Kinetic effects in the turbulent solar wind: capturing ion physics with a Vlasov code


 June Phelps
 3 years ago
 Views:
Transcription
1 Kinetic effects in the turbulent solar wind: capturing ion physics with a Vlasov code Francesco Valentini S. Servidio, D. Perrone, O. Pezzi, B. Maruca, F. Califano, W. H. Matthaeus and P. Veltri
2 Proton temperature anisotropy in the solar wind Distribution PDF ( T /T, β ) fire llel Par a m irr or ue fire hos e clo tro n Obl iq cy hos e Pr ot on Hellinger et al. GRL (2006); Kasper et al. JGR (2006); Kasper et al., (2002) T and T parallel and perpendicular proton temperatures with respect to the ambient magnetic field β parallel plasma beta (ratio between kinetic and magnetic pressure) The solar wind is a turbulent and weakly collisional system Kinetic instabilities influence the solar wind nonlinear kinetic processes may locally occur in turbulence!...we need VlasovMaxwell simulations!
3 Proton temperature anisotropy in the solar wind Maruca et al. PRL (2011) T and T parallel and perpendicular proton temperatures with respect to the ambient magnetic field β parallel plasma beta (ratio between kinetic and magnetic pressure) The solar wind is a turbulent and weakly collisional system Kinetic instabilities influence the solar wind nonlinear kinetic processes may locally occur in turbulence!...we need VlasovMaxwell simulations!
4 Basic equations (dimensionless units) Hybrid VlasovMaxwell (HVM) equations: Valentini et al., J. Comp. Phys. (2007); Phys. Rev. Lett. (2009), (2010), (2011) Characteristic quantities: Simulations have been performed on FERMI at CINECA, within the European Project 3D3V Vlasov simulations of plasma turbulence, PRACE (Partner for advanced computing in Europe)
5 Setup of 2D3V simulations 2D 3V numerical domain (two dimensions in physical space and three in velocity space) Phase space discretization Periodic boundary conditions in physical space The initial Maxwellian equilibrium is perturbed by a 2D spectrum of fluctuations for magnetic and proton velocity fields. No density disturbances are imposed at t=0
6 Simulations of kinetic turbulence Current density (colors) and magnetic potential In analogy with fluid models (MHD, Hall MHD, etc.) of decaying turbulence (Mininni & Pouquet 2009), it is possible to identify an instant of time at which the turbulent activity reaches its maximum value The turbulent pattern is similar to 2D MHD: vortices, islands, current sheets...
7 Reconnenction events in turbulence In turbulence, reconnection locally occurs (at the Xpoints) Servidio et al. PRL 2009, PoP 2010, 2011 Drake et al. APJ Bifurcation (Hall effect) Thickness ~ few proton skin depths
8 Power spectra Large scale Alfvenic correlations Kolmogorovlike spectrum Low compressibility (density fluct. 8%) Intense electric activity at small scales Steepening of the magnetic spectrum at kdi ~ 1...several features commonly observed in space plasmas!
9 A measure of temperature anisotropy How to properly measure these distortions? The velocity distribution function may exhibit strong deformations in velocity space Assuming f as an ellipsoid: e 3 Stress tensor Ai j x = e1 e2 1 3 vi vi v j v j f d v n Eigenvalues (temperatures) Eigenvectors Minimum Variance Frame (MVF) e1 e2 e3 Note: for a Maxwellian λ1= λ2= λ3= 1 (Maximum) Temperature anisotropy λ1/λ3
10 Velocity distributions in turbulence Local magnetic field Anisotropy with respect to local magnetic field can be either >1 or <1 the DF is strongly affected by turbulence, resembling an elongated potatolike structure
11 Anisotropy direction with respect to local B cos = e 1 B e1 B e1 B mainly e1 can be both along or across local B, but, because of turbulence, a broad distribution of angles is observed. Note: If e1 and B were spatially random and uncorrelated, PDF(cos ) ~ const. (=0.5)
12 Where are kinetic effects located? Out of plane current density Temperature anisotropy 2 j ( b ) z Streams of kinetic effects (temperature anisotropy) are adjacent to reconnecting current sheets. Servidio et al., Phys. Rev. Lett. (2012)
13 Trying to reproduce the solarwind anisotropy plot Temperature anisotropy with respect to the local magnetic field We considered an ensamble of simulations in different regions of the parameter space and evaluated the temperature anisotropy with respect to the local magnetic field
14 Trying to reproduce the solarwind anisotropy plot NOT A NICE AGREEMENT BUT: In the solar wind plot we mixes different levels of fluctuations Let us try additional simulations with increased level of turbulence! Servidio et al., submitted to AstroPhys. J. Lett.
15 The anisotropy depends on the level of turbulence SIMULATIONS Higher is the level of the initial fluctuations higher is the anisotropy generated at the saturation of turbulence OK, LET'S TRY AGAIN!!!
16 Numerical results versus solarwind data simulations NOW MUCH BETTER!!!
17 Temperature anisotropy along the cascade << > Temperature anisotropy is generated during the turbulent cascade. As the level of turbulence increases, smaller and smaller scale structures are produced and larger and larger values of temperature anisotropy are reached.
18 Analogies between 2D3V and 3D3V runs << > 3D3V runs with resolution 128x128x128 space 51x51x51 velocity European PRACE project CPU hours on FERMI 2D3V runs 3D3V runs
19 Small scale structures (PVI analysis) Location of the smallscale structures in the simulation results and in the solarwind data Simulations Solar wind Servidio et al., submitted to AstroPhys. J. Lett.
20 One more ingredient...plasma collisions! c The Landau beast involves gradients of the velocity distribution in velocity space. Therefore, if strong velocity gradients are generated during the evolution of the solar wind plasma and the velocity distributions are far from the Maxwellian shape...
21 One more ingredient...plasma collisions! c The Landau beast involves gradients of the velocity distribution in velocity space. Therefore, if strong velocity gradients are generated during the evolution of the solar wind plasma and the velocity distributions are far from the Maxwellian shape... Enhanced collisionality is recovered at the limits of the solarwind temperatureanisotropy plot!!!
22 Summary and Conclusions By means of Hybrid VlasovMaxwell simulations we modeled the complex solarwind dynamics that produces temperature anisotropy in the proton velocity distributions Our numerical results in 2D3V and 3D3V configuration suggest that: 1) 2) 3) 4) 5) Along the turbulent cascade, small scale structures (current sheets) are generated of typical size of few proton inertial lenghts; the generation of small scales is arrested by dispersive (Hall) effects In correspondence of these small scale structures, large temperature anisotropy with respect to the local magnetic field is recovered The temperature anisotropy plot from the simulations display many features significantly comparable to those observed in the solar wind data Both the generation of this temperature anisotropy and the shaping of the temperature anisotropy plot are driven by the turbulent cascade Collisions can play an important role
23 Numerical accuracy is a must! The resistive term in the Ohm's law damps out numerical instabilities that may strongly damage the genuine properties of smallscale turbulence E =  u b + j b/n  (1/n) Pe + j = E1 + E2+ E3+ E4 The resistive term is 3 orders of magnitude smaller than the others, but is enough to suppress numerical instabilities See paper by Wan et al. PoP (2010) These numerical instabilities (noise) really look like tearing instabilities, so... be careful! underresolved wellresolved
Waveparticle and wavewave interactions in the Solar Wind: simulations and observations
Waveparticle and wavewave interactions in the Solar Wind: simulations and observations Lorenzo Matteini University of Florence, Italy In collaboration with Petr Hellinger, Simone Landi, and Marco Velli
More informationTemperature anisotropy in the solar wind
Introduction Observations Simulations Summary in the solar wind Petr Hellinger Institute of Atmospheric Physics & Astronomical Institute AS CR, Prague, Czech Republic Kinetic Instabilities, Plasma Turbulence
More informationKinetic processes and waveparticle interactions in the solar wind
Kinetic processes and waveparticle interactions in the solar wind Eckart Marsch Institute for Experimental and Applied Physics (IEAP), Christian Albrechts University at Kiel, 24118 Kiel, Germany Seminar
More informationChapter 9 Summary and outlook
Chapter 9 Summary and outlook This thesis aimed to address two problems of plasma astrophysics: how are cosmic plasmas isotropized (A 1), and why does the equipartition of the magnetic field energy density
More informationThe microstate of the solar wind
The microstate of the solar wind Radial gradients of kinetic temperatures Velocity distribution functions Ion composition and suprathermal electrons Coulomb collisions in the solar wind Waves and plasma
More informationProton and He 2+ Temperature Anisotropies in the Solar Wind Driven by Ion Cyclotron Waves
Chin. J. Astron. Astrophys. Vol. 5 (2005), No. 2, 184 192 (http:/www.chjaa.org) Chinese Journal of Astronomy and Astrophysics Proton and He 2+ Temperature Anisotropies in the Solar Wind Driven by Ion Cyclotron
More informationSolar Wind Heating by MHD Turbulence
Solar Wind Heating by MHD Turbulence C. S. Ng, A. Bhattacharjee, and D. Munsi Space Science Center University of New Hampshire Acknowledgment: P. A. Isenberg Work partially supported by NSF, NASA CMSO
More informationKolmogorov versus IroshnikovKraichnan spectra: Consequences for ion heating in
Kolmogorov versus IroshnikovKraichnan spectra: Consequences for ion heating in the solar wind C. S. Ng 1, A. Bhattacharjee 2, D. Munsi 2, P. A. Isenberg 2, and C. W. Smith 2 1 Geophysical Institute, University
More informationHybrid simulation of ion cyclotron resonance in the solar wind: Evolution of velocity distribution functions
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2005ja011030, 2005 Hybrid simulation of ion cyclotron resonance in the solar wind: Evolution of velocity distribution functions Xing Li Institute
More informationThe microstate of the solar wind
The microstate of the solar wind Radial gradients of kinetic temperatures Velocity distribution functions Ion composition and suprathermal electrons Coulomb collisions in the solar wind Waves and plasma
More informationStatistical Study of Magnetic Reconnection in the Solar Wind
WDS'13 Proceedings of Contributed Papers, Part II, 7 12, 2013. ISBN 9788073782511 MATFYZPRESS Statistical Study of Magnetic Reconnection in the Solar Wind J. Enžl, L. Přech, J. Šafránková, and Z. Němeček
More informationMagnetohydrodynamics. Basic MHD
Magnetohydrodynamics Conservative form of MHD equations Covection and diffusion Frozenin field lines Magnetohydrostatic equilibrium Magnetic fieldaligned currents Alfvén waves Quasineutral hybrid approach
More informationTutorial: Incorporating kinetic aspects of RF current drive in MHD simulation
kinetic aspects of RF current with a focus on ECCD stabilization of tearing modes RF current Lorentz Workshop: Modeling Kinetic Aspects of Global MHD Modes 4 Dec 2013, Leiden, Netherlands Outline radio
More informationKinetic plasma description
Kinetic plasma description Distribution function Boltzmann and Vlaso equations Soling the Vlaso equation Examples of distribution functions plasma element t 1 r t 2 r d 2D Distribution function (x,) phase
More information11 NavierStokes equations and turbulence
11 NavierStokes equations and turbulence So far, we have considered ideal gas dynamics governed by the Euler equations, where internal friction in the gas is assumed to be absent. Real fluids have internal
More informationDiscuss 7 deficiencies/impediments in our understanding. 1
Do We Really Understand SolarWind/Magnetosphere Coupling? Joe Borovsky Space Science Institute  University of Michigan!We have major unsolved issues about A. what controls dayside reconnection B. the
More informationInstabilities in anisotropic plasmas
Instabilities in anisotropic plasmas P.L. Sulem UNS, CNRS, Observatoire de la Côte d Azur, Nice ECOLE DE PHYSIQUE des HOUCHES The future of plasma astrophysics: combining experiments, observations, simulations,
More informationEventbyevent anisotropies in hydro
Eventbyevent anisotropies in hydro Máté Csanád in collaboration with András Szabó, Sándor Lökös, Attila Bagoly Eötvös University, Budapest Balaton workshop, Tihany, 14 July 2015 July 14, 2015 Máté Csanád,
More informationNUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES
Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics
More informationAeroacoustic simulation based on linearized Euler equations and stochastic sound source modelling
Aeroacoustic simulation based on linearized Euler equations and stochastic sound source modelling H. Dechipre a, M. Hartmann a, J. W Delfs b and R. Ewert b a Volkswagen AG, Brieffach 1777, 38436 Wolfsburg,
More informationCoronal Heating Problem
Mani Chandra Arnab Dhabal Raziman T V PHY690C Course Project Indian Institute of Technology Kanpur Outline 1 2 3 Source of the energy Mechanism of energy dissipation Proposed mechanisms Regions of the
More informationFluent Software Training TRN Boundary Conditions. Fluent Inc. 2/20/01
Boundary Conditions C1 Overview Inlet and Outlet Boundaries Velocity Outline Profiles Turbulence Parameters Pressure Boundaries and others... Wall, Symmetry, Periodic and Axis Boundaries Internal Cell
More informationMeasurement and Simulation of Electron Thermal Transport in the MST ReversedField Pinch
1 EX/P317 Measurement and Simulation of Electron Thermal Transport in the MST ReversedField Pinch D. J. Den Hartog 1,2, J. A. Reusch 1, J. K. Anderson 1, F. Ebrahimi 1,2,*, C. B. Forest 1,2 D. D. Schnack
More informationNonlinear processes in heliospheric plasma: models and observations
Mem. S.A.It. Vol. 74, 425 c SAIt 2003 Memorie della Nonlinear processes in heliospheric plasma: models and observations M. Velli 1, G. Einaudi 2, C. Chiuderi 1, P. L. Veltri 3, and the MM02242342 project
More informationPhysics of fusion power. Lecture 6: Conserved quantities / Mirror device / tokamak
Physics of fusion power Lecture 6: Conserved quantities / Mirror device / tokamak Reminder Perpendicular forces lead to drifts of the particles Electric field acceleration Inertia connected with a change
More informationAdaptation of General Purpose CFD Code for Fusion MHD Applications*
Adaptation of General Purpose CFD Code for Fusion MHD Applications* Andrei Khodak Princeton Plasma Physics Laboratory P.O. Box 451 Princeton, NJ, 08540 USA akhodak@pppl.gov Abstract Analysis of many fusion
More informationContext and purposes. Wind characteristics
Context and purposes The SWIP project ( New innovative solutions, components and tools for the integration of wind energy in urban and periurban areas ) aims to expand the market for Small Wind Turbines
More informationBasic Equations, Boundary Conditions and Dimensionless Parameters
Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were
More informationWall drag modification by large droplets in turbulent channel flow
Wall drag modification by large droplets in turbulent channel flow Luca Scarbolo, Alfredo Soldati Centro Interdipartimentale di Fluidodinamica ed Idraulica Department of Electrical, Industrial and Mechanical
More informationKinetic physics of the solar wind
"What science do we need to do in the next six years to prepare for Solar Orbiter and Solar Probe Plus?" Kinetic physics of the solar wind Eckart Marsch MaxPlanckInstitut für Sonnensystemforschung Complementary
More informationChapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations
Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.
More informationAbaqus/CFD Sample Problems. Abaqus 6.10
Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel
More informationSound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8
References: Sound L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol., Gas Dynamics, Chapter 8 1 Speed of sound The phenomenon of sound waves is one that
More informationThreedimensional Simulation of Magnetized Cloud Fragmentation Induced by Nonlinear Flows and Ambipolar Diffusion
accepted by Astrophysical Journal Letters Threedimensional Simulation of Magnetized Cloud Fragmentation Induced by Nonlinear Flows and Ambipolar Diffusion Takahiro Kudoh 1 and Shantanu Basu 2 ABSTRACT
More informationPushing the limits. Turbine simulation for nextgeneration turbochargers
Pushing the limits Turbine simulation for nextgeneration turbochargers KWOKKAI SO, BENT PHILLIPSEN, MAGNUS FISCHER Computational fluid dynamics (CFD) has matured and is now an indispensable tool for
More informationLimits on the core temperature anisotropy of solar wind protons
Limits on the core temperature anisotropy of solar wind protons E. Marsch, L. Zhao, C.Y. Tu To cite this version: E. Marsch, L. Zhao, C.Y. Tu. Limits on the core temperature anisotropy of solar wind
More informationHeating & Cooling in Molecular Clouds
Lecture 8: Cloud Stability Heating & Cooling in Molecular Clouds Balance of heating and cooling processes helps to set the temperature in the gas. This then sets the minimum internal pressure in a core
More informationGraduate Certificate Program in Energy Conversion & Transport Offered by the Department of Mechanical and Aerospace Engineering
Graduate Certificate Program in Energy Conversion & Transport Offered by the Department of Mechanical and Aerospace Engineering Intended Audience: Main Campus Students Distance (online students) Both Purpose:
More informationElasticity Theory Basics
G22.3033002: Topics in Computer Graphics: Lecture #7 Geometric Modeling New York University Elasticity Theory Basics Lecture #7: 20 October 2003 Lecturer: Denis Zorin Scribe: Adrian Secord, Yotam Gingold
More informationThis chapter describes how you can model solidification and melting in FLUENT. Information is organized into the following sections:
Chapter 21. Melting Modeling Solidification and This chapter describes how you can model solidification and melting in FLUENT. Information is organized into the following sections: Section 21.1: Overview
More informationDiagnostics. Electric probes. Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal http://www.ipfn.ist.utl.
Diagnostics Electric probes Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal http://www.ipfn.ist.utl.pt Langmuir probes Simplest diagnostic (1920) conductor immerse into
More informationAnalysis of MultiSpacecraft Magnetic Field Data
COSPAR Capacity Building Beijing, 5 May 2004 Joachim Vogt Analysis of MultiSpacecraft Magnetic Field Data 1 Introduction, singlespacecraft vs. multispacecraft 2 Singlespacecraft data, minimum variance
More informationLecture 6  Boundary Conditions. Applied Computational Fluid Dynamics
Lecture 6  Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (20022006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.
More informationFlow Sensors.  mass flow rate  volume flow rate  velocity.  stream line parabolic velocity profile  turbulent vortices. Methods of measurement
Flow Sensors Flow  mass flow rate  volume flow rate  velocity Types of flow  stream line parabolic velocity profile  turbulent vortices Methods of measurement  direct: positive displacement (batch
More informationScalars, Vectors and Tensors
Scalars, Vectors and Tensors A scalar is a physical quantity that it represented by a dimensional number at a particular point in space and time. Examples are hydrostatic pressure and temperature. A vector
More informationA Hall attractor in neutron star crusts
A Hall attractor in neutron star crusts Andrew Cumming (McGill University) Kostas Gourgouliatos (CRAQ Fellow, McGill University) A. Reisenegger, C. Armaza (Catolica, Chile), J. Valdivia (U. de Chile),
More informationOn a Flat Expanding Universe
Adv. Studies Theor. Phys., Vol. 7, 2013, no. 4, 191197 HIKARI Ltd, www.mhikari.com On a Flat Expanding Universe Bo Lehnert Alfvén Laboratory Royal Institute of Technology, SE10044 Stockholm, Sweden
More informationIncorporating Internal Gradient and Restricted Diffusion Effects in Nuclear Magnetic Resonance Log Interpretation
The OpenAccess Journal for the Basic Principles of Diffusion Theory, Experiment and Application Incorporating Internal Gradient and Restricted Diffusion Effects in Nuclear Magnetic Resonance Log Interpretation
More informationDYNAMICS OF AXISYMMETRIC ExB AND POLOIDAL FLOWS IN TOKAMAKS
GA A22904 DYNAMICS OF AXISYMMETRIC ExB AND POLOIDAL FLOWS IN TOKAMAKS by F.L. HINTON and M.N. ROSENBLUTH JULY 1998 This report was prepared as an account of work sponsored by an agency of the United States
More informationA SIMPLIFIED DISCUSSION OF RECONNECTION AND ITS MYTHS By Forrest Mozer
A SIMPLIFIED DISCUSSION OF RECONNECTION AND ITS MYTHS By Forrest Mozer 1 WHY A SIMPLIFIED DISCUSSION OF RECONNECTION? For many people, magnetic field reconnection is too complicated to understand in the
More informationTHERMAL STRATIFICATION IN A HOT WATER TANK ESTABLISHED BY HEAT LOSS FROM THE TANK
THERMAL STRATIFICATION IN A HOT WATER TANK ESTABLISHED BY HEAT LOSS FROM THE TANK J. Fan and S. Furbo Abstract Department of Civil Engineering, Technical University of Denmark, Brovej, Building 118, DK28
More informationChapter 1. Governing Equations of Fluid Flow and Heat Transfer
Chapter 1 Governing Equations of Fluid Flow and Heat Transfer Following fundamental laws can be used to derive governing differential equations that are solved in a Computational Fluid Dynamics (CFD) study
More informationThe Theory of Magnetic Reconnection: Past, Present, and Future
The Theory of Magnetic Reconnection: Past, Present, and Future Paul Cassak University of Delaware & West Virginia University 2008 AGU Joint Assembly May 28, 2008 SOHO (ESA & NASA) Magnetic Reconnection
More informationModeling Fluid Systems
Modeling Fluid Systems The prevalent use of fluid (hydraulic) circuitry in machines tool applications, aircraft control systems, and similar operations occurs because of such factors such as accuracy,
More informationDiagnostics. Electric probes. Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal http://www.ipfn.ist.utl.
C. Silva Lisboa, Jan. 2014 IST Diagnostics Electric probes Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal http://www.ipfn.ist.utl.pt Langmuir probes Simplest diagnostic
More informationFundamentals of grain boundaries and grain boundary migration
1. Fundamentals of grain boundaries and grain boundary migration 1.1. Introduction The properties of crystalline metallic materials are determined by their deviation from a perfect crystal lattice, which
More informationLecture 8  Turbulence. Applied Computational Fluid Dynamics
Lecture 8  Turbulence Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (20022006) Fluent Inc. (2002) 1 Turbulence What is turbulence? Effect of turbulence
More informationA Guide to Calculate Convection Coefficients for Thermal Problems Application Note
A Guide to Calculate Convection Coefficients for Thermal Problems Application Note Keywords: Thermal analysis, convection coefficients, computational fluid dynamics, free convection, forced convection.
More informationInteraction of Energy and Matter Gravity Measurement: Using Doppler Shifts to Measure Mass Concentration TEACHER GUIDE
Interaction of Energy and Matter Gravity Measurement: Using Doppler Shifts to Measure Mass Concentration TEACHER GUIDE EMR and the Dawn Mission Electromagnetic radiation (EMR) will play a major role in
More informationLesson 3: Isothermal Hydrostatic Spheres. B68: a selfgravitating stable cloud. Hydrostatic selfgravitating spheres. P = "kt 2.
Lesson 3: Isothermal Hydrostatic Spheres B68: a selfgravitating stable cloud Bok Globule Relatively isolated, hence not many external disturbances Though not main mode of star formation, their isolation
More informationPractice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22
BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =
More informationRobot Perception Continued
Robot Perception Continued 1 Visual Perception Visual Odometry Reconstruction Recognition CS 685 11 Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart
More informationNMR for Physical and Biological Scientists Thomas C. Pochapsky and Susan Sondej Pochapsky Table of Contents
Preface Symbols and fundamental constants 1. What is spectroscopy? A semiclassical description of spectroscopy Damped harmonics Quantum oscillators The spectroscopic experiment Ensembles and coherence
More informationAN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL
14 th European Conference on Mixing Warszawa, 1013 September 2012 AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL Joanna Karcz, Lukasz Kacperski
More informationAbaqus Technology Brief. Automobile Roof Crush Analysis with Abaqus
Abaqus Technology Brief Automobile Roof Crush Analysis with Abaqus TB06RCA1 Revised: April 2007. Summary The National Highway Traffic Safety Administration (NHTSA) mandates the use of certain test procedures
More informationFirstprinciples theorybased scaling of the SOL width in limited tokamak plasmas, experimental validation, and implications for the ITER startup
1 TH/32 Firstprinciples theorybased scaling of the SOL width in limited tokamak plasmas, experimental validation, and implications for the ITER startup P. Ricci 1, F.D. Halpern 1, J. Loizu 1, S. Jolliet
More informationCOMPUTATIONAL FLOW MODEL OF WESTFALL'S 4000 OPEN CHANNEL MIXER 4115271R1. By Kimbal A. Hall, PE. Submitted to: WESTFALL MANUFACTURING COMPANY
COMPUTATIONAL FLOW MODEL OF WESTFALL'S 4000 OPEN CHANNEL MIXER 4115271R1 By Kimbal A. Hall, PE Submitted to: WESTFALL MANUFACTURING COMPANY FEBRUARY 2012 ALDEN RESEARCH LABORATORY, INC. 30 Shrewsbury
More informationPhysics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
More informationCBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology
CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology The Continuum Hypothesis: We will regard macroscopic behavior of fluids as if the fluids are perfectly continuous in structure. In reality,
More informationModelling of plasma response to resonant magnetic perturbations and its influence on divertor strike points
1 TH/P427 Modelling of plasma response to resonant magnetic perturbations and its influence on divertor strike points P. Cahyna 1, Y.Q. Liu 2, E. Nardon 3, A. Kirk 2, M. Peterka 1, J.R. Harrison 2, A.
More informationA subgridscale model for the scalar dissipation rate in nonpremixed combustion
Center for Turbulence Research Proceedings of the Summer Program 1998 11 A subgridscale model for the scalar dissipation rate in nonpremixed combustion By A. W. Cook 1 AND W. K. Bushe A subgridscale
More informationComponent Ordering in Independent Component Analysis Based on Data Power
Component Ordering in Independent Component Analysis Based on Data Power Anne Hendrikse Raymond Veldhuis University of Twente University of Twente Fac. EEMCS, Signals and Systems Group Fac. EEMCS, Signals
More informationFluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture No. # 36 Pipe Flow Systems
Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture No. # 36 Pipe Flow Systems Welcome back to the video course on Fluid Mechanics. In today
More informationWhen the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.
Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs
More informationScience Standard Articulated by Grade Level Strand 5: Physical Science
Concept 1: Properties of Objects and Materials Classify objects and materials by their observable properties. Kindergarten Grade 1 Grade 2 Grade 3 Grade 4 PO 1. Identify the following observable properties
More informationNotes on Polymer Rheology Outline
1 Why is rheology important? Examples of its importance Summary of important variables Description of the flow equations Flow regimes  laminar vs. turbulent  Reynolds number  definition of viscosity
More informationCoronal expansion and solar wind
Coronal expansion and solar wind The solar corona over the solar cycle Coronal and interplanetary temperatures Coronal expansion and solar wind acceleration Origin of solar wind in magnetic network Multifluid
More informationComputational Fluid Dynamics (CFD) and Multiphase Flow Modelling. Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S.
Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S. Kumara (PhD Student), PO. Box 203, N3901, N Porsgrunn, Norway What is CFD?
More informationBasic Principles in Microfluidics
Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces
More informationDeveloping Predictive Capability for High Performance Steady State Plasmas
Developing Predictive Capability for High Performance Steady State Plasmas P. Snyder, A. Kritz, R. Budny, C.S. Chang, M. Greenwald, T. Carter, J. Wright, G.R. Tynan Primary Goal Reduce Time to and Cost
More informationFundamentals of Plasma Physics Waves in plasmas
Fundamentals of Plasma Physics Waves in plasmas APPLAuSE Instituto Superior Técnico Instituto de Plasmas e Fusão Nuclear Vasco Guerra 1 Waves in plasmas What can we study with the complete description
More informationAUTODESK SIMULATION MULTIPHYSICS 2013
AUTODESK SIMULATION MULTIPHYSICS 2013 Which Analysis to Use? FANKOM MÜHENDİSLİK 2/4/2013 AUTODESK SIMULATION MULTIPHYSICS Which Analysis to Use? Use the following guidelines to help choose the correct
More informationDepth sensitivity of seismic coda waves to velocity perturbations in an elastic heterogeneous medium
Depth sensitivity of seismic coda waves to velocity perturbations in an elastic heterogeneous medium Anne Obermann* Thomas Planès* Eric Larose Christoph SensSchönfelder Michel Campillo Montpellier August
More informationSupporting document to NORSOK Standard C004, Edition 2, May 2013, Section 5.4 Hot air flow
1 of 9 Supporting document to NORSOK Standard C004, Edition 2, May 2013, Section 5.4 Hot air flow A method utilizing Computational Fluid Dynamics (CFD) codes for determination of acceptable risk level
More informationExpress Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology
Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013  Industry
More information8 Radiative Cooling and Heating
8 Radiative Cooling and Heating Reading: Katz et al. 1996, ApJ Supp, 105, 19, section 3 Thoul & Weinberg, 1995, ApJ, 442, 480 Optional reading: Thoul & Weinberg, 1996, ApJ, 465, 608 Weinberg et al., 1997,
More informationAn ellipsoidal drop model for single drop dynamics with nonnewtonian fluids
An ellipsoidal drop model for single drop dynamics with nonnewtonian fluids Francesco Greco Istituto per i Materiali Compositi e Biomedici CNR Piazzale Tecchio 80, Napoli, ITALIA Pier Luca Maffettone
More informationDirect and largeeddy simulation of inert and reacting compressible turbulent shear layers
Technische Universität München Fachgebiet Strömungsmechanik Direct and largeeddy simulation of inert and reacting compressible turbulent shear layers Inga Mahle Vollständiger Abdruck der von der Fakultät
More informationProceedings of the NATIONAL ACADEMY OF SCIENCES
Proceedings of the NATIONAL ACADEMY OF SCIENCES Volume 55 * Number 1 * January 15, 1966 DYNAMICS OF SPHERICAL GALAXIES, II* BY PHILIP M. CAMPBELL LAWRENCE RADIATION LABORATORY, LIVERMORE, CALIFORNIA Communicated
More informationDimensional Analysis
Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous
More informationTheory of Magnetic Reconnection for Solar Applications or Why are we still talking about reconnection after 50 years?!?
Theory of Magnetic Reconnection for Solar Applications or Why are we still talking about reconnection after 50 years?!? Paul Cassak West Virginia University 2009 SHINE Workshop August 6, 2009 Acknowledgments
More information1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids
1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids  both liquids and gases.
More informationComparison of CFD models for multiphase flow evolution in bridge scour processes
Comparison of CFD models for multiphase flow evolution in bridge scour processes A. BayónBarrachina, D. Valero, F.J. Vallès Morán, P. A. LópezJiménez Dept. of Hydraulic and Environmental Engineering
More informationSolar Wind Control of Density and Temperature in the NearEarth Plasma Sheet: WINDGEOTAIL Collaboration. Abstract
1 Geophys. Res. Letters, 24, 935938, 1997. Solar Wind Control of Density and Temperature in the NearEarth Plasma Sheet: WINDGEOTAIL Collaboration T. Terasawa 1, M. Fujimoto 2, T. Mukai 3, I. Shinohara
More informationInstability, dispersion management, and pattern formation in the superfluid flow of a BEC in a cylindrical waveguide
Instability, dispersion management, and pattern formation in the superfluid flow of a BEC in a cylindrical waveguide Michele Modugno LENS & Dipartimento di Fisica, Università di Firenze, Italy Workshop
More informationAsymmetric Magnetic Reconnection in the Solar Atmosphere
Asymmetric Magnetic Reconnection in the Solar Atmosphere Nick Murphy HarvardSmithsonian Center for Astrophysics March 13, 2015 Outline Basic physics of magnetic reconnection Magnetic reconnection in different
More informationN 1. (q k+1 q k ) 2 + α 3. k=0
Teoretisk Fysik Handin problem B, SI1142, Spring 2010 In 1955 Fermi, Pasta and Ulam 1 numerically studied a simple model for a one dimensional chain of nonlinear oscillators to see how the energy distribution
More informationThe Impact of Information Technology on the Temporal Optimization of Supply Chain Performance
The Impact of Information Technology on the Temporal Optimization of Supply Chain Performance Ken Dozier University of Southern California kdozier@usc.edu David Chang dbcsfc@aol.com Abstract The objective
More informationCoupling Forced Convection in Air Gaps with Heat and Moisture Transfer inside Constructions
Coupling Forced Convection in Air Gaps with Heat and Moisture Transfer inside Constructions M. Bianchi Janetti 1, F. Ochs 1 and R. Pfluger 1 1 University of Innsbruck, Unit for Energy Efficient Buildings,
More informationElectron temperature anisotropy constraints in the solar wind
Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2007ja012733, 2008 Electron temperature anisotropy constraints in the solar wind Štěpán Štverák, 1,3 Pavel Trávníček,
More information