Introduction of Particle Image Velocimetry

Size: px
Start display at page:

Download "Introduction of Particle Image Velocimetry"

Transcription

1 Introduction of Particle Image Velocimetry Ken Kiger Burgers Program For Fluid Dynamics Turbulence School College Park, Maryland, May Slides largely generated by J. Westerweel & C. Poelma of Technical University of Delft Adapted by K. Kiger

2 Introduction Particle Image Velocimetry (PIV): Imaging of tracer particles, calculate displacement: local fluid velocity Frame 1: t = t 0 Measurement section Light sheet optics Frame 2: t = t 0 + t Twin Nd:YAG laser CCD camera

3 Introduction Particle Image Velocimetry (PIV) divide image pair in interrogation regions small region: ~ uniform motion compute displacement repeat!!!

4 Introduction Particle Image Velocimetry (PIV): Instantaneous measurement of 2 components in a plane conventional methods (HWA, LDV) single-point measurement traversing of flow domain time consuming only turbulence statistics particle image velocimetry whole-field method non-intrusive (seeding instantaneous flow field z

5 Introduction Particle Image Velocimetry (PIV): Instantaneous measurement of 2 components in a plane instantaneous vorticity field particle image velocimetry whole-field method non-intrusive (seeding instantaneous flow field

6 Example: coherent structures

7 Example: coherent structures Turbulent pipe flow Re = vectors hairpin vortex

8 Example: coherent structures Van Doorne, et al.

9 Overview PIV components: - tracer particles - light source - light sheet optics - camera Hardware (imaging) - measurement settings - interrogation - post-processing Software (image analysis)

10 Tracer particles Assumptions: - homogeneously distributed - follow flow perfectly - uniform displacement within interrogation region Criteria: -easily visible -particles should not influence fluid flow! small, volume fraction < 10-4

11 Image density low image density N I << 1 particle tracking velocimetry high image density N I >> 1 particle image velocimetry

12 Evaluation at higher density High N I : no longer possible/desirable to follow individual tracer particles Possible matches Sum of all possibilities Assumption: uniform flow in interrogation area Particle can be matched with a number of candidates Repeat process for other particles, sum up: wrong combinations will lead to noise, but true displacement will dominate

13 Statistical estimate of particle motion Statistical correlations used to find average particle displacement 1-d t=t 0 B x B y R(i, j) k 1 l 1 I a (k,l) I a I b (k i,l j) I b 1 B x B y B y 2 I a (k,l) I a 2 B x k 1 l 1 k 1 l 1 I b (k i,l j) I b 2 1-d t=t 1 I a 1 B B x y B B x y k 1 l 1 I a ( k, l) Cross-correlation

14 1-D cross-correlation example I a I a (x) normalized I b (x+ x) normalized I a (x)*i b (x+ x) I b B x R(i) k 1 I a (k) I a I b (k i) I b 1 B x B x 2 I a (k) I a 2 k 1 k 1 I b (k i) I b 2

15 Finding the maximum displacement -Shift 2 nd window with respect to the first Typically 16x16 or 32x32 pixels - Calculate match B x B y Good indicator: R(i, j) k 1 l 1 I a (k,l) I a I b (k i,l j) I b 1 B x B y B y 2 I a (k,l) I a 2 B x k 1 l 1 k 1 l 1 I b (k i,l j) I b 2 - Repeat to find best estimate I a 1 B B x y B B x y k 1 l 1 I a ( k, l)

16 Finding the maximum displacement -Shift 2 nd window with respect to the first Typically 16x16 or 32x32 pixels - Calculate match B x B y Good indicator: R(i, j) k 1 l 1 I a (k,l) I a I b (k i,l j) I b 1 B x B y B y 2 I a (k,l) I a 2 B x k 1 l 1 k 1 l 1 I b (k i,l j) I b 2 - Repeat to find best estimate I a 1 B B x y B B x y k 1 l 1 I a ( k, l) Bad match: sum of product of intensities low

17 Finding the maximum displacement -Shift 2 nd window with respect to the first Typically 16x16 or 32x32 pixels - Calculate match B x B y Good indicator: R(i, j) k 1 l 1 I a (k,l) I a I b (k i,l j) I b 1 B x B y B y 2 I a (k,l) I a 2 B x k 1 l 1 k 1 l 1 I b (k i,l j) I b 2 - Repeat to find best estimate I a 1 B B x y B B x y k 1 l 1 I a ( k, l) Good match: sum of product of intensities high Can be implemented as 2D FFT for digitized data o Impose periodic conditions on interrogation region causes bias error if not treated properly.

18 Cross-correlation This shifting method can formally be expressed as a cross-correlation: R() s I x I x s dx I 1 and I 2 are interrogation areas (sub-windows) of the total frames - x is interrogation location - s is the shift between the images Backbone of PIV: -cross-correlation of interrogation areas -find location of displacement peak

19 Cross-correlation peak: mean displacement correlation of the mean R C R F correlation of mean & random fluctuations R D correlation due to displacement

20 Influence of N I R ( ) ~ N N C z 2 M 0 D 2 D sd I I I 0 C z 0 D I M 0 particle concentration light sheet thickness int. area size magnification N I = 5 N I = 10 N I = 25 More particles: better signal-to-noise ratio Unambiguous detection of peak from noise: N I =10 (average), minimum of 4 per area in 95% of areas (number of tracer particles is a Poisson distribution)

21 Influence of N I N I = 5 N I = 10 N I = 25 PTV: 1 particle used for velocity estimate; error e PIV: error ~ e/sqrt(n I )

22 Influence of in-plane displacement X,Y-Displacement < quarter of window size X / D I = 0.00 F I = X RD (s D) ~ N I FI FI ( X, Y) 1 1 D I D Y I

23 Influence of out-of-plane displacement Z-Displacement < quarter of light sheet thickness ( z 0 ) Z / z 0 = 0.00 F O = R ( s ) ~ N F F F ( z) 1 D D I I O O z z 0

24 Influence of gradients a M 0 u t Displacement differences < 3-5% of int. area size, D I Displacement differences < Particle image size, d a / D I = 0.00 a / d = R ( s ) ~ N F F F F ( a) exp( a / d ) D D I I O R.D. Keane & R.J. Adrian

25 PIV Design rules image density N I >10 in-plane motion X < ¼ D I out-of-plane motion z < ¼ z 0 spatial gradients M 0 u t < d Obtained by Keane & Adrian (1993) using synthetic data

26 Window shifting in-plane motion X < ¼ D I strongly limits dynamic range of PIV large window size: too much spatial averaging

27 Window shifting in-plane motion X < ¼ D I strongly limits dynamic range of PIV small window size: too much in-plane pair loss

28 Window shifting in-plane motion X < ¼ D I strongly limits dynamic range of PIV Multi-pass approach: start with large windows, use this result as pre-shift for smaller windows No more in-plane pair loss limitations!

29 Window shifting: Example Grid turbulence fixed windows matched windows windows at same location windows at 7px downstream

30 Window shifting: Example Vortex ring, decreasing window sizes Raffel, Willert and Kompenhans

31 Sub-pixel accuracy Maximum in the correlation plane: single-pixel resolution of displacement? But the peak contains a lot more information! Gaussian particle images Gaussian correlation peak (but smeared)

32 Sub-pixel accuracy X r Fractional displacement can be obtained using the distribution of gray values around maximum

33 three-point estimators peak centroid R R 1 1 R R R parabolic peak fit R R R R 2R Gaussian peak fit ln R ln R ln R ln R 2ln R balance normalization

34 Peak locking zig-zag structure, sudden kinks in the flow

35 Sub-pixel Interpolation Errors Accuracy depends on: particle image size noise in data (seeding density, camera noise) shear rate Can exhibit peak locking Interpolation of peak is biased towards a symmetric data distribution (Integer and 1/2 integer peak locations) Polynomials exhibit strong locking when particle diameter is small Gaussian is most commonly used Splines are very robust, but expensive to calculate See Particle Image Velocimetry, by Raffel, Willert, and Kompenhans, Springer-Verlag, Interpolation error (pixels) Interpolation error (pixels) Interpolation error (pixels) Actual peak location (pixels) Polynomial fit Gaussian fit Polynomial fit Gaussian fit Actual peak location (pixels) Polynomial fit Gaussian fit Actual peak location (pixels) Pixel Radius R = 0.5 R = 1.0 R = 1.5

36 Peak locking Histogram of velocities in a turbulent flow centroid Gaussian peak fit Even with Gaussian peak fit: particle image size too small peak locking (Consider a point particle sampled by discrete pixels)

37 Sub-pixel accuracy optimal resolution: particle image size: ~2 px Smaller: particle no longer resolved total error bias errors random errors Larger: random noise increase three-point estimators: d / d r Peak centroid Parabolic peak fit Gaussian peak fit... Theoretical: px In practice px Main difference: sensitivity to peak locking or pixel lock-in, bias towards integer displacements

38 displacement measurement error

39 window matching fixed windows matched windows F I ~ 0.75 F I ~ 1 velocity pdf measurement error u 2 C 2 u 2 / C 2 signal noise SNR u 2 4C 2 u 2 1 / 4C 2

40 application example: grid-generated turbulence X = 7 px u /U = 2.5% fixed windows matched windows

41 Data Validation article lab Spurious or Bad vectors

42 Spurious vectors Three main causes: - insufficient particle-image pairs - in-plane loss-of-pairs, out-of-plane loss-of-pairs - gradients

43 Effect of tracer density NNII=80 =20 =45 =11 = 153

44 Remedies increase N I practical limitations: optical transparency of the fluid two-phase effects image saturation / speckle detection, removal & replacement keep finite N I ( ~ 0.05 ) data loss is small signal loss occurs in isolated points data recovery by interpolation

45 Detection methods human perception peak height amount of correlated signal peak detectability peak height relative to noise lower limit for SNR residual vector analysis fluctuation of displacement multiplication of correlation planes fluid mechanics continuity fuzzy logic & neural nets

46 Residual analysis evaluate fluctuation of measured velocity residual ideally: U ref = true velocity reference values: U ref = global mean velocity comparable to 2D-histogram analysis r U does not take local coherent motion into account probably only works in homogeneous turbulence U ref = local (3 3) mean velocity takes local coherent motion into account very sensitive to outliers in the local neighborhood U ref = local (3 3) median velocity almost identical statistical properties as local mean Strongly suppressed sensitivity to outliers in heighborhood U ref

47 Example of residual test Mean 2.9 RMS Mean 3.7 RMS 2.29 Standard mean and r.m.s. are very sensitive to bad data contamination need robust measure of fluctuation

48 Median test Calculate reference velocity: median of 8 neighbors u ref median u 1,u 2,...u calculate residuals: r i u i u ref Normalize target residual by: median(r i ) + r 0 * u 0 u ref median(r i ) 4 Robust measure found for: 0.1 and r 0 * 2 Westerweel & Scarano, 2005

49 Interpolation Bilinear interpolation satisfies continuity For 5% bad vectors, 80% of the vectors are isolated Bad vector can be recovered without any problems N.B.: interpolation biases statistics (power spectra, correlation function) Better not to replace bad vectors (use e.g. slotting method)

50 Overlapping windows Method to increase data yield: Allow overlap between adjacent interrogation areas a Motivation: particle pairs near edges contribute less to correlation result; Shift window so they are in the center: additional, relatively uncorrelated result 50% is very common, but beware of oversampling

51 A Generic PIV program Reduce non-uniformity of illumination; Reflections Median test, Search window Vorticity, interpolation of missing vectors, etc. Data acquisition Image pre-processing PIV cross-correlation Vector validation Post-processing Laser control, Camera settings, etc. Pre-shift; Decreasing window sizes

52 PIV software Free PIVware: command line, linux (Westerweel) JPIV: Java version of PIVware (Vennemann) MatPiv: Matlab PIV toolbox (Cambridge, Sveen) URAPIV: Matlab PIV toolbox (Gurka and Liberzon) DigiFlow (Cambridge), PIV Sleuth (UIUC), MPIV, GPIV, CIV, OSIV, Commercial PIVtec TSI Dantec LaVision Oxford Lasers/ILA DaVis PIVview Insight Flowmap VidPIV

53 Particle Motion: tracer particle Equation of motion for spherical particle: m p dv dt Where p Inertia 3 D u v p Viscous drag 1 2 m f du dt D 3 m p p, the particle mass 6 dv dt p m D 3 m f f, fluid mass of same volume as particle 6 D particle diameter fluid viscosity r u fluid velocity r v p particle velocity g fluid density p particle material density Added mass f du dt Pressure gradient m p 1 g p buoyancy g Neglect: non-linear drag (only really needed for high-speed flows), Basset history term (higher order effect)

54 Simple thought experiment Lets see how a particle responds to a step change in velocity Only consider viscous drag m p d r v p dt 3 D r u r v p u 0 for t < 0 U for t 0 U u, v p dv p dt 18 pd 2 U v p 1 p U v p t v p 1 p v p 1 p U v p v p particular v p homogeneous U C 1 exp t p v p U 1 exp t p

55 Particle Transfer Function Useful to examine steady-state particle response to 1-D oscillating flow of arbitrary sum of frequencies Represent u as an infinite sum of harmonic functions Neglect gravity (DC response, not transient) u t 0 v p t p 0 f exp i t d exp i t d du t dt dv p t dt 0 i i 0 f p exp i t d exp i t d 2m p 3 D dv p dt 2 u v p m f m p m p 3 D du dt dv p dt 2 m f m p m p 3 D du dt 0 2 pd2 18 p i exp i t d 2 f p exp i t 0 d 0 f p p D2 18 i 3 f p exp i t d 2iSt p 2 f p i St 3 f p St p f p D2 18 f p

56 Particle Transfer Function This can be rearranged: r v p r u p p tan 1 Im p / f Re p / f f f 1 2 A 2 B 2 A A(1 B) tan 1 A 2 B A B St Examine Liquid in air, gas in water, plastic in water

57 Liquid particles in Air Liquid drops in air require St~0.3 for 95% fidelity (1 m ~ 15 khz) Size relatively unimportant for near-neutrally buoyant particles Bubbles are a poor choice: always overrespond unless quite small

Evaluation of the Cross Correlation Method by Using PIV Standard Images

Evaluation of the Cross Correlation Method by Using PIV Standard Images 1998 The Visualization Society of Japan and Ohmsha, Ltd. Journal of Visualization, Vol. 1, No. 1 (1998) 87-94 Evaluation of the Cross Correlation ethod by Using PIV Standard Images Hu, H.* 1, Saga, T.*

More information

PIV Uncertainty Methodologies for CFD Code Validation at the MIR Facility

PIV Uncertainty Methodologies for CFD Code Validation at the MIR Facility INL/EXT-12-27728 PIV Uncertainty Methodologies for CFD Code Validation at the MIR Facility Piyush Sabharwall Thomas Conder Richard Skifton Carl Stoots Eung Soo Kim December 2013 The INL is a U.S. Department

More information

Abaqus/CFD Sample Problems. Abaqus 6.10

Abaqus/CFD Sample Problems. Abaqus 6.10 Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel

More information

Optical Metrology. Third Edition. Kjell J. Gasvik Spectra Vision AS, Trondheim, Norway JOHN WILEY & SONS, LTD

Optical Metrology. Third Edition. Kjell J. Gasvik Spectra Vision AS, Trondheim, Norway JOHN WILEY & SONS, LTD 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Optical Metrology Third Edition Kjell J. Gasvik Spectra Vision AS,

More information

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation

More information

Bubbles in Turbulence

Bubbles in Turbulence Bubbles in Turbulence Physics of Fluids Group University of Twente. C. Sun, V.N. Prakash, Y. Tagawa, J. Martinez, D. Lohse Physics of Fluids Group, University of Twente Enrico Calzavarini Laboratoire de

More information

Bildverarbeitung und Mustererkennung Image Processing and Pattern Recognition

Bildverarbeitung und Mustererkennung Image Processing and Pattern Recognition Bildverarbeitung und Mustererkennung Image Processing and Pattern Recognition 1. Image Pre-Processing - Pixel Brightness Transformation - Geometric Transformation - Image Denoising 1 1. Image Pre-Processing

More information

Dynamic Process Modeling. Process Dynamics and Control

Dynamic Process Modeling. Process Dynamics and Control Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits

More information

APPLIED MATHEMATICS ADVANCED LEVEL

APPLIED MATHEMATICS ADVANCED LEVEL APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications

More information

XI / PHYSICS FLUIDS IN MOTION 11/PA

XI / PHYSICS FLUIDS IN MOTION 11/PA Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

More information

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) In this lecture How does turbulence affect the ensemble-mean equations of fluid motion/transport? Force balance in a quasi-steady turbulent boundary

More information

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE 1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object

More information

Collision of a small bubble with a large falling particle

Collision of a small bubble with a large falling particle EPJ Web of Conferences 67, 212 (214) DOI: 1.11/ epjconf/ 21467212 C Owned by the authors, published by EDP Sciences, 214 Collision of a small bubble with a large falling particle Jiri Vejrazka 1,a, Martin

More information

Wave Breaking and Wave Driven Flow in the Nearshore

Wave Breaking and Wave Driven Flow in the Nearshore Wave Breaking and Wave Driven Flow in the Nearshore Dr. Thomas C. Lippmann Civil and Environmental Engineering & Geodetic Science Byrd Polar Research Center Ohio State University Columbus, OH 43210-1002

More information

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

More information

4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re.

4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re. CHAPTER 08 1. What is most likely to be the main driving force in pipe flow? A. Gravity B. A pressure gradient C. Vacuum 2.What is a general description of the flow rate in laminar flow? A. Small B. Large

More information

The Viscosity of Fluids

The Viscosity of Fluids Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

More information

Hardware-Aware Analysis and. Presentation Date: Sep 15 th 2009 Chrissie C. Cui

Hardware-Aware Analysis and. Presentation Date: Sep 15 th 2009 Chrissie C. Cui Hardware-Aware Analysis and Optimization of Stable Fluids Presentation Date: Sep 15 th 2009 Chrissie C. Cui Outline Introduction Highlights Flop and Bandwidth Analysis Mehrstellen Schemes Advection Caching

More information

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids 1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

More information

Laminar and Turbulent flow. Flow Sensors. Reynolds Number. Thermal flow Sensor. Flow and Flow rate. R = Mass Flow controllers

Laminar and Turbulent flow. Flow Sensors. Reynolds Number. Thermal flow Sensor. Flow and Flow rate. R = Mass Flow controllers Flow and Flow rate. Laminar and Turbulent flow Laminar flow: smooth, orderly and regular Mechanical sensors have inertia, which can integrate out small variations due to turbulence Turbulent flow: chaotic

More information

Viscous flow in pipe

Viscous flow in pipe Viscous flow in pipe Henryk Kudela Contents 1 Laminar or turbulent flow 1 2 Balance of Momentum - Navier-Stokes Equation 2 3 Laminar flow in pipe 2 3.1 Friction factor for laminar flow...........................

More information

A multi-scale approach to InSAR time series analysis

A multi-scale approach to InSAR time series analysis A multi-scale approach to InSAR time series analysis M. Simons, E. Hetland, P. Muse, Y. N. Lin & C. DiCaprio U Interferogram stack time A geophysical perspective on deformation tomography Examples: Long

More information

Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity

Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity 1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood

More information

Basic Principles in Microfluidics

Basic Principles in Microfluidics Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces

More information

Optical modeling of finite element surface displacements using commercial software

Optical modeling of finite element surface displacements using commercial software Optical modeling of finite element surface displacements using commercial software Keith B. Doyle, Victor L. Genberg, Gregory J. Michels, Gary R. Bisson Sigmadyne, Inc. 803 West Avenue, Rochester, NY 14611

More information

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

More information

Kinetic effects in the turbulent solar wind: capturing ion physics with a Vlasov code

Kinetic effects in the turbulent solar wind: capturing ion physics with a Vlasov code Kinetic effects in the turbulent solar wind: capturing ion physics with a Vlasov code Francesco Valentini francesco.valentini@fis.unical.it S. Servidio, D. Perrone, O. Pezzi, B. Maruca, F. Califano, W.

More information

Basic Equations, Boundary Conditions and Dimensionless Parameters

Basic Equations, Boundary Conditions and Dimensionless Parameters Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

More information

Diffusion and Fluid Flow

Diffusion and Fluid Flow Diffusion and Fluid Flow What determines the diffusion coefficient? What determines fluid flow? 1. Diffusion: Diffusion refers to the transport of substance against a concentration gradient. ΔS>0 Mass

More information

FLUID MECHANICS SYSTEMS FROM TSI

FLUID MECHANICS SYSTEMS FROM TSI FLUID MECHANICS SYSTEMS FROM TSI A COMPLETE PORTFOLIO OF SOLUTIONS FOR CHALLENGES POSTED BY FLUID MECHANICS RESEARCH UNDERSTANDING, ACCELERATED OVER 50 YEARS OF CONTRIBUTION TO THE FLUID MECHANICS RESEARCH

More information

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.

More information

FLOW PATTERNS AND EXCHANGE PROCESSES IN DEAD ZONES OF RIVERS VOLKER WEITBRECHT & GERHARD H. JIRKA

FLOW PATTERNS AND EXCHANGE PROCESSES IN DEAD ZONES OF RIVERS VOLKER WEITBRECHT & GERHARD H. JIRKA FLOW PATTERNS AND EXCHANGE PROCESSES IN DEAD ZONES OF RIVERS VOLKER WEITBRECHT & GERHARD H. JIRKA Institute for Hydromechanics, University of Karlsruhe 76128 Karlsruhe, Germany weitbrecht@ifh.uni-karlsruhe.de

More information

Timing Errors and Jitter

Timing Errors and Jitter Timing Errors and Jitter Background Mike Story In a sampled (digital) system, samples have to be accurate in level and time. The digital system uses the two bits of information the signal was this big

More information

Finite Element Formulation for Beams - Handout 2 -

Finite Element Formulation for Beams - Handout 2 - Finite Element Formulation for Beams - Handout 2 - Dr Fehmi Cirak (fc286@) Completed Version Review of Euler-Bernoulli Beam Physical beam model midline Beam domain in three-dimensions Midline, also called

More information

Chapter 28 Fluid Dynamics

Chapter 28 Fluid Dynamics Chapter 28 Fluid Dynamics 28.1 Ideal Fluids... 1 28.2 Velocity Vector Field... 1 28.3 Mass Continuity Equation... 3 28.4 Bernoulli s Principle... 4 28.5 Worked Examples: Bernoulli s Equation... 7 Example

More information

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

Resolution Enhancement of Photogrammetric Digital Images

Resolution Enhancement of Photogrammetric Digital Images DICTA2002: Digital Image Computing Techniques and Applications, 21--22 January 2002, Melbourne, Australia 1 Resolution Enhancement of Photogrammetric Digital Images John G. FRYER and Gabriele SCARMANA

More information

How To Analyze Ball Blur On A Ball Image

How To Analyze Ball Blur On A Ball Image Single Image 3D Reconstruction of Ball Motion and Spin From Motion Blur An Experiment in Motion from Blur Giacomo Boracchi, Vincenzo Caglioti, Alessandro Giusti Objective From a single image, reconstruct:

More information

Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics

Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics Lecture 16 - Free Surface Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Example: spinning bowl Example: flow in

More information

ME6130 An introduction to CFD 1-1

ME6130 An introduction to CFD 1-1 ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

More information

Multiphase Flow - Appendices

Multiphase Flow - Appendices Discovery Laboratory Multiphase Flow - Appendices 1. Creating a Mesh 1.1. What is a geometry? The geometry used in a CFD simulation defines the problem domain and boundaries; it is the area (2D) or volume

More information

Lecture 8 - Turbulence. Applied Computational Fluid Dynamics

Lecture 8 - Turbulence. Applied Computational Fluid Dynamics Lecture 8 - Turbulence Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Turbulence What is turbulence? Effect of turbulence

More information

Mean-Shift Tracking with Random Sampling

Mean-Shift Tracking with Random Sampling 1 Mean-Shift Tracking with Random Sampling Alex Po Leung, Shaogang Gong Department of Computer Science Queen Mary, University of London, London, E1 4NS Abstract In this work, boosting the efficiency of

More information

Micro-Optical Sensor Use in Boundary Layer Flows with Polymers and Bubbles

Micro-Optical Sensor Use in Boundary Layer Flows with Polymers and Bubbles 2 nd International Symposium on Seawater Drag Reduction Busan, Korea, 23-26 MAY 2005 Micro-Optical Sensor Use in Boundary Layer Flows with Polymers and Bubbles D. Modarress, P. Svitek (Measurement Science

More information

FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER

FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER? What type of fluid flow is observed? The above pictures show how the effect

More information

jorge s. marques image processing

jorge s. marques image processing image processing images images: what are they? what is shown in this image? What is this? what is an image images describe the evolution of physical variables (intensity, color, reflectance, condutivity)

More information

Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations

Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.

More information

VEHICLE TRACKING USING ACOUSTIC AND VIDEO SENSORS

VEHICLE TRACKING USING ACOUSTIC AND VIDEO SENSORS VEHICLE TRACKING USING ACOUSTIC AND VIDEO SENSORS Aswin C Sankaranayanan, Qinfen Zheng, Rama Chellappa University of Maryland College Park, MD - 277 {aswch, qinfen, rama}@cfar.umd.edu Volkan Cevher, James

More information

Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any

Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any Chapter 10 Flow Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Flow Rate Flow rate can be expressed in terms of volume flow rate (volume/time) or mass

More information

Computational Foundations of Cognitive Science

Computational Foundations of Cognitive Science Computational Foundations of Cognitive Science Lecture 15: Convolutions and Kernels Frank Keller School of Informatics University of Edinburgh keller@inf.ed.ac.uk February 23, 2010 Frank Keller Computational

More information

Modelling and Computation of Compressible Liquid Flows with Phase Transition

Modelling and Computation of Compressible Liquid Flows with Phase Transition JASS 2009 - Joint Advanced Student School, Saint Petersburg, 29. 03. - 07. 04. 2009 Modelling and Simulation in Multidisciplinary Engineering Modelling and Computation of Compressible Liquid Flows with

More information

VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA

VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA Csilla Csendes University of Miskolc, Hungary Department of Applied Mathematics ICAM 2010 Probability density functions A random variable X has density

More information

CAE -Finite Element Method

CAE -Finite Element Method 16.810 Engineering Design and Rapid Prototyping Lecture 3b CAE -Finite Element Method Instructor(s) Prof. Olivier de Weck January 16, 2007 Numerical Methods Finite Element Method Boundary Element Method

More information

The INSEAN E779a Propeller Test Case: a Database For CFD Validation

The INSEAN E779a Propeller Test Case: a Database For CFD Validation The INSEAN E779a Propeller Test Case: a Database For CFD Validation G.Calcagno,F. Di Felice, M. Felli,S. Franchi, F.Pereira, F.Salvatore INSEAN (Italian Ship Model Basin), via di Vallerano 139, 00128 Rome,

More information

Dimensional Analysis

Dimensional Analysis Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous

More information

7. DYNAMIC LIGHT SCATTERING 7.1 First order temporal autocorrelation function.

7. DYNAMIC LIGHT SCATTERING 7.1 First order temporal autocorrelation function. 7. DYNAMIC LIGHT SCATTERING 7. First order temporal autocorrelation function. Dynamic light scattering (DLS) studies the properties of inhomogeneous and dynamic media. A generic situation is illustrated

More information

Norbert Schuff Professor of Radiology VA Medical Center and UCSF Norbert.schuff@ucsf.edu

Norbert Schuff Professor of Radiology VA Medical Center and UCSF Norbert.schuff@ucsf.edu Norbert Schuff Professor of Radiology Medical Center and UCSF Norbert.schuff@ucsf.edu Medical Imaging Informatics 2012, N.Schuff Course # 170.03 Slide 1/67 Overview Definitions Role of Segmentation Segmentation

More information

To determine vertical angular frequency, we need to express vertical viewing angle in terms of and. 2tan. (degree). (1 pt)

To determine vertical angular frequency, we need to express vertical viewing angle in terms of and. 2tan. (degree). (1 pt) Polytechnic University, Dept. Electrical and Computer Engineering EL6123 --- Video Processing, S12 (Prof. Yao Wang) Solution to Midterm Exam Closed Book, 1 sheet of notes (double sided) allowed 1. (5 pt)

More information

Lecture 14. Point Spread Function (PSF)

Lecture 14. Point Spread Function (PSF) Lecture 14 Point Spread Function (PSF), Modulation Transfer Function (MTF), Signal-to-noise Ratio (SNR), Contrast-to-noise Ratio (CNR), and Receiver Operating Curves (ROC) Point Spread Function (PSF) Recollect

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Sound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8

Sound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8 References: Sound L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol., Gas Dynamics, Chapter 8 1 Speed of sound The phenomenon of sound waves is one that

More information

Texture. Chapter 7. 7.1 Introduction

Texture. Chapter 7. 7.1 Introduction Chapter 7 Texture 7.1 Introduction Texture plays an important role in many machine vision tasks such as surface inspection, scene classification, and surface orientation and shape determination. For example,

More information

BIOMEDICAL ULTRASOUND

BIOMEDICAL ULTRASOUND BIOMEDICAL ULTRASOUND Goals: To become familiar with: Ultrasound wave Wave propagation and Scattering Mechanisms of Tissue Damage Biomedical Ultrasound Transducers Biomedical Ultrasound Imaging Ultrasonic

More information

Agilent Creating Multi-tone Signals With the N7509A Waveform Generation Toolbox. Application Note

Agilent Creating Multi-tone Signals With the N7509A Waveform Generation Toolbox. Application Note Agilent Creating Multi-tone Signals With the N7509A Waveform Generation Toolbox Application Note Introduction Of all the signal engines in the N7509A, the most complex is the multi-tone engine. This application

More information

The Viscosity of Fluids

The Viscosity of Fluids Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

More information

Proceedings of OMAE'01 20 th International Conference on Offshore Mechanics and Arctic Engineering June 3-8, 2001, Rio de Janeiro, Brazil

Proceedings of OMAE'01 20 th International Conference on Offshore Mechanics and Arctic Engineering June 3-8, 2001, Rio de Janeiro, Brazil Proceedings of OMAE' 2 th International Conference on Offshore Mechanics and Arctic Engineering June 3-8, 2, Rio de Janeiro, Brazil OMAE2/SR-259 PROBABILISTIC MODELLING AND ANALYSIS OF RISER COLLISION

More information

Vacuum Technology. Kinetic Theory of Gas. Dr. Philip D. Rack

Vacuum Technology. Kinetic Theory of Gas. Dr. Philip D. Rack Kinetic Theory of Gas Assistant Professor Department of Materials Science and Engineering University of Tennessee 603 Dougherty Engineering Building Knoxville, TN 3793-00 Phone: (865) 974-5344 Fax (865)

More information

Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling. Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S.

Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling. Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S. Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S. Kumara (PhD Student), PO. Box 203, N-3901, N Porsgrunn, Norway What is CFD?

More information

Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell

Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell B.K. Jung ; J. Ryue ; C.S. Hong 3 ; W.B. Jeong ; K.K. Shin

More information

Evaluating System Suitability CE, GC, LC and A/D ChemStation Revisions: A.03.0x- A.08.0x

Evaluating System Suitability CE, GC, LC and A/D ChemStation Revisions: A.03.0x- A.08.0x CE, GC, LC and A/D ChemStation Revisions: A.03.0x- A.08.0x This document is believed to be accurate and up-to-date. However, Agilent Technologies, Inc. cannot assume responsibility for the use of this

More information

Fundamentals of grain boundaries and grain boundary migration

Fundamentals of grain boundaries and grain boundary migration 1. Fundamentals of grain boundaries and grain boundary migration 1.1. Introduction The properties of crystalline metallic materials are determined by their deviation from a perfect crystal lattice, which

More information

GE 3.0T NPW,TRF,FAST,F R NPW,TRF,FAST,F R

GE 3.0T NPW,TRF,FAST,F R NPW,TRF,FAST,F R GE 3.0T 3.0T WRIST Invivo 8CH Wrist Coil Sequence Ax T2 Cor PD Cor PDFS Cor T1 Cor PD (Small FOV) FOV (mm) 80 80 80 80 40 Matrix 384x224 384x256 320x256 384x320 320x192 Phase Direction RL RL RL RL RL #

More information

Multi-Block Gridding Technique for FLOW-3D Flow Science, Inc. July 2004

Multi-Block Gridding Technique for FLOW-3D Flow Science, Inc. July 2004 FSI-02-TN59-R2 Multi-Block Gridding Technique for FLOW-3D Flow Science, Inc. July 2004 1. Introduction A major new extension of the capabilities of FLOW-3D -- the multi-block grid model -- has been incorporated

More information

AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL

AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL 14 th European Conference on Mixing Warszawa, 10-13 September 2012 AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL Joanna Karcz, Lukasz Kacperski

More information

Automatic 3D Mapping for Infrared Image Analysis

Automatic 3D Mapping for Infrared Image Analysis Automatic 3D Mapping for Infrared Image Analysis i r f m c a d a r a c h e V. Martin, V. Gervaise, V. Moncada, M.H. Aumeunier, M. irdaouss, J.M. Travere (CEA) S. Devaux (IPP), G. Arnoux (CCE) and JET-EDA

More information

The Image Deblurring Problem

The Image Deblurring Problem page 1 Chapter 1 The Image Deblurring Problem You cannot depend on your eyes when your imagination is out of focus. Mark Twain When we use a camera, we want the recorded image to be a faithful representation

More information

Nonlinear evolution of unstable fluid interface

Nonlinear evolution of unstable fluid interface Nonlinear evolution of unstable fluid interface S.I. Abarzhi Department of Applied Mathematics and Statistics State University of New-York at Stony Brook LIGHT FLUID ACCELERATES HEAVY FLUID misalignment

More information

Contents. Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 1

Contents. Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

Advanced Signal Processing and Digital Noise Reduction

Advanced Signal Processing and Digital Noise Reduction Advanced Signal Processing and Digital Noise Reduction Saeed V. Vaseghi Queen's University of Belfast UK WILEY HTEUBNER A Partnership between John Wiley & Sons and B. G. Teubner Publishers Chichester New

More information

Class #14/15 14/16 October 2008

Class #14/15 14/16 October 2008 Class #14/15 14/16 October 2008 Thursday, Oct 23 in class You ll be given equations and constants Bring a calculator, paper Closed book/notes Topics Stellar evolution/hr-diagram/manipulate the IMF ISM

More information

Mixing of cloud and clear air in centimeter scales observed in laboratory by means of Particle Image Velocimetry

Mixing of cloud and clear air in centimeter scales observed in laboratory by means of Particle Image Velocimetry Atmospheric Research 82 (2006) 173 182 www.elsevier.com/locate/atmos Mixing of cloud and clear air in centimeter scales observed in laboratory by means of Particle Image Velocimetry Piotr Korczyk a, Szymon

More information

Investigating the Effect of Air Volume Fraction on the Velocity Distributions of Air-Water flow in a Pipe Separator

Investigating the Effect of Air Volume Fraction on the Velocity Distributions of Air-Water flow in a Pipe Separator Investigating the Effect of Air Volume Fraction on the Velocity Distributions of Air-Water flow in a Pipe Separator Eyitayo A. Afolabi 1 and J.G.M Lee 2 1 Department of Chemical Engineering, Federal University

More information

The continuous and discrete Fourier transforms

The continuous and discrete Fourier transforms FYSA21 Mathematical Tools in Science The continuous and discrete Fourier transforms Lennart Lindegren Lund Observatory (Department of Astronomy, Lund University) 1 The continuous Fourier transform 1.1

More information

CS 534: Computer Vision 3D Model-based recognition

CS 534: Computer Vision 3D Model-based recognition CS 534: Computer Vision 3D Model-based recognition Ahmed Elgammal Dept of Computer Science CS 534 3D Model-based Vision - 1 High Level Vision Object Recognition: What it means? Two main recognition tasks:!

More information

Use of OpenFoam in a CFD analysis of a finger type slug catcher. Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands

Use of OpenFoam in a CFD analysis of a finger type slug catcher. Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands Use of OpenFoam in a CFD analysis of a finger type slug catcher Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands Agenda Project background Analytical analysis of two-phase flow regimes

More information

Aliasing, Image Sampling and Reconstruction

Aliasing, Image Sampling and Reconstruction Aliasing, Image Sampling and Reconstruction Recall: a pixel is a point It is NOT a box, disc or teeny wee light It has no dimension It occupies no area It can have a coordinate More than a point, it is

More information

Introduction to COMSOL. The Navier-Stokes Equations

Introduction to COMSOL. The Navier-Stokes Equations Flow Between Parallel Plates Modified from the COMSOL ChE Library module rev 10/13/08 Modified by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 2008 Introduction to COMSOL The following

More information

Lecture 11 Boundary Layers and Separation. Applied Computational Fluid Dynamics

Lecture 11 Boundary Layers and Separation. Applied Computational Fluid Dynamics Lecture 11 Boundary Layers and Separation Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Overview Drag. The boundary-layer

More information

A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow

A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow , pp.233-237 http://dx.doi.org/10.14257/astl.2014.51.53 A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow Giwoo Kim 1, Hye-Youn Lim 1 and Dae-Seong Kang 1, 1 Department of electronices

More information

NUCLEAR ENERGY RESEARCH INITIATIVE

NUCLEAR ENERGY RESEARCH INITIATIVE NUCLEAR ENERGY RESEARCH INITIATIVE Experimental and CFD Analysis of Advanced Convective Cooling Systems PI: Victor M. Ugaz and Yassin A. Hassan, Texas Engineering Experiment Station Collaborators: None

More information

Neutron stars as laboratories for exotic physics

Neutron stars as laboratories for exotic physics Ian Jones Neutron stars as laboratories for exotic physics 1/20 Neutron stars as laboratories for exotic physics Ian Jones D.I.Jones@soton.ac.uk General Relativity Group, Southampton University Context

More information

A Learning Based Method for Super-Resolution of Low Resolution Images

A Learning Based Method for Super-Resolution of Low Resolution Images A Learning Based Method for Super-Resolution of Low Resolution Images Emre Ugur June 1, 2004 emre.ugur@ceng.metu.edu.tr Abstract The main objective of this project is the study of a learning based method

More information

Testing dark matter halos using rotation curves and lensing

Testing dark matter halos using rotation curves and lensing Testing dark matter halos using rotation curves and lensing Darío Núñez Instituto de Ciencias Nucleares, UNAM Instituto Avanzado de Cosmología A. González, J. Cervantes, T. Matos Observational evidences

More information

Fluid Dynamic Optimization of Flat Sheet Membrane Modules Movement of Bubbles in Vertical Channels

Fluid Dynamic Optimization of Flat Sheet Membrane Modules Movement of Bubbles in Vertical Channels A publication of 151 CHEMICAL ENGINEERING TRANSACTIONS VOL. 32, 213 Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright 213, AIDIC Servizi S.r.l., ISBN 978-88-9568-23-5; ISSN 1974-9791 The Italian

More information

Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

More information

Visualization and Feature Extraction, FLOW Spring School 2016 Prof. Dr. Tino Weinkauf. Flow Visualization. Image-Based Methods (integration-based)

Visualization and Feature Extraction, FLOW Spring School 2016 Prof. Dr. Tino Weinkauf. Flow Visualization. Image-Based Methods (integration-based) Visualization and Feature Extraction, FLOW Spring School 2016 Prof. Dr. Tino Weinkauf Flow Visualization Image-Based Methods (integration-based) Spot Noise (Jarke van Wijk, Siggraph 1991) Flow Visualization:

More information

Function Guide for the Fourier Transformation Package SPIRE-UOL-DOC-002496

Function Guide for the Fourier Transformation Package SPIRE-UOL-DOC-002496 Function Guide for the Fourier Transformation Package SPIRE-UOL-DOC-002496 Prepared by: Peter Davis (University of Lethbridge) peter.davis@uleth.ca Andres Rebolledo (University of Lethbridge) andres.rebolledo@uleth.ca

More information

Taking the Mystery out of the Infamous Formula, "SNR = 6.02N + 1.76dB," and Why You Should Care. by Walt Kester

Taking the Mystery out of the Infamous Formula, SNR = 6.02N + 1.76dB, and Why You Should Care. by Walt Kester ITRODUCTIO Taking the Mystery out of the Infamous Formula, "SR = 6.0 + 1.76dB," and Why You Should Care by Walt Kester MT-001 TUTORIAL You don't have to deal with ADCs or DACs for long before running across

More information

Unsteady Pressure Measurements

Unsteady Pressure Measurements Quite often the measurements of pressures has to be conducted in unsteady conditions. Typical cases are those of -the measurement of time-varying pressure (with periodic oscillations or step changes) -the

More information

Chapter 9: Controller design

Chapter 9: Controller design Chapter 9. Controller Design 9.1. Introduction 9.2. Effect of negative feedback on the network transfer functions 9.2.1. Feedback reduces the transfer function from disturbances to the output 9.2.2. Feedback

More information