Solutions for Practice problems on proofs

Size: px
Start display at page:

Download "Solutions for Practice problems on proofs"

Transcription

1 Solutions for Practice problems on proofs Definition: (even) An integer n Z is even if and only if n = 2m for some number m Z. Definition: (odd) An integer n Z is odd if and only if n = 2m + 1 for some number m Z. Definition: (perfect square) A number n N is a perfect square if and only if n = m 2 for some m N. Definition: (power of 5) A number n N is a power of 5 if and only if n = 5 k for some k N. 1. (a) n, m Z If m and n are odd integers, then m + n is even. Proof: We use a direct proof. Let m, n be odd integers, i.e. m = 2k + 1 and n = 2k + 1 for some integers k, k. Then m+n = 2k +1+2k +1 = 2(k +k +1). Since k, k are integers, so is k + k + 1, which means m + n = 2c for some integer c. Therefore m + n is even. (b) n, m Z If the product of n and m is odd, then both m, n are odd. Proof: We prove the contrapositive of the statement, i.e., we prove that if either m or n is an even integer then the product nm is even. Let m be even (The case in which n is even is identical). That is m = 2c for some integer c. Then mn = 2cn. Since c and n are integers, so is cn, which implies mn is even. Therefore, n, m Z If the product of n and m is odd, then both m, n are odd. (c) n, m N If n and m are powers of 5 then n + m is not a power of 5. For the proof of this statement, we take the following lemma for granted Lemma 1: ( k N)5 k = 2c + 1 for some integer c, i.e. every power of 5 is odd. (One can prove this statement by induction. We leave the proof as an exercise.) Remark : In the exam, we will clearly specify what statements you can take for granted in your proofs. A general rule is that you can assume any fact you saw in high school. Of course the exception is that you cannot take for granted the statement you are asked to prove. Proof of (c): We use a direct proof: Let n and m be powers of 5, it follows from the lemma that n and m are odd integers. By part 1

2 (a), this implies n + m is even. Since every power of 5 is odd, n + m cannot be a power of 5. Therefore, n, m N If n and m are powers of 5 then n + m is not a power of 5. (d) For all natural numbers n > 0, If n is a perfect square, then n + 1 is not a perfect square. (Note that there was a typo in the original statement of this problem. The statement claims that the implication is true for every natural number n. This is not true because for n = 0, both n and n + 1 are perfect squares.) We take the following lemma for granted. Lemma 2: a, b N, If a 2 > b 2 then a > b. (Ex: Give a proof by contrapositive of this statement.) Proof of (d): We give a direct proof of this implication. Let n > 0 be a perfect square. That is n = m 2 for some m N. Since n + 1 > n, we have n + 1 > n (by lemma 2). i.e., n + 1 > m. Now, consider (m + 1) 2 = m 2 + 2m + 1. Since n > 0, and n = m 2, m must be greater than 0. Which implies (m 2 +2m+1) > (m 2 +1), i.e. (m 2 +2m+1) > (n+1). Written differently, we have (m+1) 2 > n+1, it follows (by lemma 2) that We have shown that m + 1 > n + 1. m + 1 > n + 1 > m. Since m is an integer, n + 1 is not an integer. This tells us that n + 1 is not a perfect square. Therefore, For all natural numbers n > 0, If n is a perfect square, then n + 1 is not a perfect square. (e) n N If n has a rational square root, then the square root of n is in fact a natural number. (You may assume that if a doesn t divide b then a 2 doesn t divide b 2.) Here by square root, we are referring to the non-negative square root. Proof : We give a proof by contradiction. Assume that statement (e) is not true. That is, assume that there is a natural number n such that n is a rational number but not a natural number. By our assumption n = p/q for some natural numbers p and q > 0. Also, n is not a natural number, which implies q doesn t divide p. Since q doesn t divide p, q 2 doesn t divide p 2. This implies n = p 2 /q 2 is not a natural number. This is a contradiction. Which tells us that our assumption was false. Therefore, n N If n has a rational square root, then the square root of n is in fact a natural number. 2

3 2. (a) Proof: We give a proof by induction. We prove the statement ( n N)P (n) where P (n) is the statement: n 2 = n(n + 1)(2n + 1)/. Base case: We first look at the base case P (0). Note that in P (0), the left hand side is the empty sum 0, and the right hand side is 0(0 + 1)( )/ = 0. So, the base case holds. Inductive step: Now we argue that the inductive step is valid. We prove the implication P (k) P (k + 1) for any k using a direct proof. Let k N and assume that P (k) holds, that is, assume that k 2 = k(k + 1)(2k + 1)/. Consider the sum k 2 + (k + 1) 2. The sum of the first k terms is k(k + 1)(2k + 1)/ by the induction hypothesis. So, we have k 2 + (k + 1) 2 = k(k + 1)(2k + 1)/ + (k + 1) 2. k(k+1)(2k+1)/+(k+1) 2 = (k + 1)(2k 2 + 7k + ) k(k + 1)(2k + 1) + (k + 1)2 = (k + 1)(k + 2)(2k + 3). This shows that k 2 + (k + 1) 2 = (k+1)(k+2)(2k+3), that is P (k + 1) is true. This completes the inductive step. It follows by induction that n N n 2 = n(n + 1)(2n + 1)/. (b) Proof : We give a proof by induction. We prove the statement ( n 5)P (n) where P (n) is the statement: 2 n > n 2 Base case: We first look at the base case P (5). Note that 2 5 = 32 and 5 2 = 25. Therefore, 2 5 > 5 2. So, the base case holds. Inductive step: Now we argue that the inductive step is valid. We prove the implication P (k) P (k + 1) for any k 5 using a direct proof. Let k 5 and assume that P (k) holds, that is, assume that 2 k > k 2. 2 k+1 = 2 2 k > 2 k 2. The final inequality follows from the induction hypothesis. Now, Since k > 4, we have k 2 > 4 k > 2k + k > 2k + 1. Therefore, 2 k 2 > k 2 + 2k + 1, i.e., 2 k 2 > (k + 1) 2. Which implies, 2 k+1 = 2 2 k > 2 k 2 > (k + 1) 2. That is P (k + 1) is true. This completes the induction step. Therefore by induction n > 4 2 n > n 2. = (k + 1)(k(2k + 1) + (k + 1)) 3

4 (c) Proof : We give a proof by induction. We prove the statement ( n 3)P (n) where P (n) is the statement: n 2 7n Base case: We first look at the base case P (3). Note that = 2 > 0. So, the base case holds. Inductive step : Now we argue that the inductive step is valid. We prove the implication P (k) P (k + 1) for any k 3 using a direct proof. Let k 3 and assume that P (k) holds, that is, assume that k 2 7k Consider (k + 1) 2 7(k + 1) (k + 1) 2 7(k + 1) + 12 = k 2 + 2k + 1 7k = k 2 5k + = (k 2 7k + 12) + (2k ). By the induction hypothesis (k 2 7k + 12) 0 and since k 3, the second term (2k ) is also non-negative. Thus, (k + 1) 2 7(k + 1) which is P (k + 1). This completes the inductive step. Therefore, n 3 n 2 7n + 12 is non-negative. (d) Which amounts of money can be formed using just two dollar and five dollar bills? Prove your answers using induction. Solution: 2 dollars can be formed, 1 and 3 dollars cannot be formed, and all amounts greater than 3 can be formed. Let s prove the final statement via induction. Lemma 3: ( n 4) n can be expressed as a combination of 2 and 5 dollar bills. Proof of Lemma 3: The proof is by induction. Let P (n) be the statement n = a 2 + b 5 for some a, b N. We want to prove ( n 4)P (n) Base case: We need to argue that P (4) is true. 4 can be written as Therefore, P (4) is true. Inductive step: In the induction step we prove that P (k) P (k + 1) holds for any k 4 using a direct proof. Assume that for some k 4, P (k) is true. That is assume k can be written as k = a 2 + b 5 for some a, b N. We now show that P (k + 1) is true using the induction hypothesis. We do so by considering 2 cases: Case 1: b = 0. That is k = a Now, k + 1 = a So, k + 1 = (a 2) = (a 2) Therefore k + 1 can be written as a 2 + b 5 where a = (a 2) and b = 1. Since, k 4 and k = a 2, a must greater than or equal to 2, which implies that (a 2) 0. Thus, a, b are both natural numbers. Therefore, P (k + 1) is true. Case 2: b 1. Now, k + 1 = a 2 + b (by the induction hypothesis.) 4

5 So, k + 1 = a 2 + (b 1) = a 2 + (b 1) 5 + = (a+3) 2+(b 1) 5. Therefore k+1 can be written as a 2+b 5 where a = (a + 3) and b = (b 1). Since, b 1 and a N, we have b and a are natural numbers. Which implie P (k + 1). Since in both cases P (k + 1) holds, we have that ( k 4)P (k) P (k + 1). This completes the induction step. Therefore, by induction all amounts greater than 3 can be formed as a combination of 2 and 5 dollar bills. (e) Proof : The proof is by strong induction. Let P (n) be the statement: If n is of the form 4k+1 for some integer k, then the second player has a winning strategy; othewise the first player has a winning strategy. We show that ( n 1) P (n). Our base case is P (1). As we argued above, then the first player has a winning strategy, which is consistent with the fact that 1 can be written as 1 = For the strong induction step, we assume that P (m) holds for all integers m in the range 1 m n, and we want to argue that P (n + 1) holds. Let us call the first player for the game with n + 1 sticks Alice, and the second player Bob. We consider four cases. i. Case n+1 is of the form 4k. If Alice picks 3 sticks, Bob then sees 4(k 1) + 1 sticks, so Alice has a winning strategy, consistent with our conjecture P (n + 1). ii. Case n + 1 is of the form 4k + 1. Since n 1, we know that n Alice can then chose to remove 1, 2, or 3 sticks. If she removes one stick, the remaining number of sticks is n = 4k. By the strong induction hypothesis, the player who plays first at this point has a winning strategy. That player is Bob, so Bob has a winning strategy. Similarly, if Alice removes two sticks, the remaining number is 4(k 1) + 3. Again, Bob has a winning strategy, by the same reasoning. Similarly, if Alice removes 3 sticks, Bob has a winning strategy. So, however Alice moves, Bob has a winning strategy for the subsequent rounds. So, Bob has a winning strategy. This proves our conjecture P (n + 1) in this case. iii. Case n + 1 is of the form n + 1 = 4k + 2. If Alice removes 1 stick, Bob is left with 4k + 1, so Alice has a winning strategy, consistent with our conjecture P (n + 1). iv. Case n + 1 is of the form 4k + 3. If Alice picks 2 sticks, Bob is left with 4k +1 sticks, so Alice has a winning strategy, consistent with P (n + 1). So in any case, P (n + 1) holds, so by strong induction we concluce that P (n) holds for all integers n The key observation is that the square of a natural number can be written as a product of an even number of (not necessarily distinct) primes. The quantity on the left hand side is a product of an odd number of primes, while the quantity on the right hand side is a product of an even number of primes. Since every number has a unique prime factorization, the equality cannot hold. This is a contradiction. 5

MATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers.

MATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers. MATHEMATICAL INDUCTION MIGUEL A LERMA (Last updated: February 8, 003) Mathematical Induction This is a powerful method to prove properties of positive integers Principle of Mathematical Induction Let P

More information

CS 103X: Discrete Structures Homework Assignment 3 Solutions

CS 103X: Discrete Structures Homework Assignment 3 Solutions CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On well-ordering and induction: (a) Prove the induction principle from the well-ordering principle. (b) Prove the well-ordering

More information

Sample Induction Proofs

Sample Induction Proofs Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand Sample Induction Proofs Below are model solutions to some of the practice problems on the induction worksheets. The solutions given

More information

MATH 289 PROBLEM SET 4: NUMBER THEORY

MATH 289 PROBLEM SET 4: NUMBER THEORY MATH 289 PROBLEM SET 4: NUMBER THEORY 1. The greatest common divisor If d and n are integers, then we say that d divides n if and only if there exists an integer q such that n = qd. Notice that if d divides

More information

Basic Proof Techniques

Basic Proof Techniques Basic Proof Techniques David Ferry dsf43@truman.edu September 13, 010 1 Four Fundamental Proof Techniques When one wishes to prove the statement P Q there are four fundamental approaches. This document

More information

Math 55: Discrete Mathematics

Math 55: Discrete Mathematics Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 5, due Wednesday, February 22 5.1.4 Let P (n) be the statement that 1 3 + 2 3 + + n 3 = (n(n + 1)/2) 2 for the positive integer n. a) What

More information

k, then n = p2α 1 1 pα k

k, then n = p2α 1 1 pα k Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

More information

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +... 6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence

More information

Homework until Test #2

Homework until Test #2 MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such

More information

Solutions to Homework 6 Mathematics 503 Foundations of Mathematics Spring 2014

Solutions to Homework 6 Mathematics 503 Foundations of Mathematics Spring 2014 Solutions to Homework 6 Mathematics 503 Foundations of Mathematics Spring 2014 3.4: 1. If m is any integer, then m(m + 1) = m 2 + m is the product of m and its successor. That it to say, m 2 + m is the

More information

Introduction. Appendix D Mathematical Induction D1

Introduction. Appendix D Mathematical Induction D1 Appendix D Mathematical Induction D D Mathematical Induction Use mathematical induction to prove a formula. Find a sum of powers of integers. Find a formula for a finite sum. Use finite differences to

More information

3. Mathematical Induction

3. Mathematical Induction 3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

More information

SECTION 10-2 Mathematical Induction

SECTION 10-2 Mathematical Induction 73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms

More information

The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.

The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors. The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,

More information

SCORE SETS IN ORIENTED GRAPHS

SCORE SETS IN ORIENTED GRAPHS Applicable Analysis and Discrete Mathematics, 2 (2008), 107 113. Available electronically at http://pefmath.etf.bg.ac.yu SCORE SETS IN ORIENTED GRAPHS S. Pirzada, T. A. Naikoo The score of a vertex v in

More information

AN ANALYSIS OF A WAR-LIKE CARD GAME. Introduction

AN ANALYSIS OF A WAR-LIKE CARD GAME. Introduction AN ANALYSIS OF A WAR-LIKE CARD GAME BORIS ALEXEEV AND JACOB TSIMERMAN Abstract. In his book Mathematical Mind-Benders, Peter Winkler poses the following open problem, originally due to the first author:

More information

WRITING PROOFS. Christopher Heil Georgia Institute of Technology

WRITING PROOFS. Christopher Heil Georgia Institute of Technology WRITING PROOFS Christopher Heil Georgia Institute of Technology A theorem is just a statement of fact A proof of the theorem is a logical explanation of why the theorem is true Many theorems have this

More information

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12 CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

More information

Mathematical Induction. Lecture 10-11

Mathematical Induction. Lecture 10-11 Mathematical Induction Lecture 10-11 Menu Mathematical Induction Strong Induction Recursive Definitions Structural Induction Climbing an Infinite Ladder Suppose we have an infinite ladder: 1. We can reach

More information

MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

More information

Chapter 7 - Roots, Radicals, and Complex Numbers

Chapter 7 - Roots, Radicals, and Complex Numbers Math 233 - Spring 2009 Chapter 7 - Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the

More information

6.2 Permutations continued

6.2 Permutations continued 6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of

More information

arxiv:1112.0829v1 [math.pr] 5 Dec 2011

arxiv:1112.0829v1 [math.pr] 5 Dec 2011 How Not to Win a Million Dollars: A Counterexample to a Conjecture of L. Breiman Thomas P. Hayes arxiv:1112.0829v1 [math.pr] 5 Dec 2011 Abstract Consider a gambling game in which we are allowed to repeatedly

More information

Mathematical Induction

Mathematical Induction Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,

More information

Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.

Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook. Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole

More information

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)! Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

More information

Triangle deletion. Ernie Croot. February 3, 2010

Triangle deletion. Ernie Croot. February 3, 2010 Triangle deletion Ernie Croot February 3, 2010 1 Introduction The purpose of this note is to give an intuitive outline of the triangle deletion theorem of Ruzsa and Szemerédi, which says that if G = (V,

More information

Prime Time: Homework Examples from ACE

Prime Time: Homework Examples from ACE Prime Time: Homework Examples from ACE Investigation 1: Building on Factors and Multiples, ACE #8, 28 Investigation 2: Common Multiples and Common Factors, ACE #11, 16, 17, 28 Investigation 3: Factorizations:

More information

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples

More information

Discrete Math in Computer Science Homework 7 Solutions (Max Points: 80)

Discrete Math in Computer Science Homework 7 Solutions (Max Points: 80) Discrete Math in Computer Science Homework 7 Solutions (Max Points: 80) CS 30, Winter 2016 by Prasad Jayanti 1. (10 points) Here is the famous Monty Hall Puzzle. Suppose you are on a game show, and you

More information

Every Positive Integer is the Sum of Four Squares! (and other exciting problems)

Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Sophex University of Texas at Austin October 18th, 00 Matilde N. Lalín 1. Lagrange s Theorem Theorem 1 Every positive integer

More information

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

SYSTEMS OF PYTHAGOREAN TRIPLES. Acknowledgements. I would like to thank Professor Laura Schueller for advising and guiding me

SYSTEMS OF PYTHAGOREAN TRIPLES. Acknowledgements. I would like to thank Professor Laura Schueller for advising and guiding me SYSTEMS OF PYTHAGOREAN TRIPLES CHRISTOPHER TOBIN-CAMPBELL Abstract. This paper explores systems of Pythagorean triples. It describes the generating formulas for primitive Pythagorean triples, determines

More information

NIM with Cash. Abstract. loses. This game has been well studied. For example, it is known that for NIM(1, 2, 3; n)

NIM with Cash. Abstract. loses. This game has been well studied. For example, it is known that for NIM(1, 2, 3; n) NIM with Cash William Gasarch Univ. of MD at College Park John Purtilo Univ. of MD at College Park Abstract NIM(a 1,..., a k ; n) is a -player game where initially there are n stones on the board and the

More information

Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may

Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may Number Theory Divisibility and Primes Definition. If a and b are integers and there is some integer c such that a = b c, then we say that b divides a or is a factor or divisor of a and write b a. Definition

More information

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by A. P. HiLLMAN University of New Mexico, Albuquerque, NM 87131

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by A. P. HiLLMAN University of New Mexico, Albuquerque, NM 87131 ELEMENTARY PROBLEMS AND SOLUTIONS Edited by A. P. HiLLMAN University of New Mexico, Albuquerque, NM 87131 Send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS to PROFESSOR A. P. HILLMAN,

More information

WOLLONGONG COLLEGE AUSTRALIA. Diploma in Information Technology

WOLLONGONG COLLEGE AUSTRALIA. Diploma in Information Technology First Name: Family Name: Student Number: Class/Tutorial: WOLLONGONG COLLEGE AUSTRALIA A College of the University of Wollongong Diploma in Information Technology Mid-Session Test Summer Session 008-00

More information

MATH 22. THE FUNDAMENTAL THEOREM of ARITHMETIC. Lecture R: 10/30/2003

MATH 22. THE FUNDAMENTAL THEOREM of ARITHMETIC. Lecture R: 10/30/2003 MATH 22 Lecture R: 10/30/2003 THE FUNDAMENTAL THEOREM of ARITHMETIC You must remember this, A kiss is still a kiss, A sigh is just a sigh; The fundamental things apply, As time goes by. Herman Hupfeld

More information

SIMPLIFYING SQUARE ROOTS EXAMPLES

SIMPLIFYING SQUARE ROOTS EXAMPLES SIMPLIFYING SQUARE ROOTS EXAMPLES 1. Definition of a simplified form for a square root The square root of a positive integer is in simplest form if the radicand has no perfect square factor other than

More information

The last three chapters introduced three major proof techniques: direct,

The last three chapters introduced three major proof techniques: direct, CHAPTER 7 Proving Non-Conditional Statements The last three chapters introduced three major proof techniques: direct, contrapositive and contradiction. These three techniques are used to prove statements

More information

Handout #1: Mathematical Reasoning

Handout #1: Mathematical Reasoning Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or

More information

Page 331, 38.4 Suppose a is a positive integer and p is a prime. Prove that p a if and only if the prime factorization of a contains p.

Page 331, 38.4 Suppose a is a positive integer and p is a prime. Prove that p a if and only if the prime factorization of a contains p. Page 331, 38.2 Assignment #11 Solutions Factor the following positive integers into primes. a. 25 = 5 2. b. 4200 = 2 3 3 5 2 7. c. 10 10 = 2 10 5 10. d. 19 = 19. e. 1 = 1. Page 331, 38.4 Suppose a is a

More information

Warm up. Connect these nine dots with only four straight lines without lifting your pencil from the paper.

Warm up. Connect these nine dots with only four straight lines without lifting your pencil from the paper. Warm up Connect these nine dots with only four straight lines without lifting your pencil from the paper. Sometimes we need to think outside the box! Warm up Solution Warm up Insert the Numbers 1 8 into

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us

More information

TAKE-AWAY GAMES. ALLEN J. SCHWENK California Institute of Technology, Pasadena, California INTRODUCTION

TAKE-AWAY GAMES. ALLEN J. SCHWENK California Institute of Technology, Pasadena, California INTRODUCTION TAKE-AWAY GAMES ALLEN J. SCHWENK California Institute of Technology, Pasadena, California L INTRODUCTION Several games of Tf take-away?f have become popular. The purpose of this paper is to determine the

More information

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory

More information

The Fundamental Theorem of Arithmetic

The Fundamental Theorem of Arithmetic The Fundamental Theorem of Arithmetic 1 Introduction: Why this theorem? Why this proof? One of the purposes of this course 1 is to train you in the methods mathematicians use to prove mathematical statements,

More information

Cartesian Products and Relations

Cartesian Products and Relations Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special

More information

ON FIBONACCI NUMBERS WITH FEW PRIME DIVISORS

ON FIBONACCI NUMBERS WITH FEW PRIME DIVISORS ON FIBONACCI NUMBERS WITH FEW PRIME DIVISORS YANN BUGEAUD, FLORIAN LUCA, MAURICE MIGNOTTE, SAMIR SIKSEK Abstract If n is a positive integer, write F n for the nth Fibonacci number, and ω(n) for the number

More information

Category 3 Number Theory Meet #1, October, 2000

Category 3 Number Theory Meet #1, October, 2000 Category 3 Meet #1, October, 2000 1. For how many positive integral values of n will 168 n be a whole number? 2. What is the greatest integer that will always divide the product of four consecutive integers?

More information

THE DIMENSION OF A VECTOR SPACE

THE DIMENSION OF A VECTOR SPACE THE DIMENSION OF A VECTOR SPACE KEITH CONRAD This handout is a supplementary discussion leading up to the definition of dimension and some of its basic properties. Let V be a vector space over a field

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5. PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

Indices and Surds. The Laws on Indices. 1. Multiplication: Mgr. ubomíra Tomková

Indices and Surds. The Laws on Indices. 1. Multiplication: Mgr. ubomíra Tomková Indices and Surds The term indices refers to the power to which a number is raised. Thus x is a number with an index of. People prefer the phrase "x to the power of ". Term surds is not often used, instead

More information

Chapter 11 Number Theory

Chapter 11 Number Theory Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications

More information

SUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills

SUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills SUNY ECC ACCUPLACER Preparation Workshop Algebra Skills Gail A. Butler Ph.D. Evaluating Algebraic Epressions Substitute the value (#) in place of the letter (variable). Follow order of operations!!! E)

More information

LAMC Beginners Circle: Parity of a Permutation Problems from Handout by Oleg Gleizer Solutions by James Newton

LAMC Beginners Circle: Parity of a Permutation Problems from Handout by Oleg Gleizer Solutions by James Newton LAMC Beginners Circle: Parity of a Permutation Problems from Handout by Oleg Gleizer Solutions by James Newton 1. Take a two-digit number and write it down three times to form a six-digit number. For example,

More information

Cycles in a Graph Whose Lengths Differ by One or Two

Cycles in a Graph Whose Lengths Differ by One or Two Cycles in a Graph Whose Lengths Differ by One or Two J. A. Bondy 1 and A. Vince 2 1 LABORATOIRE DE MATHÉMATIQUES DISCRÉTES UNIVERSITÉ CLAUDE-BERNARD LYON 1 69622 VILLEURBANNE, FRANCE 2 DEPARTMENT OF MATHEMATICS

More information

Answer Key for California State Standards: Algebra I

Answer Key for California State Standards: Algebra I Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

More information

Solution to Exercise 2.2. Both m and n are divisible by d, som = dk and n = dk. Thus m ± n = dk ± dk = d(k ± k ),som + n and m n are divisible by d.

Solution to Exercise 2.2. Both m and n are divisible by d, som = dk and n = dk. Thus m ± n = dk ± dk = d(k ± k ),som + n and m n are divisible by d. [Chap. ] Pythagorean Triples 6 (b) The table suggests that in every primitive Pythagorean triple, exactly one of a, b,orc is a multiple of 5. To verify this, we use the Pythagorean Triples Theorem to write

More information

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing

More information

2 When is a 2-Digit Number the Sum of the Squares of its Digits?

2 When is a 2-Digit Number the Sum of the Squares of its Digits? When Does a Number Equal the Sum of the Squares or Cubes of its Digits? An Exposition and a Call for a More elegant Proof 1 Introduction We will look at theorems of the following form: by William Gasarch

More information

Pigeonhole Principle Solutions

Pigeonhole Principle Solutions Pigeonhole Principle Solutions 1. Show that if we take n + 1 numbers from the set {1, 2,..., 2n}, then some pair of numbers will have no factors in common. Solution: Note that consecutive numbers (such

More information

Integer roots of quadratic and cubic polynomials with integer coefficients

Integer roots of quadratic and cubic polynomials with integer coefficients Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street

More information

Math 115 Spring 2011 Written Homework 5 Solutions

Math 115 Spring 2011 Written Homework 5 Solutions . Evaluate each series. a) 4 7 0... 55 Math 5 Spring 0 Written Homework 5 Solutions Solution: We note that the associated sequence, 4, 7, 0,..., 55 appears to be an arithmetic sequence. If the sequence

More information

SIMPLIFYING SQUARE ROOTS

SIMPLIFYING SQUARE ROOTS 40 (8-8) Chapter 8 Powers and Roots 8. SIMPLIFYING SQUARE ROOTS In this section Using the Product Rule Rationalizing the Denominator Simplified Form of a Square Root In Section 8. you learned to simplify

More information

Wald s Identity. by Jeffery Hein. Dartmouth College, Math 100

Wald s Identity. by Jeffery Hein. Dartmouth College, Math 100 Wald s Identity by Jeffery Hein Dartmouth College, Math 100 1. Introduction Given random variables X 1, X 2, X 3,... with common finite mean and a stopping rule τ which may depend upon the given sequence,

More information

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing

More information

God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886)

God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886) Chapter 2 Numbers God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886) God created the integers and the rest is the work

More information

Playing with Numbers

Playing with Numbers PLAYING WITH NUMBERS 249 Playing with Numbers CHAPTER 16 16.1 Introduction You have studied various types of numbers such as natural numbers, whole numbers, integers and rational numbers. You have also

More information

WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?

WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly

More information

Answer: The relationship cannot be determined.

Answer: The relationship cannot be determined. Question 1 Test 2, Second QR Section (version 3) In City X, the range of the daily low temperatures during... QA: The range of the daily low temperatures in City X... QB: 30 Fahrenheit Arithmetic: Ranges

More information

Math 319 Problem Set #3 Solution 21 February 2002

Math 319 Problem Set #3 Solution 21 February 2002 Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod

More information

DigitalCommons@University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-1-007 Pythagorean Triples Diane Swartzlander University

More information

Mathematical Induction. Mary Barnes Sue Gordon

Mathematical Induction. Mary Barnes Sue Gordon Mathematics Learning Centre Mathematical Induction Mary Barnes Sue Gordon c 1987 University of Sydney Contents 1 Mathematical Induction 1 1.1 Why do we need proof by induction?.... 1 1. What is proof by

More information

CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs

CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs CHAPTER 3 Methods of Proofs 1. Logical Arguments and Formal Proofs 1.1. Basic Terminology. An axiom is a statement that is given to be true. A rule of inference is a logical rule that is used to deduce

More information

On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples

On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples Brian Hilley Boston College MT695 Honors Seminar March 3, 2006 1 Introduction 1.1 Mazur s Theorem Let C be a

More information

Digital Signatures. Prof. Zeph Grunschlag

Digital Signatures. Prof. Zeph Grunschlag Digital Signatures Prof. Zeph Grunschlag (Public Key) Digital Signatures PROBLEM: Alice would like to prove to Bob, Carla, David,... that has really sent them a claimed message. E GOAL: Alice signs each

More information

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom. Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,

More information

17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function

17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function 17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function, : V V R, which is symmetric, that is u, v = v, u. bilinear, that is linear (in both factors):

More information

GREATEST COMMON DIVISOR

GREATEST COMMON DIVISOR DEFINITION: GREATEST COMMON DIVISOR The greatest common divisor (gcd) of a and b, denoted by (a, b), is the largest common divisor of integers a and b. THEOREM: If a and b are nonzero integers, then their

More information

Section IV.1: Recursive Algorithms and Recursion Trees

Section IV.1: Recursive Algorithms and Recursion Trees Section IV.1: Recursive Algorithms and Recursion Trees Definition IV.1.1: A recursive algorithm is an algorithm that solves a problem by (1) reducing it to an instance of the same problem with smaller

More information

Christmas Gift Exchange Games

Christmas Gift Exchange Games Christmas Gift Exchange Games Arpita Ghosh 1 and Mohammad Mahdian 1 Yahoo! Research Santa Clara, CA, USA. Email: arpita@yahoo-inc.com, mahdian@alum.mit.edu Abstract. The Christmas gift exchange is a popular

More information

3 0 + 4 + 3 1 + 1 + 3 9 + 6 + 3 0 + 1 + 3 0 + 1 + 3 2 mod 10 = 4 + 3 + 1 + 27 + 6 + 1 + 1 + 6 mod 10 = 49 mod 10 = 9.

3 0 + 4 + 3 1 + 1 + 3 9 + 6 + 3 0 + 1 + 3 0 + 1 + 3 2 mod 10 = 4 + 3 + 1 + 27 + 6 + 1 + 1 + 6 mod 10 = 49 mod 10 = 9. SOLUTIONS TO HOMEWORK 2 - MATH 170, SUMMER SESSION I (2012) (1) (Exercise 11, Page 107) Which of the following is the correct UPC for Progresso minestrone soup? Show why the other numbers are not valid

More information

Putnam Notes Polynomials and palindromes

Putnam Notes Polynomials and palindromes Putnam Notes Polynomials and palindromes Polynomials show up one way or another in just about every area of math. You will hardly ever see any math competition without at least one problem explicitly concerning

More information

The positive minimum degree game on sparse graphs

The positive minimum degree game on sparse graphs The positive minimum degree game on sparse graphs József Balogh Department of Mathematical Sciences University of Illinois, USA jobal@math.uiuc.edu András Pluhár Department of Computer Science University

More information

6.3 Conditional Probability and Independence

6.3 Conditional Probability and Independence 222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

More information

Fundamentele Informatica II

Fundamentele Informatica II Fundamentele Informatica II Answer to selected exercises 1 John C Martin: Introduction to Languages and the Theory of Computation M.M. Bonsangue (and J. Kleijn) Fall 2011 Let L be a language. It is clear

More information

6.207/14.15: Networks Lecture 15: Repeated Games and Cooperation

6.207/14.15: Networks Lecture 15: Repeated Games and Cooperation 6.207/14.15: Networks Lecture 15: Repeated Games and Cooperation Daron Acemoglu and Asu Ozdaglar MIT November 2, 2009 1 Introduction Outline The problem of cooperation Finitely-repeated prisoner s dilemma

More information

Polynomials and Factoring

Polynomials and Factoring 7.6 Polynomials and Factoring Basic Terminology A term, or monomial, is defined to be a number, a variable, or a product of numbers and variables. A polynomial is a term or a finite sum or difference of

More information

Math 3000 Section 003 Intro to Abstract Math Homework 2

Math 3000 Section 003 Intro to Abstract Math Homework 2 Math 3000 Section 003 Intro to Abstract Math Homework 2 Department of Mathematical and Statistical Sciences University of Colorado Denver, Spring 2012 Solutions (February 13, 2012) Please note that these

More information

The Chinese Remainder Theorem

The Chinese Remainder Theorem The Chinese Remainder Theorem Evan Chen evanchen@mit.edu February 3, 2015 The Chinese Remainder Theorem is a theorem only in that it is useful and requires proof. When you ask a capable 15-year-old why

More information

Vocabulary. Term Page Definition Clarifying Example. biconditional statement. conclusion. conditional statement. conjecture.

Vocabulary. Term Page Definition Clarifying Example. biconditional statement. conclusion. conditional statement. conjecture. CHAPTER Vocabulary The table contains important vocabulary terms from Chapter. As you work through the chapter, fill in the page number, definition, and a clarifying example. biconditional statement conclusion

More information

Near Optimal Solutions

Near Optimal Solutions Near Optimal Solutions Many important optimization problems are lacking efficient solutions. NP-Complete problems unlikely to have polynomial time solutions. Good heuristics important for such problems.

More information

Is it possible to beat the lottery system?

Is it possible to beat the lottery system? Is it possible to beat the lottery system? Michael Lydeamore The University of Adelaide Postgraduate Seminar, 2014 The story One day, while sitting at home (working hard)... The story Michael Lydeamore

More information

On continued fractions of the square root of prime numbers

On continued fractions of the square root of prime numbers On continued fractions of the square root of prime numbers Alexandra Ioana Gliga March 17, 2006 Nota Bene: Conjecture 5.2 of the numerical results at the end of this paper was not correctly derived from

More information

ARE YOU A RADICAL OR JUST A SQUARE ROOT? EXAMPLES

ARE YOU A RADICAL OR JUST A SQUARE ROOT? EXAMPLES ARE YOU A RADICAL OR JUST A SQUARE ROOT? EXAMPLES 1. Squaring a number means using that number as a factor two times. 8 8(8) 64 (-8) (-8)(-8) 64 Make sure students realize that x means (x ), not (-x).

More information

Graphs without proper subgraphs of minimum degree 3 and short cycles

Graphs without proper subgraphs of minimum degree 3 and short cycles Graphs without proper subgraphs of minimum degree 3 and short cycles Lothar Narins, Alexey Pokrovskiy, Tibor Szabó Department of Mathematics, Freie Universität, Berlin, Germany. August 22, 2014 Abstract

More information

arxiv:0909.4913v2 [math.ho] 4 Nov 2009

arxiv:0909.4913v2 [math.ho] 4 Nov 2009 IRRATIONALITY FROM THE BOOK STEVEN J. MILLER AND DAVID MONTAGUE arxiv:0909.4913v2 [math.ho] 4 Nov 2009 A right of passage to theoretical mathematics is often a proof of the irrationality of 2, or at least

More information

An inequality for the group chromatic number of a graph

An inequality for the group chromatic number of a graph An inequality for the group chromatic number of a graph Hong-Jian Lai 1, Xiangwen Li 2 and Gexin Yu 3 1 Department of Mathematics, West Virginia University Morgantown, WV 26505 USA 2 Department of Mathematics

More information

Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

More information