library Chapter Introduction g08 Nonparametric Statistics Contents 1 Scope of the Chapter... 2 2 Background to the Problems... 2 2.1 Parametric and Nonparametric

### Come scegliere un test statistico

Come scegliere un test statistico Estratto dal Capitolo 37 of Intuitive Biostatistics (ISBN 0-19-508607-4) by Harvey Motulsky. Copyright 1995 by Oxfd University Press Inc. (disponibile in Iinternet) Table

### Overview of Non-Parametric Statistics PRESENTER: ELAINE EISENBEISZ OWNER AND PRINCIPAL, OMEGA STATISTICS

Overview of Non-Parametric Statistics PRESENTER: ELAINE EISENBEISZ OWNER AND PRINCIPAL, OMEGA STATISTICS About Omega Statistics Private practice consultancy based in Southern California, Medical and Clinical

### UNIVERSITY OF NAIROBI

UNIVERSITY OF NAIROBI MASTERS IN PROJECT PLANNING AND MANAGEMENT NAME: SARU CAROLYNN ELIZABETH REGISTRATION NO: L50/61646/2013 COURSE CODE: LDP 603 COURSE TITLE: RESEARCH METHODS LECTURER: GAKUU CHRISTOPHER

### INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of

### The Statistics Tutor s

statstutor community project encouraging academics to share statistics support resources All stcp resources are released under a Creative Commons licence Stcp-marshallowen-7 The Statistics Tutor s www.statstutor.ac.uk

### Statistics for Clinical Trial SAS Programmers 1: paired t-test Kevin Lee, Covance Inc., Conshohocken, PA

Statistics for Clinical Trial SAS Programmers 1: paired t-test Kevin Lee, Covance Inc., Conshohocken, PA ABSTRACT This paper is intended for SAS programmers who are interested in understanding common statistical

### Nonparametric Statistics

Nonparametric Statistics J. Lozano University of Goettingen Department of Genetic Epidemiology Interdisciplinary PhD Program in Applied Statistics & Empirical Methods Graduate Seminar in Applied Statistics

### NCSS Statistical Software

Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the

Chapter 12 Sample Size and Power Calculations Chapter Table of Contents Introduction...253 Hypothesis Testing...255 Confidence Intervals...260 Equivalence Tests...264 One-Way ANOVA...269 Power Computation

### containing Kendall correlations; and the OUTH = option will create a data set containing Hoeffding statistics.

Getting Correlations Using PROC CORR Correlation analysis provides a method to measure the strength of a linear relationship between two numeric variables. PROC CORR can be used to compute Pearson product-moment

### The Statistics Tutor s Quick Guide to

statstutor community project encouraging academics to share statistics support resources All stcp resources are released under a Creative Commons licence The Statistics Tutor s Quick Guide to Stcp-marshallowen-7

### Statistical tests for SPSS

Statistical tests for SPSS Paolo Coletti A.Y. 2010/11 Free University of Bolzano Bozen Premise This book is a very quick, rough and fast description of statistical tests and their usage. It is explicitly

### Part 3. Comparing Groups. Chapter 7 Comparing Paired Groups 189. Chapter 8 Comparing Two Independent Groups 217

Part 3 Comparing Groups Chapter 7 Comparing Paired Groups 189 Chapter 8 Comparing Two Independent Groups 217 Chapter 9 Comparing More Than Two Groups 257 188 Elementary Statistics Using SAS Chapter 7 Comparing

### Difference tests (2): nonparametric

NST 1B Experimental Psychology Statistics practical 3 Difference tests (): nonparametric Rudolf Cardinal & Mike Aitken 10 / 11 February 005; Department of Experimental Psychology University of Cambridge

### SPSS Explore procedure

SPSS Explore procedure One useful function in SPSS is the Explore procedure, which will produce histograms, boxplots, stem-and-leaf plots and extensive descriptive statistics. To run the Explore procedure,

### Statistics: revision

NST 1B Experimental Psychology Statistics practical 5 Statistics: revision Rudolf Cardinal & Mike Aitken 3 / 4 May 2005 Department of Experimental Psychology University of Cambridge Slides at pobox.com/~rudolf/psychology

### CREIGHTON UNIVERSITY GRADUATE COLLEGE Fall Semester 2014. Biostatistics & Analysis of Clinical Data for Evidence-based Practice

CREIGHTON UNIVERSITY GRADUATE COLLEGE Fall Semester 2014 Course Number: Course Title: Credit Allocation: Placement: CTS 601 Biostatistics & Analysis of Clinical Data for Evidence-based Practice 3 semester

### Parametric and Nonparametric: Demystifying the Terms

Parametric and Nonparametric: Demystifying the Terms By Tanya Hoskin, a statistician in the Mayo Clinic Department of Health Sciences Research who provides consultations through the Mayo Clinic CTSA BERD

### Variables and Data A variable contains data about anything we measure. For example; age or gender of the participants or their score on a test.

The Analysis of Research Data The design of any project will determine what sort of statistical tests you should perform on your data and how successful the data analysis will be. For example if you decide

### Outline of Topics. Statistical Methods I. Types of Data. Descriptive Statistics

Statistical Methods I Tamekia L. Jones, Ph.D. (tjones@cog.ufl.edu) Research Assistant Professor Children s Oncology Group Statistics & Data Center Department of Biostatistics Colleges of Medicine and Public

### Chapter 21 Section D

Chapter 21 Section D Statistical Tests for Ordinal Data The rank-sum test. You can perform the rank-sum test in SPSS by selecting 2 Independent Samples from the Analyze/ Nonparametric Tests menu. The first

### NCSS Statistical Software

Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the

### Data Analysis. Lecture Empirical Model Building and Methods (Empirische Modellbildung und Methoden) SS Analysis of Experiments - Introduction

Data Analysis Lecture Empirical Model Building and Methods (Empirische Modellbildung und Methoden) Prof. Dr. Dr. h.c. Dieter Rombach Dr. Andreas Jedlitschka SS 2014 Analysis of Experiments - Introduction

### Analysing Questionnaires using Minitab (for SPSS queries contact -) Graham.Currell@uwe.ac.uk

Analysing Questionnaires using Minitab (for SPSS queries contact -) Graham.Currell@uwe.ac.uk Structure As a starting point it is useful to consider a basic questionnaire as containing three main sections:

### Hypothesis testing S2

Basic medical statistics for clinical and experimental research Hypothesis testing S2 Katarzyna Jóźwiak k.jozwiak@nki.nl 2nd November 2015 1/43 Introduction Point estimation: use a sample statistic to

### Inferential Statistics

Inferential Statistics Sampling and the normal distribution Z-scores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are

### 3. Nonparametric methods

3. Nonparametric methods If the probability distributions of the statistical variables are unknown or are not as required (e.g. normality assumption violated), then we may still apply nonparametric tests

### 496 STATISTICAL ANALYSIS OF CAUSE AND EFFECT

496 STATISTICAL ANALYSIS OF CAUSE AND EFFECT * Use a non-parametric technique. There are statistical methods, called non-parametric methods, that don t make any assumptions about the underlying distribution

### Course Description. Learning Objectives

STAT X400 (2 semester units in Statistics) Business, Technology & Engineering Technology & Information Management Quantitative Analysis & Analytics Course Description This course introduces students to

### STATISTICAL ANALYSIS WITH EXCEL COURSE OUTLINE

STATISTICAL ANALYSIS WITH EXCEL COURSE OUTLINE Perhaps Microsoft has taken pains to hide some of the most powerful tools in Excel. These add-ins tools work on top of Excel, extending its power and abilities

### SAS Software to Fit the Generalized Linear Model

SAS Software to Fit the Generalized Linear Model Gordon Johnston, SAS Institute Inc., Cary, NC Abstract In recent years, the class of generalized linear models has gained popularity as a statistical modeling

### EXST SAS Lab Lab #7: Hypothesis testing with Paired t-tests and One-tailed t-tests

EXST SAS Lab Lab #7: Hypothesis testing with Paired t-tests and One-tailed t-tests Objectives 1. Infile two external data sets (TXT files) 2. Calculate a difference between two variables in the data step

### Basic Statistical and Modeling Procedures Using SAS

Basic Statistical and Modeling Procedures Using SAS One-Sample Tests The statistical procedures illustrated in this handout use two datasets. The first, Pulse, has information collected in a classroom

### Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.

Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing

### dbstat 2.0

dbstat Statistical Package for Biostatistics Software Development 1990 Survival Analysis Program 1992 dbstat for DOS 1.0 1993 Database Statistics Made Easy (Book) 1996 dbstat for DOS 2.0 2000 dbstat for

### A Guide for a Selection of SPSS Functions

A Guide for a Selection of SPSS Functions IBM SPSS Statistics 19 Compiled by Beth Gaedy, Math Specialist, Viterbo University - 2012 Using documents prepared by Drs. Sheldon Lee, Marcus Saegrove, Jennifer

### Guido s Guide to PROC FREQ A Tutorial for Beginners Using the SAS System Joseph J. Guido, University of Rochester Medical Center, Rochester, NY

Guido s Guide to PROC FREQ A Tutorial for Beginners Using the SAS System Joseph J. Guido, University of Rochester Medical Center, Rochester, NY ABSTRACT PROC FREQ is an essential procedure within BASE

### An introduction to IBM SPSS Statistics

An introduction to IBM SPSS Statistics Contents 1 Introduction... 1 2 Entering your data... 2 3 Preparing your data for analysis... 10 4 Exploring your data: univariate analysis... 14 5 Generating descriptive

### CHAPTER 14 NONPARAMETRIC TESTS

CHAPTER 14 NONPARAMETRIC TESTS Everything that we have done up until now in statistics has relied heavily on one major fact: that our data is normally distributed. We have been able to make inferences

Chapter 32 Histograms and Bar Charts Chapter Table of Contents VARIABLES...470 METHOD...471 OUTPUT...472 REFERENCES...474 467 Part 3. Introduction 468 Chapter 32 Histograms and Bar Charts Bar charts are

### Comparing two groups (t tests...)

Page 1 of 33 Comparing two groups (t tests...) You've measured a variable in two groups, and the means (and medians) are distinct. Is that due to chance? Or does it tell you the two groups are really different?

### Rank-Based Non-Parametric Tests

Rank-Based Non-Parametric Tests Reminder: Student Instructional Rating Surveys You have until May 8 th to fill out the student instructional rating surveys at https://sakai.rutgers.edu/portal/site/sirs

### II. DISTRIBUTIONS distribution normal distribution. standard scores

Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,

### Applications of Intermediate/Advanced Statistics in Institutional Research

Applications of Intermediate/Advanced Statistics in Institutional Research Edited by Mary Ann Coughlin THE ASSOCIATION FOR INSTITUTIONAL RESEARCH Number Sixteen Resources in Institional Research 2005 Association

### EPS 625 INTERMEDIATE STATISTICS FRIEDMAN TEST

EPS 625 INTERMEDIATE STATISTICS The Friedman test is an extension of the Wilcoxon test. The Wilcoxon test can be applied to repeated-measures data if participants are assessed on two occasions or conditions

### Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1)

Spring 204 Class 9: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the

### 6 Comparison of differences between 2 groups: Student s T-test, Mann-Whitney U-Test, Paired Samples T-test and Wilcoxon Test

6 Comparison of differences between 2 groups: Student s T-test, Mann-Whitney U-Test, Paired Samples T-test and Wilcoxon Test Having finally arrived at the bottom of our decision tree, we are now going

### SPSS: Descriptive and Inferential Statistics. For Windows

For Windows August 2012 Table of Contents Section 1: Summarizing Data...3 1.1 Descriptive Statistics...3 Section 2: Inferential Statistics... 10 2.1 Chi-Square Test... 10 2.2 T tests... 11 2.3 Correlation...

### FREQ-OUT: An Applied Presentation of the Options and Output of the FREQ Procedure. Pamela Landsman MPH, Merck & Co., Inc, West Point, PA

FREQ-OUT: An Applied Presentation of the Options and Output of the FREQ Procedure Pamela Landsman MPH, Merck & Co., Inc, West Point, PA Abstract: Have you ever been told compare the rate of death by gender,

### Study Guide for the Final Exam

Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make

### SPSS Modules Features Statistics Premium

SPSS Modules Features Statistics Premium Core System Functionality (included in every license) Data access and management Data Prep features: Define Variable properties tool; copy data properties tool,

BIOSTATISTICS QUIZ ANSWERS 1. When you read scientific literature, do you know whether the statistical tests that were used were appropriate and why they were used? a. Always b. Mostly c. Rarely d. Never

### Analyzing Research Data Using Excel

Analyzing Research Data Using Excel Fraser Health Authority, 2012 The Fraser Health Authority ( FH ) authorizes the use, reproduction and/or modification of this publication for purposes other than commercial

### Types of Data, Descriptive Statistics, and Statistical Tests for Nominal Data. Patrick F. Smith, Pharm.D. University at Buffalo Buffalo, New York

Types of Data, Descriptive Statistics, and Statistical Tests for Nominal Data Patrick F. Smith, Pharm.D. University at Buffalo Buffalo, New York . NONPARAMETRIC STATISTICS I. DEFINITIONS A. Parametric

### Descriptive Statistics

Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

### Supplement on the Kruskal-Wallis test. So what do you do if you don t meet the assumptions of an ANOVA?

Supplement on the Kruskal-Wallis test So what do you do if you don t meet the assumptions of an ANOVA? {There are other ways of dealing with things like unequal variances and non-normal data, but we won

### Post-hoc comparisons & two-way analysis of variance. Two-way ANOVA, II. Post-hoc testing for main effects. Post-hoc testing 9.

Two-way ANOVA, II Post-hoc comparisons & two-way analysis of variance 9.7 4/9/4 Post-hoc testing As before, you can perform post-hoc tests whenever there s a significant F But don t bother if it s a main

### Research Methods 1 Handouts, Graham Hole,COGS - version 1.0, September 2000: Page 1:

Research Methods 1 Handouts, Graham Hole,COGS - version 1.0, September 000: Page 1: NON-PARAMETRIC TESTS: What are non-parametric tests? Statistical tests fall into two kinds: parametric tests assume that

### First-year Statistics for Psychology Students Through Worked Examples. 3. Analysis of Variance

First-year Statistics for Psychology Students Through Worked Examples 3. Analysis of Variance by Charles McCreery, D.Phil Formerly Lecturer in Experimental Psychology Magdalen College Oxford Copyright

### Multivariate Analysis of Ecological Data

Multivariate Analysis of Ecological Data MICHAEL GREENACRE Professor of Statistics at the Pompeu Fabra University in Barcelona, Spain RAUL PRIMICERIO Associate Professor of Ecology, Evolutionary Biology

### Handbook of Parametric and Nonparametric Statistical Procedures

Fourth Edition Handbook of Parametric and Nonparametric Statistical Procedures David J. Sheskin Chapman & Hall/CRC Taylor & Francis Group Boca Raton london New York Chapman & Hall/CRC is an imprint of

### Statistics and research

Statistics and research Usaneya Perngparn Chitlada Areesantichai Drug Dependence Research Center (WHOCC for Research and Training in Drug Dependence) College of Public Health Sciences Chulolongkorn University,

### Quantitative Data Analysis: Choosing a statistical test Prepared by the Office of Planning, Assessment, Research and Quality

Quantitative Data Analysis: Choosing a statistical test Prepared by the Office of Planning, Assessment, Research and Quality 1 To help choose which type of quantitative data analysis to use either before

### HOW TO USE MINITAB: INTRODUCTION AND BASICS. Noelle M. Richard 08/27/14

HOW TO USE MINITAB: INTRODUCTION AND BASICS 1 Noelle M. Richard 08/27/14 CONTENTS * Click on the links to jump to that page in the presentation. * 1. Minitab Environment 2. Uploading Data to Minitab/Saving

### We know from STAT.1030 that the relevant test statistic for equality of proportions is:

2. Chi 2 -tests for equality of proportions Introduction: Two Samples Consider comparing the sample proportions p 1 and p 2 in independent random samples of size n 1 and n 2 out of two populations which

### Non-parametric Tests Using SPSS

Non-parametric Tests Using SPSS Statistical Package for Social Sciences Jinlin Fu January 2016 Contact Medical Research Consultancy Studio Australia http://www.mrcsau.com.au Contents 1 INTRODUCTION...

### MTH 140 Statistics Videos

MTH 140 Statistics Videos Chapter 1 Picturing Distributions with Graphs Individuals and Variables Categorical Variables: Pie Charts and Bar Graphs Categorical Variables: Pie Charts and Bar Graphs Quantitative

### Statistical Significance and Bivariate Tests

Statistical Significance and Bivariate Tests BUS 735: Business Decision Making and Research 1 1.1 Goals Goals Specific goals: Re-familiarize ourselves with basic statistics ideas: sampling distributions,

### Analysis of numerical data S4

Basic medical statistics for clinical and experimental research Analysis of numerical data S4 Katarzyna Jóźwiak k.jozwiak@nki.nl 3rd November 2015 1/42 Hypothesis tests: numerical and ordinal data 1 group:

### Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics

Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGraw-Hill/Irwin, 2010, ISBN: 9780077384470 [This

### Permutation tests are similar to rank tests, except that we use the observations directly without replacing them by ranks.

Chapter 2 Permutation Tests Permutation tests are similar to rank tests, except that we use the observations directly without replacing them by ranks. 2.1 The two-sample location problem Assumptions: x

### ANSWERS TO EXERCISES AND REVIEW QUESTIONS

ANSWERS TO EXERCISES AND REVIEW QUESTIONS PART FIVE: STATISTICAL TECHNIQUES TO COMPARE GROUPS Before attempting these questions read through the introduction to Part Five and Chapters 16-21 of the SPSS

### Statistical Analysis The First Steps Jennifer L. Waller Medical College of Georgia, Augusta, Georgia

Statistical Analysis The First Steps Jennifer L. Waller Medical College of Georgia, Augusta, Georgia ABSTRACT For both statisticians and non-statisticians, knowing what data look like before more rigorous

### Permutation Tests for Comparing Two Populations

Permutation Tests for Comparing Two Populations Ferry Butar Butar, Ph.D. Jae-Wan Park Abstract Permutation tests for comparing two populations could be widely used in practice because of flexibility of

### Using SPSS version 14 Joel Elliott, Jennifer Burnaford, Stacey Weiss

Using SPSS version 14 Joel Elliott, Jennifer Burnaford, Stacey Weiss SPSS is a program that is very easy to learn and is also very powerful. This manual is designed to introduce you to the program however,

### Nonparametric Two-Sample Tests. Nonparametric Tests. Sign Test

Nonparametric Two-Sample Tests Sign test Mann-Whitney U-test (a.k.a. Wilcoxon two-sample test) Kolmogorov-Smirnov Test Wilcoxon Signed-Rank Test Tukey-Duckworth Test 1 Nonparametric Tests Recall, nonparametric

### Statistical Modeling Using SAS

Statistical Modeling Using SAS Xiangming Fang Department of Biostatistics East Carolina University SAS Code Workshop Series 2012 Xiangming Fang (Department of Biostatistics) Statistical Modeling Using

### PROC FREQ IS MORE THAN JUST SIMPLY GENERATING A 2-BY-2 TABLE

PROC FREQ IS MORE THAN JUST SIMPLY GENERATING A 2-BY-2 TABLE Wuchen Zhao, University of Southern California, Los Angeles, CA ABSTRACT The FREQ procedure is one of the most commonly-used statistical procedures

### IBM SPSS Exact Tests. Cyrus R. Mehta and Nitin R. Patel

IBM SPSS Exact Tests Cyrus R. Mehta and Nitin R. Patel Note: Before using this information and the product it supports, read the general information under Notices on page 213. This edition applies to IBM