GRAPHENE: A NEW STAR IN MATERIAL SCIENCE

Size: px
Start display at page:

Download "GRAPHENE: A NEW STAR IN MATERIAL SCIENCE"

Transcription

1 GRAPHENE: A NEW STAR IN MATERIAL SCIENCE S. Sahoo 1 & A. K. Dutta 2 Department of Physics, National Institute of Technology Durgapur , West Bengal, India. 1 sukadevsahoo@yahoo.com 2 atanu.30255@gmail.com 1. Introduction 33 Graphene is the recently discovered two-dimensional (2D) allotrope of carbon [1,2]. It is a monolayer of carbon atoms packed into a dense honeycomb crystal structure. Graphene 2 sheets are one-atom thick, 2D layers of s p -bonded carbon. It is a 2D nanomaterial. The name comes from graphite + -ene ; graphite itself consists of many graphene sheets coupled by weak Vanderwaal forces. The carbon-carbon bond length in graphene is about nm. Graphene has 2 atoms per unit cell. It is the thinnest and strongest material tested till now. It gives nonzero electrical conductivity even when charge concentration is zero. Its charge carriers 6 1 (electrons) can travel with Fermi velocity ( v F ~ 10 m s ) with very large mobility and zero effective mass. These particles are called Dirac fermions and obey the relativistic physics. Graphene creates a new branch of physics known as relativistic condensed matter physics. This peculiar property makes graphene as a new star of modern science and technology. Fig 1: Honeycomb structure of graphene [1] Fig 2: Electron microscope image 2. Existence is a miracle According to Landau and Peierls atoms in 2D crystals are displaced from its equilibrium position due to the thermal fluctuations [3,4] and this displacement is comparable with

2 the interatomic distance at finite temperature. Moreover experimentally it is prove that the melting temperature of thin films rapidly decreases with the decreasing thickness. So in a film when there exist near about 12 layers [5] it becomes unstable, so they should not exit. But in 2004, physicists Andre Geim and Kostya Novoselov from Manchester University, UK, extracted single layer of graphite [6] which is known as graphene from 3D graphite. They used top down approach starting from large graphite finally produced high quality graphene crystal. Electrons can travel thousand of interatomic distance 6 1 without scattering with a velocity of 10 m s. Fig 3: Atomic force microscopy picture of a graphene on top of an oxidized Si substrate [7]. 3. Mother of all graphitic materials Fig 4 Graphene is the building block for carbon materials of all other dimensions therefore it is known as the mother of all graphitic materials [8]. Graphite is obtained by the stacking of graphene layers. Diamond can be obtained from graphene under extreme pressure and

3 temperatures by transforming the 2-dimensional sp 2 bonds into 3-dimensional sp 3 bonds. Carbon nanotubes are synthesized from rolled up graphene. Fullerenes can also be obtained from graphene by modifying the hexagons into pentagons and heptagons in a systematic way (Fig 4). 4. Is it a metal or a semiconductor? Graphene has properties like both a normal metal and a semiconductor. Like metal it is strong (strongest material tested till today) in terms of young modulus and elastic stiffness. It can conducts electricity even better than copper. Usually for metals we require only one energy band to describe them and for semiconductor we need two energy bands (conduction and valance band). Graphene has two bands one for particle which is empty and other for antiparticles (holes) which is filled, but there is no gap between the two bands [9]. Hence we can say graphene is a semi metal or a zero gap semiconductor or a hybrid between a metal and a semiconductor (Fig 5). But in many applications where a large on and off current ratio is needed, this zero gap is become a drawback. So research is going on to generate gap between the two bands. There are many ways to generate the gap. Theoretically the simplest way to do this is like following. If we consider that the honeycomb lattice is made by two identical interpenetrating triangular sub lattices there will be no energy band gap and if two sub lattices are different (Fig 6), then a gap will be generated. Fig 5: Energy bands for different materials [9].

4 5. Some peculiar properties a. Massless charge particle Fig 6: Honeycomb lattice of graphene In ordinary metal or semiconductor the electronic energy can be written as, 2 2 * E = h k / 2M, where h = h / 2π, h is the Planck s constant, k is the wave vector and M * is the effective mass of the electron. But in case of graphene electrons are obeying a linear dispersion relation (i.e. the electron energy is linearly proportional to the wave vector, E = h k vf ) and behave as massless relativistic particles, called Dirac fermions [10,11]. Here v F is the Fermi velocity of electron in the graphene. This property implies that the speed of electrons in graphene is a constant, independent of momentum, like the speed of photons is a constant c. Recently it is found that the velocity of electrons in 6 1 graphene is about10 m s. This velocity is large but still 300 times slower than the velocity of light in vacuum c. Since the electrons are sluggish compared to the speedy photons they exchange when interacting, the physics of electron-electron interaction in graphene is different from that of photon-mediated interactions between fermions in quantum electrodynamics (QED). In graphene the interactions among electrons are 2 extremely strong and graphene s dimensionless coupling constant α G R = e / hvf 1 is 2 larger than the dimensionless coupling constant of QED, α = e / hc 1/ 137. The large difference between c and v F implies that the interacting electrons in a graphene sheet is not like the 2D version of QED. b. Giant mobility and lowest resistivity Graphene has a very high electron mobility at room temperature, with values of 15,000 cm 2 V -1 s -1 [12] and it can be increased upto 200,000 cm 2 V -1 s -1 at a carrier density of cm -2. The corresponding resistivity of the graphene sheet would be 10-6 Ω cm, less than the resistivity of silver, the lowest resistivity substance known at room temperature. c. Non-zero conductivity with zero charge concentration Graphene exhibits a minimum conductivity of the order of the quantum unit e 2 /h when the carrier charge concentration is zero. But in case of ordinary system it is zero when the charge concentration is zero. The origin of this peculiar property is still unclear.

5 d. Anomalous quantum Hall effect Graphene shows very interesting behavior in the presence of a magnetic field at very low temperature [13], typically below C. Graphene shows an anomalous quantum Hall effect with the sequence shifted by 1/2 with respect to the standard sequence. The quantum Hall effect is one the most remarkable phenomena in condensed matter physics discovered in the second half of the 20 th century. The basic fact characterizing quantum Hall effect is that the diagonal electric conductivity of a two-dimensional electron system in a strong magnetic field is vanishingly small σ xx 0, while the non-diagonal conductivity is quantized in multiples of e 2 2 /h : σ xy = p e / h, where p is an integer (the integral quantum Hall effect, IQHE) [14]. When p is a fractional number, it is known as fractional quantum Hall effect (FQHE). The authors have discussed both IQHE and FQHE in 2D electron gas briefly in ref. 15. In recent experiments, the quantum Hall effect is observed in graphene. It is found [16-18] that the Hall conductivity 1 σ = ± 4 2 xy e / h N +, where N is the Landau level index and the factor 4 accounts 2 for graphene s double spin and double band (valley) degeneracy. That is why; it is characterized as half-integer quantum Hall effect. The first plateau occurs at 2e 2 / h. This anomalous QHE is the direct evidence for Dirac fermions in graphene. 6. Other properties The near-room temperature thermal conductivity of graphene lies between (4.84±0.44) 10 3 to (5.30±0.48) 10 3 Wm -1 K -1 [19] which is 100 times larger than the graphite. Till today graphene appears as the strongest material ever tested in nature. Measurements have shown that graphene has a breaking strength 200 times greater than steel [20]. Its spring constant lies in the range 1-5 N/m and the Young's modulus is 0.5 TPa [21], which differs from that of the bulk graphite. These high values make graphene very strong and rigid. 7. Applications Graphene has 2D structure so its entire volume is exposed to the surrounding. Hence it can be used as a very good gas detector and also can be used to make excellent transistor which can run at higher frequency and more efficient than silicon transistor. It is due to the fact that in graphene the charge carriers move very fast. Graphene can be used as a coating against acid and alkalis such as hydrofluoric acid and amonia. The Massachusetts Institute of Technology built an experimental graphene hip known as frequency multiplier which can produce multiple of the incoming frequency. It is expected that the graphene microprocessor can appear within 20 years [12]. Graphene powder may also be used in battery.

6 8. Conclusions Graphene is a monoatomic layer of graphite with carbon atoms arranged in a twodimensional honeycomb lattice configuration. The electronic structure of graphene can be modelled by two-dimensional massless relativistic fermions. This property gives rise to numerous applications both in applied science and in theoretical physics. Graphene research is one of the fastest growing areas in material science, but it is still a young field. There are many challenges and opportunities for investigation, because graphene is not a standard solid state material. It is a new star in material science. Graphene has some peculiar properties which is not matched with the ordinary metal and semiconductor. So it is necessary to establish a new generalized theory for it. Graphene has potential for serving as an excellent electronic material that can be used in place of silicon for making ultrafast and stable transistors. It is considered as a promising candidate for electronics and spintronics applications. It provides a bridge between condensed matter physics and quantum electrodynamics. References 1. wikipedia.org/wiki/graphene. 2. S. Sahoo and A. K. Dutta, Emerging Science, 2(2), 16 (2010). 3. R. E. Peierls, Ann. I. H. Poincare, 5, 177 (1935). 4. L. D. Landau, Phys. Z. Sowjetunion, 11, 26 (1937). 5. J. A. Venable, G. D. T. Spiller and M. Hanbuken, Rep. Prog. Phys. 47, 399 (1984). 6. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004). 7. M. I. Katsnelson, Materialstoday, 10(1-2), 20 (2007). 8. C. Srinivasan. Current Science, 92, 1338 (2007). 9. Antonio H. Castro Neto, Materialstoday, 13(3). 1 (2010) 10. S. Sahoo and S. Das. Indian J. pure & Appl. Phys. 47, 186 (2009). 11. S. Sahoo and S. K. Sahoo, Indian J. Sci. & Tech., 2(12), 74 (2009). 12. A. K. Geim and K. S. Novoselov, Nature Mater., 6, 183 (2007). 13. B. Basu, Science Reporter, 45(7), 33 (2008). 14. V. P. Gusynin and S. G. Sharapov, Phys. Rev. Lett., 95, (2005) [arxiv: cond-mat/ ]. 15. S. Sahoo and M. Goswami, IAPT Bulletin, 24(12), 388 (2007). 16. A. K. Geim and A. H. MacDonald, Physics Today, 60, 35 (August 2007). 17. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature, 438, 197 (2005). 18. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature, 438, 201 (2005). 19. A. A. Balandin et al., Nano Letter, 8(3), 902 (2008). 20. C. Lee et al., Science, 320(5887), 385 (2008). 21. I. W. Frank, D. M. Tanendaum, A. M. Van der Zande and P. L. McEuen, J. Vac. Sci. Technol. B25, 2558 (2007).

Graphene a material for the future

Graphene a material for the future Graphene a material for the future by Olav Thorsen What is graphene? What is graphene? Simply put, it is a thin layer of pure carbon What is graphene? Simply put, it is a thin layer of pure carbon It has

More information

Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator

Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator Chang et al., Science 340, 167 (2013). Joseph Hlevyack, Hu Jin, Mazin Khader, Edward Kim Outline: Introduction:

More information

Unit 12 Practice Test

Unit 12 Practice Test Name: Class: Date: ID: A Unit 12 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1) A solid has a very high melting point, great hardness, and

More information

Explain the ionic bonds, covalent bonds and metallic bonds and give one example for each type of bonds.

Explain the ionic bonds, covalent bonds and metallic bonds and give one example for each type of bonds. Problem 1 Explain the ionic bonds, covalent bonds and metallic bonds and give one example for each type of bonds. Ionic Bonds Two neutral atoms close to each can undergo an ionization process in order

More information

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier Tunnel Effect: - particle with kinetic energy E strikes a barrier with height U 0 > E and width L - classically the particle cannot overcome the barrier - quantum mechanically the particle can penetrated

More information

What is Nanophysics: Survey of Course Topics. Branislav K. Nikolić

What is Nanophysics: Survey of Course Topics. Branislav K. Nikolić What is Nanophysics: Survey of Course Topics Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, U.S.A. http://wiki.physics.udel.edu/phys824 Definition of

More information

Matter, Materials, Crystal Structure and Bonding. Chris J. Pickard

Matter, Materials, Crystal Structure and Bonding. Chris J. Pickard Matter, Materials, Crystal Structure and Bonding Chris J. Pickard Why should a theorist care? Where the atoms are determines what they do Where the atoms can be determines what we can do Overview of Structure

More information

Burcu Saner, Firuze Okyay, Fatma Dinç, Neylan Görgülü, Selmiye Alkan Gürsel and Yuda Yürüm*

Burcu Saner, Firuze Okyay, Fatma Dinç, Neylan Görgülü, Selmiye Alkan Gürsel and Yuda Yürüm* Burcu Saner, Firuze Okyay, Fatma Dinç, Neylan Görgülü, Selmiye Alkan Gürsel and Yuda Yürüm* Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul Background about graphene and its separation

More information

White Dwarf Properties and the Degenerate Electron Gas

White Dwarf Properties and the Degenerate Electron Gas White Dwarf Properties and the Degenerate Electron Gas Nicholas Rowell April 10, 2008 Contents 1 Introduction 2 1.1 Discovery....................................... 2 1.2 Survey Techniques..................................

More information

Free Electron Fermi Gas (Kittel Ch. 6)

Free Electron Fermi Gas (Kittel Ch. 6) Free Electron Fermi Gas (Kittel Ch. 6) Role of Electrons in Solids Electrons are responsible for binding of crystals -- they are the glue that hold the nuclei together Types of binding (see next slide)

More information

From Landau levels to quantum Hall effects

From Landau levels to quantum Hall effects From Landau levels to quantum Hall effects by Bertrand I. Halperin, Harvard University Landau 100 Memorial Meeting Moscow, June 20, 2008 The Quantum Hall Effects Large set of peculiar phenomena in two-dimensional

More information

SUPERCONDUCTIVITY. PH 318- Introduction to superconductors 1

SUPERCONDUCTIVITY. PH 318- Introduction to superconductors 1 SUPERCONDUCTIVITY property of complete disappearance of electrical resistance in solids when they are cooled below a characteristic temperature. This temperature is called transition temperature or critical

More information

The Raman Fingerprint of Graphene

The Raman Fingerprint of Graphene The Raman Fingerprint of Graphene A. C. Ferrari 1, J. C. Meyer 2, V. Scardaci 1, C. Casiraghi 1, M. Lazzeri 3, F. Mauri 3, S. Piscanec 1, D. Jiang 4, K. S. Novoselov 4, S. Roth 2, A. K. Geim 4 1 Department

More information

Contents. Goldstone Bosons in 3He-A Soft Modes Dynamics and Lie Algebra of Group G:

Contents. Goldstone Bosons in 3He-A Soft Modes Dynamics and Lie Algebra of Group G: ... Vlll Contents 3. Textures and Supercurrents in Superfluid Phases of 3He 3.1. Textures, Gradient Energy and Rigidity 3.2. Why Superfuids are Superfluid 3.3. Superfluidity and Response to a Transverse

More information

Plate waves in phononic crystals slabs

Plate waves in phononic crystals slabs Acoustics 8 Paris Plate waves in phononic crystals slabs J.-J. Chen and B. Bonello CNRS and Paris VI University, INSP - 14 rue de Lourmel, 7515 Paris, France chen99nju@gmail.com 41 Acoustics 8 Paris We

More information

Thermal unobtainiums? The perfect thermal conductor and the perfect thermal insulator

Thermal unobtainiums? The perfect thermal conductor and the perfect thermal insulator Thermal unobtainiums? The perfect thermal conductor and the perfect thermal insulator David G. Cahill Materials Research Lab and Department of Materials Science and Engineering, U. of Illinois Gratefully

More information

Highlights of Solid State Physics. Man of the Year Nobel Prizes

Highlights of Solid State Physics. Man of the Year Nobel Prizes Highlights of Solid State Physics Man of the Year Nobel Prizes Silicon Technology Moore s Law Gordon Moore Intel Jack Kilby 14 nm 2014 Physics Nobel Prize 2000 Integrated Circuit Electrons in the Conduction

More information

Physical Properties and Functionalization of Low-Dimensional Materials

Physical Properties and Functionalization of Low-Dimensional Materials Physical Properties and Functionalization of Low-Dimensional Materials Physics Department, University of Trieste Graduate School of Physics, XXVI cycle Supervisor: Co-supervisor: Prof. Alessandro BARALDI

More information

Hall Effect Measurement in Copper (Electrical Transport Option) Prof. Richard Averitt, UC San Diego

Hall Effect Measurement in Copper (Electrical Transport Option) Prof. Richard Averitt, UC San Diego Hall Effect Measurement in Copper (Electrical Transport Option) Prof. Richard Averitt, UC San Diego Description: The objective of this educational module (EM) is to measure the Hall voltage VH to determine

More information

Theoretical investigation on armchair graphene nanoribbons. with oxygen-terminated edges

Theoretical investigation on armchair graphene nanoribbons. with oxygen-terminated edges Theoretical investigation on armchair graphene nanoribbons with oxygen-terminated edges Hongyu Ge, Guo Wang* and Yi Liao Department of Chemistry, Capital Normal University, Beijing 100048, China * Corresponding

More information

Spatially separated excitons in 2D and 1D

Spatially separated excitons in 2D and 1D Spatially separated excitons in 2D and 1D David Abergel March 10th, 2015 D.S.L. Abergel 3/10/15 1 / 24 Outline 1 Introduction 2 Spatially separated excitons in 2D The role of disorder 3 Spatially separated

More information

Gravity models & condensed matter: improving interconnections

Gravity models & condensed matter: improving interconnections Gravity models & condensed matter: improving interconnections Annalisa Marzuoli Dipartimento di Matematica PAFT 2012 Vietri sul Mare, April 2, 2012 1 Prehistory: Witten s triplet W1. 2+1 dimensional gravity

More information

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids 1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

More information

Supporting information

Supporting information Supporting information Ultrafast room-temperature NH 3 sensing with positively-gated reduced graphene oxide field-effect transistors Ganhua Lu 1, Kehan Yu 1, Leonidas E. Ocola 2, and Junhong Chen 1 * 1

More information

Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure.

Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure. Crystalline solids A solid crystal consists of different atoms arranged in a periodic structure. Crystals can be formed via various bonding mechanisms: Ionic bonding Covalent bonding Metallic bonding Van

More information

TRANSPORT PROPERTIES OF GRAPHENE IN AND OUT OF THE BULK

TRANSPORT PROPERTIES OF GRAPHENE IN AND OUT OF THE BULK TRANSPORT PROPERTIES OF GRAPHENE IN AND OUT OF THE BULK Jean-Paul Issi Université de Louvain Louvain-la-Neuve Graphene International School, Cargese, October, 2010 PART I ELECTRICAL CONDUCTIVITY PART II

More information

Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010)

Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010) Modern Physics (PHY 3305) Lecture Notes Modern Physics (PHY 3305) Lecture Notes Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010) Review

More information

Electronic Transport in Ropes of Single Wall Carbon Nanotubes

Electronic Transport in Ropes of Single Wall Carbon Nanotubes Electronic Transport in Ropes of Single Wall Carbon Nanotubes Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung

More information

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Module - 2 Lecture - 2 Part 2 of 2 Review of Atomic Bonding II We will continue

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Section 3: Crystal Binding

Section 3: Crystal Binding Physics 97 Interatomic forces Section 3: rystal Binding Solids are stable structures, and therefore there exist interactions holding atoms in a crystal together. For example a crystal of sodium chloride

More information

1. Degenerate Pressure

1. Degenerate Pressure . Degenerate Pressure We next consider a Fermion gas in quite a different context: the interior of a white dwarf star. Like other stars, white dwarfs have fully ionized plasma interiors. The positively

More information

Sub-gap conductance fluctuations in superconductor-graphene hybrid nanostructures

Sub-gap conductance fluctuations in superconductor-graphene hybrid nanostructures Sub-gap conductance fluctuations in superconductor-graphene hybrid nanostructures G.Albert, B.Kaviraj, F.Gustavo, F.Lefloch, L.Jansen Laboratoire de Transport Electronique Quantique et Supraconductivité

More information

Lecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip --- the probe.

Lecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip --- the probe. Lecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip --- the probe. Brief Overview of STM Inventors of STM The Nobel Prize in Physics 1986 Nobel

More information

The Application of Density Functional Theory in Materials Science

The Application of Density Functional Theory in Materials Science The Application of Density Functional Theory in Materials Science Slide 1 Outline Atomistic Modelling Group at MUL Density Functional Theory Numerical Details HPC Cluster at the MU Leoben Applications

More information

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10. CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.102 10.1 INTERACTIONS BETWEEN IONS Ion-ion Interactions and Lattice Energy

More information

UNIT I: INTRFERENCE & DIFFRACTION Div. B Div. D Div. F INTRFERENCE

UNIT I: INTRFERENCE & DIFFRACTION Div. B Div. D Div. F INTRFERENCE 107002: EngineeringPhysics Teaching Scheme: Lectures: 4 Hrs/week Practicals-2 Hrs./week T.W.-25 marks Examination Scheme: Paper-50 marks (2 hrs) Online -50marks Prerequisite: Basics till 12 th Standard

More information

Technology White Papers nr. 13 Paul Holister Cristina Román Vas Tim Harper

Technology White Papers nr. 13 Paul Holister Cristina Román Vas Tim Harper QUANTUM DOTS Technology White Papers nr. 13 Paul Holister Cristina Román Vas Tim Harper QUANTUM DOTS Technology White Papers nr. 13 Release Date: Published by Científica Científica, Ltd. www.cientifica.com

More information

Tobias Märkl. November 16, 2009

Tobias Märkl. November 16, 2009 ,, Tobias Märkl to 1/f November 16, 2009 1 / 33 Content 1 duction to of Statistical Comparison to Other Types of Noise of of 2 Random duction to Random General of, to 1/f 3 4 2 / 33 , to 1/f 3 / 33 What

More information

CRYSTALLINE SOLIDS IN 3D

CRYSTALLINE SOLIDS IN 3D CRYSTALLINE SOLIDS IN 3D Andrew Baczewski PHY 491, October 7th, 2011 OVERVIEW First - are there any questions from the previous lecture? Today, we will answer the following questions: Why should we care

More information

Modification of Graphene Films by Laser-Generated High Energy Particles

Modification of Graphene Films by Laser-Generated High Energy Particles Modification of Graphene Films by Laser-Generated High Energy Particles Elena Stolyarova (Polyakova), Ph.D. ATF Program Advisory and ATF Users Meeting April 2-3, 2009, Berkner Hall, Room B, BNL Department

More information

The Quantum Harmonic Oscillator Stephen Webb

The Quantum Harmonic Oscillator Stephen Webb The Quantum Harmonic Oscillator Stephen Webb The Importance of the Harmonic Oscillator The quantum harmonic oscillator holds a unique importance in quantum mechanics, as it is both one of the few problems

More information

FYS3410 - Vår 2014 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v14/index.html

FYS3410 - Vår 2014 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v14/index.html FYS3410 - Vår 2014 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v14/index.html Pensum: Solid State Physics by Philip Hofmann (Chapters 1-7 and 11) Andrej Kuznetsov delivery

More information

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance. .1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

More information

Chapter Outline. How do atoms arrange themselves to form solids?

Chapter Outline. How do atoms arrange themselves to form solids? Chapter Outline How do atoms arrange themselves to form solids? Fundamental concepts and language Unit cells Crystal structures Simple cubic Face-centered cubic Body-centered cubic Hexagonal close-packed

More information

Solid State Detectors = Semi-Conductor based Detectors

Solid State Detectors = Semi-Conductor based Detectors Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection

More information

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Energy Transport Focus on heat transfer Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Conduction Conduction heat transfer occurs only when there is physical contact

More information

Statistical Physics, Part 2 by E. M. Lifshitz and L. P. Pitaevskii (volume 9 of Landau and Lifshitz, Course of Theoretical Physics).

Statistical Physics, Part 2 by E. M. Lifshitz and L. P. Pitaevskii (volume 9 of Landau and Lifshitz, Course of Theoretical Physics). Fermi liquids The electric properties of most metals can be well understood from treating the electrons as non-interacting. This free electron model describes the electrons in the outermost shell of the

More information

KINETIC THEORY AND THERMODYNAMICS

KINETIC THEORY AND THERMODYNAMICS KINETIC THEORY AND THERMODYNAMICS 1. Basic ideas Kinetic theory based on experiments, which proved that a) matter contains particles and quite a lot of space between them b) these particles always move

More information

Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige

Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige Ch. 4: Imperfections in Solids Part 1 Dr. Feras Fraige Outline Defects in Solids 0D, Point defects vacancies Interstitials impurities, weight and atomic composition 1D, Dislocations edge screw 2D, Grain

More information

Introduction OLEDs OTFTs OPVC Summary. Organic Electronics. Felix Buth. Walter Schottky Institut, TU München. Joint Advanced Student School 2008

Introduction OLEDs OTFTs OPVC Summary. Organic Electronics. Felix Buth. Walter Schottky Institut, TU München. Joint Advanced Student School 2008 Felix Buth Joint Advanced Student School 2008 Outline 1 Introduction Difference organic/inorganic semiconductors From molecular orbitals to the molecular crystal 2 Organic Light Emitting Diodes Basic Principals

More information

Investigation on Enhancement of Heat Transfer Using Different Type of Nanofluids Review

Investigation on Enhancement of Heat Transfer Using Different Type of Nanofluids Review Review Paper Investigation on Enhancement of Heat Transfer Using Different Type of Nanofluids Review Authors 1 Ramesh Bhoi *, 2 Dinesh Dabhi, 3 Chetan Jaiswal Address for Correspondence: 1, 2 Mechanical

More information

An organic semiconductor is an organic compound that possesses similar

An organic semiconductor is an organic compound that possesses similar MSE 542 Final Term Paper Title: Organic Semiconductor for Flexible Electronics Name: Chunhung Huang Introduction: An organic semiconductor is an organic compound that possesses similar properties to inorganic

More information

Coating Technology: Evaporation Vs Sputtering

Coating Technology: Evaporation Vs Sputtering Satisloh Italy S.r.l. Coating Technology: Evaporation Vs Sputtering Gianni Monaco, PhD R&D project manager, Satisloh Italy 04.04.2016 V1 The aim of this document is to provide basic technical information

More information

Graphene and the Quantum Spin Hall Effect

Graphene and the Quantum Spin Hall Effect Graphene and the Quantum Spin Hall Effect Graphene, the Quantum Spin Hall Effect and topological insulators I. Graphene II. Quantum Spin Hall Effect - Spin orbit induced energy gap in graphene A new 2D

More information

"in recognition of the services he rendered to the advancement of Physics by his discovery of energy quanta". h is the Planck constant he called it

in recognition of the services he rendered to the advancement of Physics by his discovery of energy quanta. h is the Planck constant he called it 1 2 "in recognition of the services he rendered to the advancement of Physics by his discovery of energy quanta". h is the Planck constant he called it the quantum of action 3 Newton believed in the corpuscular

More information

Infrared Spectroscopy: Theory

Infrared Spectroscopy: Theory u Chapter 15 Infrared Spectroscopy: Theory An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer. IR is used

More information

PHYSICAL PROPERTIES: GLASS. Forensic Science CC 30.07 Spring 2007 Prof. Nehru

PHYSICAL PROPERTIES: GLASS. Forensic Science CC 30.07 Spring 2007 Prof. Nehru PHYSICAL PROPERTIES: GLASS Physical vs. Chemical Properties The forensic scientist must constantly determine those properties that impart distinguishing characteristics to matter, giving it a unique identity.

More information

Concepts in Theoretical Physics

Concepts in Theoretical Physics Concepts in Theoretical Physics Lecture 6: Particle Physics David Tong e 2 The Structure of Things 4πc 1 137 e d ν u Four fundamental particles Repeated twice! va, 9608085, 9902033 Four fundamental forces

More information

Usage of Carbon Nanotubes in Scanning Probe Microscopes as Probe. Keywords: Carbon Nanotube, Scanning Probe Microscope

Usage of Carbon Nanotubes in Scanning Probe Microscopes as Probe. Keywords: Carbon Nanotube, Scanning Probe Microscope International Journal of Arts and Sciences 3(1): 18-26 (2009) CD-ROM. ISSN: 1944-6934 InternationalJournal.org Usage of Carbon Nanotubes in Scanning Probe Microscopes as Probe Bedri Onur Kucukyildirim,

More information

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS Quantum Mechanics or wave mechanics is the best mathematical theory used today to describe and predict the behaviour of particles and waves.

More information

MOLECULAR DYNAMICS INVESTIGATION OF DEFORMATION RESPONSE OF THIN-FILM METALLIC NANOSTRUCTURES UNDER HEATING

MOLECULAR DYNAMICS INVESTIGATION OF DEFORMATION RESPONSE OF THIN-FILM METALLIC NANOSTRUCTURES UNDER HEATING NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2011, 2 (2), P. 76 83 UDC 538.97 MOLECULAR DYNAMICS INVESTIGATION OF DEFORMATION RESPONSE OF THIN-FILM METALLIC NANOSTRUCTURES UNDER HEATING I. S. Konovalenko

More information

Types of Epitaxy. Homoepitaxy. Heteroepitaxy

Types of Epitaxy. Homoepitaxy. Heteroepitaxy Epitaxy Epitaxial Growth Epitaxy means the growth of a single crystal film on top of a crystalline substrate. For most thin film applications (hard and soft coatings, optical coatings, protective coatings)

More information

An Introduction of Topological Orders

An Introduction of Topological Orders An Introduction of Topological Orders Xiao-Gang Wen Dept. of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 http://dao.mit.edu/ wen Abstract One of most fundamental issues

More information

Wafer Manufacturing. Reading Assignments: Plummer, Chap 3.1~3.4

Wafer Manufacturing. Reading Assignments: Plummer, Chap 3.1~3.4 Wafer Manufacturing Reading Assignments: Plummer, Chap 3.1~3.4 1 Periodic Table Roman letters give valence of the Elements 2 Why Silicon? First transistor, Shockley, Bardeen, Brattain1947 Made by Germanium

More information

Anomalous Hall Effect Magnetometry A Method for Studying Magnetic Processes of Thin Magnetic Films

Anomalous Hall Effect Magnetometry A Method for Studying Magnetic Processes of Thin Magnetic Films Anomalous Hall Effect Magnetometry A Method for Studying Magnetic Processes of Thin Magnetic Films J. R. Lindemuth a, B. C. Dodrill a and N. C. Oldham b a Lake Shore Cryotronics, Inc. 575 McCorkle Blvd,

More information

Phase Characterization of TiO 2 Powder by XRD and TEM

Phase Characterization of TiO 2 Powder by XRD and TEM Kasetsart J. (Nat. Sci.) 42 : 357-361 (28) Phase Characterization of TiO 2 Powder by XRD and TEM Kheamrutai Thamaphat 1 *, Pichet Limsuwan 1 and Boonlaer Ngotawornchai 2 ABSTRACT In this study, the commercial

More information

ENS 07 Paris, France, 3-4 December 2007

ENS 07 Paris, France, 3-4 December 2007 ENS 7 Paris, France, 3-4 December 7 FRICTION DRIVE SIMULATION OF A SURFACE ACOUSTIC WAVE MOTOR BY NANO VIBRATION Minoru Kuribayashi Kurosawa, Takashi Shigematsu Tokyou Institute of Technology, Yokohama

More information

DIFFUSION IN SOLIDS. Materials often heat treated to improve properties. Atomic diffusion occurs during heat treatment

DIFFUSION IN SOLIDS. Materials often heat treated to improve properties. Atomic diffusion occurs during heat treatment DIFFUSION IN SOLIDS WHY STUDY DIFFUSION? Materials often heat treated to improve properties Atomic diffusion occurs during heat treatment Depending on situation higher or lower diffusion rates desired

More information

A reinterpretation of the phase transitions in Na 2 CO 3

A reinterpretation of the phase transitions in Na 2 CO 3 Acta Crystallographica Section B Structural Science ISSN 0108-7681 Editor: Carolyn P. Brock A reinterpretation of the phase transitions in Na 2 CO 3 Alla Arakcheeva and Gervais Chapuis Copyright International

More information

On a Flat Expanding Universe

On a Flat Expanding Universe Adv. Studies Theor. Phys., Vol. 7, 2013, no. 4, 191-197 HIKARI Ltd, www.m-hikari.com On a Flat Expanding Universe Bo Lehnert Alfvén Laboratory Royal Institute of Technology, SE-10044 Stockholm, Sweden

More information

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION)

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION) MASTER OF SCIENCE IN PHYSICS Admission Requirements 1. Possession of a BS degree from a reputable institution or, for non-physics majors, a GPA of 2.5 or better in at least 15 units in the following advanced

More information

Material Requirements For 3D IC and Packaging Presented by: W. R. Bottoms

Material Requirements For 3D IC and Packaging Presented by: W. R. Bottoms Material Requirements For 3D IC and Packaging Presented by: W. R. Bottoms Frontiers of Characterization and Metrology for Nanoelectronics Hilton Dresden April 14-16, 2015 Industry Needs Are Changing Moore

More information

Keywords: Planar waveguides, sol-gel technology, transmission electron microscopy

Keywords: Planar waveguides, sol-gel technology, transmission electron microscopy Structural and optical characterisation of planar waveguides obtained via Sol-Gel F. Rey-García, C. Gómez-Reino, M.T. Flores-Arias, G.F. De La Fuente, W. Assenmacher, W. Mader ABSTRACT Planar waveguides

More information

Chapter 18: The Structure of the Atom

Chapter 18: The Structure of the Atom Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.

More information

Carbon-Carbon bonds: Hybridization

Carbon-Carbon bonds: Hybridization Carbon-Carbon bonds: Hybridization Abstract: Gina 05/05/11 Molecular binding behavior has a large inuence on the structure of a material and their properties. As a exclusion, carbon bind themself not in

More information

Free piston Stirling engine for rural development

Free piston Stirling engine for rural development Free piston Stirling engine for rural development R. Krasensky, Intern, Stirling development, r.krasensky@rrenergy.nl W. Rijssenbeek, Managing director, w.rijssenbeek@rrenergy.nl Abstract: This paper presents

More information

High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures

High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures ARGYRIOS C. VARONIDES Physics and EE Department University of Scranton 800 Linden Street, Scranton PA, 18510 United States Abstract:

More information

The Schwinger Mechanism and Graphene. D. Allor *, T.DC, D. A. McGady * arxiv:0708.1471 * University of Maryland Undergrads

The Schwinger Mechanism and Graphene. D. Allor *, T.DC, D. A. McGady * arxiv:0708.1471 * University of Maryland Undergrads The Schwinger Mechanism and Graphene & D. Allor *, T.DC, D. A. McGady * arxiv:0708.1471 * University of Maryland Undergrads Outline What is the Schwinger Mechanism? Why is it worth worrying about? How

More information

Novel inkjettable copper ink utilizing processing temperatures under 100 degrees C without the need of inert atmosphere

Novel inkjettable copper ink utilizing processing temperatures under 100 degrees C without the need of inert atmosphere Novel inkjettable copper ink utilizing processing temperatures under 100 degrees C without the need of inert atmosphere Printed Electronics Europe April 7-8, 2009 Dresden, Germany Dr. Zvi Yaniv Applied

More information

Pulsed laser deposition of organic materials

Pulsed laser deposition of organic materials Pulsed laser deposition of organic materials PhD theses Gabriella Kecskeméti Department of Optics and Quantum Electronics University of Szeged Supervisor: Dr. Béla Hopp senior research fellow Department

More information

Calculating particle properties of a wave

Calculating particle properties of a wave Calculating particle properties of a wave A light wave consists of particles (photons): The energy E of the particle is calculated from the frequency f of the wave via Planck: E = h f (1) A particle can

More information

Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution

Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution Chapter 5 5.6 Doped GaAs Consider the GaAs crystal at 300 K. a. Calculate the intrinsic conductivity and resistivity. Second Edition ( 2001 McGraw-Hill) b. In a sample containing only 10 15 cm -3 ionized

More information

Understanding the p-n Junction by Dr. Alistair Sproul Senior Lecturer in Photovoltaics The Key Centre for Photovoltaic Engineering, UNSW

Understanding the p-n Junction by Dr. Alistair Sproul Senior Lecturer in Photovoltaics The Key Centre for Photovoltaic Engineering, UNSW Understanding the p-n Junction by Dr. Alistair Sproul Senior Lecturer in Photovoltaics The Key Centre for Photovoltaic Engineering, UNSW The p-n junction is the fundamental building block of the electronic

More information

Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

More information

Yrd. Doç. Dr. Aytaç Gören

Yrd. Doç. Dr. Aytaç Gören H2 - AC to DC Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits W04 Transistors and Applications (H-Bridge) W05 Op Amps

More information

From Nano-Electronics and Photonics to Renewable Energy

From Nano-Electronics and Photonics to Renewable Energy From Nano-Electronics and Photonics to Renewable Energy Tom Smy Department of Electronics, Carleton University Questions are welcome! OUTLINE Introduction: to EE and Engineering Physics Renewable Energy

More information

PROCESS PARTICLE COUNTER (PPC) SENSOR/CONTROLLER FOR OPTIMIZING POWER RECOVERY EXPANDER AND GAS TURBINE PERFORMANCE

PROCESS PARTICLE COUNTER (PPC) SENSOR/CONTROLLER FOR OPTIMIZING POWER RECOVERY EXPANDER AND GAS TURBINE PERFORMANCE PROCESS PARTICLE COUNTER (PPC) SENSOR/CONTROLLER FOR OPTIMIZING POWER RECOVERY EXPANDER AND GAS TURBINE PERFORMANCE APPLICATIONS NOTE FOR MEASUREMENTS AT THE ENTRANCE AND EXIT OF A THIRD STAGE SEPARATOR

More information

Chemical Sputtering. von Kohlenstoff durch Wasserstoff. W. Jacob

Chemical Sputtering. von Kohlenstoff durch Wasserstoff. W. Jacob Chemical Sputtering von Kohlenstoff durch Wasserstoff W. Jacob Centre for Interdisciplinary Plasma Science Max-Planck-Institut für Plasmaphysik, 85748 Garching Content: Definitions: Chemical erosion, physical

More information

Optical Hyperdoping: Transforming Semiconductor Band Structure for Solar Energy Harvesting

Optical Hyperdoping: Transforming Semiconductor Band Structure for Solar Energy Harvesting Optical Hyperdoping: Transforming Semiconductor Band Structure for Solar Energy Harvesting 3G Solar Technologies Multidisciplinary Workshop MRS Spring Meeting San Francisco, CA, 5 April 2010 Michael P.

More information

MOS (metal-oxidesemiconductor) 李 2003/12/19

MOS (metal-oxidesemiconductor) 李 2003/12/19 MOS (metal-oxidesemiconductor) 李 2003/12/19 Outline Structure Ideal MOS The surface depletion region Ideal MOS curves The SiO 2 -Si MOS diode (real case) Structure A basic MOS consisting of three layers.

More information

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

More information

State of the art in reactive magnetron sputtering

State of the art in reactive magnetron sputtering State of the art in reactive magnetron sputtering T. Nyberg, O. Kappertz, T. Kubart and S. Berg Solid State Electronics, The Ångström Laboratory, Uppsala University, Box 534, S-751 21 Uppsala, Sweden D.

More information

BUNDELKHAND UNIVERSITY, JHANSI DEPARTMENT OF PHYSICS SYLLABUS 2010-11. M.Phil (PHYSICS)

BUNDELKHAND UNIVERSITY, JHANSI DEPARTMENT OF PHYSICS SYLLABUS 2010-11. M.Phil (PHYSICS) BUNDELKHAND UNIVERSITY, JHANSI DEPARTMENT OF PHYSICS SYLLABUS 2010-11 M.Phil (PHYSICS) Papers Name Theory Internal Total First Semester Compulsory Papers MPPHY-101 Research Methodology 70 30 100 MPPHY-102

More information

The study of structural and optical properties of TiO 2 :Tb thin films

The study of structural and optical properties of TiO 2 :Tb thin films Optica Applicata, Vol. XXXVII, No. 4, 2007 The study of structural and optical properties of TiO 2 :Tb thin films AGNIESZKA BORKOWSKA, JAROSLAW DOMARADZKI, DANUTA KACZMAREK, DAMIAN WOJCIESZAK Faculty of

More information

Silicon, the test mass substrate of tomorrow? Jerome Degallaix The Next Detectors for Gravitational Wave Astronomy Beijing - 2015

Silicon, the test mass substrate of tomorrow? Jerome Degallaix The Next Detectors for Gravitational Wave Astronomy Beijing - 2015 Silicon, the test mass substrate of tomorrow? Jerome Degallaix The Next Detectors for Gravitational Wave Astronomy Beijing - 2015 Program of the talk... What we have now What we know about silicon What

More information

University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory

University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory Lab 8: Optical Absorption Spring 2002 Yan Zhang and Ali Shakouri, 05/22/2002 (Based

More information

Chapter 3. 1. 3 types of materials- amorphous, crystalline, and polycrystalline. 5. Same as #3 for the ceramic and diamond crystal structures.

Chapter 3. 1. 3 types of materials- amorphous, crystalline, and polycrystalline. 5. Same as #3 for the ceramic and diamond crystal structures. Chapter Highlights: Notes: 1. types of materials- amorphous, crystalline, and polycrystalline.. Understand the meaning of crystallinity, which refers to a regular lattice based on a repeating unit cell..

More information

Introduction to Thin Film Technology LOT. Chair of Surface and Materials Technology

Introduction to Thin Film Technology LOT. Chair of Surface and Materials Technology Introduction to Thin Film Introduction to Thin Film Verfahrenstechnik der Oberflächenmodifikationen Prof. Dr. Xin Jiang Lecture Institut für Werkstofftechnik der Uni-Siegen Sommersemester 2007 Introduction

More information

Feynman diagrams. 1 Aim of the game 2

Feynman diagrams. 1 Aim of the game 2 Feynman diagrams Contents 1 Aim of the game 2 2 Rules 2 2.1 Vertices................................ 3 2.2 Anti-particles............................. 3 2.3 Distinct diagrams...........................

More information