Optical Hyperdoping: Transforming Semiconductor Band Structure for Solar Energy Harvesting

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Optical Hyperdoping: Transforming Semiconductor Band Structure for Solar Energy Harvesting"

Transcription

1 Optical Hyperdoping: Transforming Semiconductor Band Structure for Solar Energy Harvesting 3G Solar Technologies Multidisciplinary Workshop MRS Spring Meeting San Francisco, CA, 5 April 2010

2 Michael P. Brenner Michael Brenner Alan Aspuru-Guzik Alán Aspuru-Guzik Cynthia Friend Cynthia M. Friend Eric Mazur Eric Mazur

3

4 Harvard NSF SOLAR team Aspuru group: Jacob Krich (PD) Justin Song (GS) Man Hong Yung (PD) Brenner group: Tobias Schneider (PD) Scott Norris (PD) Niall Mangan (GS) Friend group: Anne Co (PD) Stephen Jensen (GS) Mazur group: Meng-Ju Sher (GS) Yuting Lin (GS) Kasey Phillips (GS)

5 Introduction SF 6 Si irradiate with 100-fs 10 kj/m 2 pulses

6 Introduction black silicon

7 3 µm Introduction

8 Introduction absorptance (1 R int T int ) absorptance crystalline silicon wavelength (µm)

9 Introduction absorptance (1 R int T int ) black silicon absorptance crystalline silicon wavelength (µm)

10 Introduction

11 Introduction absorptance (1 R int T int ) absorptance multiple relections black silicon crystalline silicon wavelength (µm)

12 Introduction band structure changes: defects and/or impurities

13 Introduction optical hyperdoping puts 2% of sulfur in 200-nm surface layer

14 Introduction

15 Introduction open questions how do the impurities get incorporated? can we use optical hyperdoping for solar cells?

16 Outline goals optimizing dopant profile intermediate band

17 Goals interesting properties due to intermediate band CB impurity band VB

18 Goals generalize CB Si impurity band TiO 2 ZnO VB

19 Goals process CB Si impurity band TiO 2 ZnO properties VB structure

20 Goals process dopant incorporation modeling laser doping electrospray dopant delivery CB Si impurity band ZnO TiO 2 atomistic modeling XPS, STM, SIMS properties VB carrier life-time modeling band structure calculations T-dependent Hall IR spectroscopy structure

21 Goals Mathematics process dopant incorporation modeling laser doping electrospray dopant delivery CB Si impurity band ZnO TiO 2 atomistic modeling XPS, STM, SIMS properties VB carrier life-time modeling band structure calculations T-dependent Hall IR spectroscopy structure

22 Goals Chemistry process dopant incorporation modeling laser doping electrospray dopant delivery CB Si impurity band ZnO TiO 2 atomistic modeling XPS, STM, SIMS properties VB carrier life-time modeling band structure calculations T-dependent Hall IR spectroscopy structure

23 Goals Materials Science process dopant incorporation modeling laser doping electrospray dopant delivery CB Si impurity band ZnO TiO 2 atomistic modeling XPS, STM, SIMS properties VB carrier life-time modeling band structure calculations T-dependent Hall IR spectroscopy structure

24 Outline goals optimizing dopant profile intermediate band

25 Optimizing dopant profile Theoretical agenda explain enhanced doping optimize dopant profile for device design design process for optimal dopant profile

26 Optimizing dopant profile why does enhanced doping occur? Laser pulse Sulfur x Liquid Solid h(t) physical mechanisms: melting and resolidification of thin layer sulfur diffusion into liquid silicon incorporation into solid during resolidification

27 Optimizing dopant profile why does enhanced doping occur? Laser pulse Sulfur x Liquid Solid h(t) mathematical model: calculate dynamics of two fields temperature T(x,t) sulfur concentration c(x,t)

28 Optimizing dopant profile calculation step 1: temperature profile set up by laser

29 Optimizing dopant profile calculation step 1: temperature profile set up by laser Superheated!

30 Optimizing dopant profile calculation step 2: solid melts, solute incorporated

31 Optimizing dopant profile calculation step 2: solid melts, solute incorporated melting: heat diffusion energy balance

32 Optimizing dopant profile calculation step 2: solid melts, solute incorporated melting: heat diffusion energy balance incorporation: solute diffusion mass balance

33 Optimizing dopant profile calculation step 2: solid melts, solute incorporated melting: heat diffusion energy balance incorporation: solute diffusion mass balance

34 Optimizing dopant profile boundary condition critically affects dopant profile Laser pulse Sulfur x Liquid Solid h(t)

35 Optimizing dopant profile two scenarios

36

37

38 Optimizing dopant profile two scenarios constant concentration constant sulfur flux

39 10 µm Optimizing dopant profile

40 10 µm Optimizing dopant profile

41 Optimizing dopant profile

42 Optimizing dopant profile

43 Optimizing dopant profile

44 Optimizing dopant profile

45 Optimizing dopant profile cross-sectional Transmission Electron Microscopy

46 M. Wall, F. Génin (LLNL) Optimizing dopant profile 1 µm

47 Optimizing dopant profile decouple ablation from melting

48 Optimizing dopant profile decouple ablation from melting

49 Optimizing dopant profile decouple ablation from melting undoped doped

50 Optimizing dopant profile decouple ablation from melting

51 Optimizing dopant profile secondary ion mass spectrometry 1.0 concentration (10 21 cm 3 ) depth (nm)

52 Optimizing dopant profile 1.0 concentration (10 21 cm 3 ) depth (nm)

53 Optimizing dopant profile appears to be closer to constant flux

54 Outline goals optimizing dopant profile intermediate band

55 Intermediate band what dopant states/bands cause IR absorption?

56 Intermediate band 1 part in 10 6 sulfur introduces donor states in gap CB ev ev ev 0.11 ev 0.09 ev 0.08 ev ev ev VB Janzén et al., Phys. Rev. B 29, 1907 (1984)

57 Intermediate band absorptance (1 R int T int ) wavelength (µm) 2 1 absorptance 0.5 crystalline Si energy (ev) 1.5

58 Intermediate band 10 6 sulfur doping wavelength (µm) 2 1 absorptance 0.5 sulfur impurity states Si band edge crystalline Si energy (ev) 1.5

59 Intermediate band laser-doped S:Si wavelength (µm) 2 1 laser-doped Si absorptance 0.5 sulfur impurity states Si band edge crystalline Si energy (ev) 1.5

60 Intermediate band laser-doped S:Si wavelength (µm) 2 1 laser-doped Si multiple relections absorptance 0.5 sulfur impurity states Si band edge crystalline Si energy (ev) 1.5

61 Intermediate band laser-doped S:Si wavelength (µm) 2 1 laser-doped Si absorptance 0.5 sulfur impurity band Si band edge crystalline Si energy (ev) 1.5

62 Intermediate band isolate surface layer for Hall measurements device layer buried oxide silicon substrate

63 Intermediate band isolate surface layer for Hall measurements device layer buried oxide silicon substrate

64 Intermediate band isolate surface layer for Hall measurements laser device doped layer region buried oxide silicon substrate

65 Intermediate band isolate surface layer for Hall measurements buried oxide silicon substrate

66 Intermediate band isolate surface layer for Hall measurements buried oxide silicon substrate

67 Intermediate band

68 Intermediate band Hall measurements 100 temperature (K) E d = 310 mev 10 n-doped cm N = cm 3 N/N room 1 p-doped 10 -cm 0.1 laser-doped /T (mk 1 )

69 Intermediate band transition to metallic behavior at high doping T (K) N s (cm 2 ) highly S doped Si Si substrate /T 1 (K 1 )

70 Intermediate band can we understand this intermediate band using atomistic modeling?

71 Intermediate band density of states

72 Intermediate band density of states unoccupied, localized: eats electrons occupied, localized: eats holes

73 Intermediate band recombination rate

74 What s next? change dopant/substrate combination

75 What s next? optimal dopant profile is flat 1.0 concentration (10 21 cm 3 ) depth (nm)

76 What s next? change incorporation process: electrospray pulse sequence design

77 Acknowledgments

Doped Semiconductors. Dr. Katarzyna Skorupska

Doped Semiconductors. Dr. Katarzyna Skorupska Doped Semiconductors Dr. Katarzyna Skorupska 1 Doped semiconductors Increasing the conductivity of semiconductors by incorporation of foreign atoms requires increase of the concentration of mobile charge

More information

High power picosecond lasers enable higher efficiency solar cells.

High power picosecond lasers enable higher efficiency solar cells. White Paper High power picosecond lasers enable higher efficiency solar cells. The combination of high peak power and short wavelength of the latest industrial grade Talisker laser enables higher efficiency

More information

1.5 Light absorption by solids

1.5 Light absorption by solids 1.5 Light absorption by solids Bloch-Brilloin model L e + + + + + allowed energy bands band gaps p x In a unidimensional approximation, electrons in a solid experience a periodic potential due to the positively

More information

Types of Epitaxy. Homoepitaxy. Heteroepitaxy

Types of Epitaxy. Homoepitaxy. Heteroepitaxy Epitaxy Epitaxial Growth Epitaxy means the growth of a single crystal film on top of a crystalline substrate. For most thin film applications (hard and soft coatings, optical coatings, protective coatings)

More information

h e l p s y o u C O N T R O L

h e l p s y o u C O N T R O L contamination analysis for compound semiconductors ANALYTICAL SERVICES B u r i e d d e f e c t s, E v a n s A n a l y t i c a l g r o u p h e l p s y o u C O N T R O L C O N T A M I N A T I O N Contamination

More information

Study of Impurity Photovoltaic Effect with Different Doping Materials using SCAPS Simulator

Study of Impurity Photovoltaic Effect with Different Doping Materials using SCAPS Simulator International Journal of Scientific and Research Publications, Volume 3, Issue 7, July 2013 1 Study of Impurity Photovoltaic Effect with Different Doping Materials using SCAPS Simulator Ratna Sircar*,

More information

Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution

Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution Chapter 5 5.6 Doped GaAs Consider the GaAs crystal at 300 K. a. Calculate the intrinsic conductivity and resistivity. Second Edition ( 2001 McGraw-Hill) b. In a sample containing only 10 15 cm -3 ionized

More information

Non-Equilbrium Chalcogen Concentrations in Silicon: Physical Structure, Electronic Transport, and Photovoltaic Potential

Non-Equilbrium Chalcogen Concentrations in Silicon: Physical Structure, Electronic Transport, and Photovoltaic Potential Non-Equilbrium Chalcogen Concentrations in Silicon: Physical Structure, Electronic Transport, and Photovoltaic Potential A thesis presented by Mark Thomas Winkler to The Department of Physics in partial

More information

Lecture 8: Extrinsic semiconductors - mobility

Lecture 8: Extrinsic semiconductors - mobility Lecture 8: Extrinsic semiconductors - mobility Contents Carrier mobility. Lattice scattering......................... 2.2 Impurity scattering........................ 3.3 Conductivity in extrinsic semiconductors............

More information

What is Laser Ablation? Mass removal by coupling laser energy to a target material

What is Laser Ablation? Mass removal by coupling laser energy to a target material Laser Ablation Fundamentals & Applications Samuel S. Mao Department of Mechanical Engineering University of California at Berkeley Advanced Energy Technology Department March 1, 25 Laser Ablation What

More information

High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures

High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures ARGYRIOS C. VARONIDES Physics and EE Department University of Scranton 800 Linden Street, Scranton PA, 18510 United States Abstract:

More information

Semiconductor Detectors Calorimetry and Tracking with High Precision

Semiconductor Detectors Calorimetry and Tracking with High Precision Semiconductor Detectors Calorimetry and Tracking with High Precision Applications 1. Photon spectroscopy with high energy resolution. Vertex detection with high spatial resolution 3. Energy measurement

More information

Lecture 15 - application of solid state materials solar cells and photovoltaics. Copying Nature... Anoxygenic photosynthesis in purple bacteria

Lecture 15 - application of solid state materials solar cells and photovoltaics. Copying Nature... Anoxygenic photosynthesis in purple bacteria Lecture 15 - application of solid state materials solar cells and photovoltaics. Copying Nature... Anoxygenic photosynthesis in purple bacteria Simple example, but still complicated... Photosynthesis is

More information

The Diode. Diode Operation

The Diode. Diode Operation The Diode The diode is a two terminal semiconductor device that allows current to flow in only one direction. It is constructed of a P and an N junction connected together. Diode Operation No current flows

More information

3.003 Lab 4 Simulation of Solar Cells

3.003 Lab 4 Simulation of Solar Cells Mar. 9, 2010 Due Mar. 29, 2010 3.003 Lab 4 Simulation of Solar Cells Objective: To design a silicon solar cell by simulation. The design parameters to be varied in this lab are doping levels of the substrate

More information

Polysilicon. Renewable Energy Corporation. HIT solar cells. L. Carnel Scanwafer. Wafers

Polysilicon. Renewable Energy Corporation. HIT solar cells. L. Carnel Scanwafer. Wafers Polysilicon Renewable Energy Corporation L. Carnel Scanwafer Wafers Cells Modules HIT = Heterojunction with Intrinsic Thin-layer : first used by Sanyo in 1992 and now used for high-efficiency solar cells

More information

Solid State Detectors = Semi-Conductor based Detectors

Solid State Detectors = Semi-Conductor based Detectors Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection

More information

How does a transistor work?

How does a transistor work? Semiconductor devices Semiconductors (review) Doping Diodes (pn junctions) Transistors Day 12: Diodes Transistors TV Reminders/Updates: Useful reading : Audio amps: 12.1, 12.2 TV: http://www.colorado.edu/physics/2000/tv/

More information

4.1 SOLAR CELL OPERATION. Y. Baghzouz ECE Department UNLV

4.1 SOLAR CELL OPERATION. Y. Baghzouz ECE Department UNLV 4.1 SOLAR CELL OPERATION Y. Baghzouz ECE Department UNLV SOLAR CELL STRUCTURE Light shining on the solar cell produces both a current and a voltage to generate electric power. This process requires a material

More information

Lecture 19: Solar cells

Lecture 19: Solar cells Lecture 19: Solar cells Contents 1 Introduction 1 2 Solar spectrum 2 3 Solar cell working principle 3 4 Solar cell I-V characteristics 7 5 Solar cell materials and efficiency 10 1 Introduction Solar cells

More information

Semiconductor doping. Si solar Cell

Semiconductor doping. Si solar Cell Semiconductor doping Si solar Cell Two Levels of Masks - photoresist, alignment Etch and oxidation to isolate thermal oxide, deposited oxide, wet etching, dry etching, isolation schemes Doping - diffusion/ion

More information

Silicon Basics -- General Overview. File: ee4494 silicon basics.ppt revised 09/11/2001 copyright james t yardley 2001 Page 1

Silicon Basics -- General Overview. File: ee4494 silicon basics.ppt revised 09/11/2001 copyright james t yardley 2001 Page 1 Silicon Basics -- General Overview. File: ee4494 silicon basics.ppt revised 09/11/2001 copyright james t yardley 2001 Page 1 Semiconductor Electronics: Review. File: ee4494 silicon basics.ppt revised 09/11/2001

More information

Semiconductors Band Formation & direct and indirect gaps. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Semiconductors Band Formation & direct and indirect gaps. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Semiconductors Band Formation & direct and indirect gaps 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 Review of Energy Bands (1)

More information

Solar Photovoltaic (PV) Cells

Solar Photovoltaic (PV) Cells Solar Photovoltaic (PV) Cells A supplement topic to: Mi ti l S Micro-optical Sensors - A MEMS for electric power generation Science of Silicon PV Cells Scientific base for solar PV electric power generation

More information

The Physics of Energy sources Renewable sources of energy. Solar Energy

The Physics of Energy sources Renewable sources of energy. Solar Energy The Physics of Energy sources Renewable sources of energy Solar Energy B. Maffei Bruno.maffei@manchester.ac.uk Renewable sources 1 Solar power! There are basically two ways of using directly the radiative

More information

Lecture 2: Semiconductors: Introduction

Lecture 2: Semiconductors: Introduction Lecture 2: Semiconductors: Introduction Contents 1 Introduction 1 2 Band formation in semiconductors 2 3 Classification of semiconductors 5 4 Electron effective mass 10 1 Introduction Metals have electrical

More information

The study of structural and optical properties of TiO 2 :Tb thin films

The study of structural and optical properties of TiO 2 :Tb thin films Optica Applicata, Vol. XXXVII, No. 4, 2007 The study of structural and optical properties of TiO 2 :Tb thin films AGNIESZKA BORKOWSKA, JAROSLAW DOMARADZKI, DANUTA KACZMAREK, DAMIAN WOJCIESZAK Faculty of

More information

Applied Quantum Mechanics for Electrical Engineers Workshop II Energy Band Model and Doping

Applied Quantum Mechanics for Electrical Engineers Workshop II Energy Band Model and Doping Applied Quantum Mechanics for Electrical Engineers Workshop II Energy Band Model and Doping 95 pts Objective: Explore the effect of doping on the energy band diagram and the carrier concentration. Instructions:

More information

- thus the electrons are free to change their energies within the 3s band

- thus the electrons are free to change their energies within the 3s band Allowed and Forbidden Energy Bands - allowed energy bands associated with different atomic orbitals may overlap, as in (a) - the regions between allowed energy bands are called forbidden bands or band

More information

Definition : Characteristics of Metals :

Definition : Characteristics of Metals : Metallic Bond Definition : It may be defined as, 1. The force that binds a metal ion to a number of electrons with in its sphere of influence. 2. The attractive force which holds the atoms of two or more

More information

OPTIMIZE SOLAR CELL PERFORMANCE

OPTIMIZE SOLAR CELL PERFORMANCE OPTIMIZE SOLAR CELL PERFORMANCE D R A G I C A V A S I L E S K A MINIMIZE LOSSES IN SOLAR CELLS Optical loss Concentration of light Minimize Shadowing Trapping of light: AR coatings Mirrors ( metallization

More information

Photovoltaic effect Laboratory Report IM2601 Solid State Physics spring 2012

Photovoltaic effect Laboratory Report IM2601 Solid State Physics spring 2012 Photovoltaic effect Laboratory Report IM2601 Solid State Physics spring 2012 Axel Kurtson akurtson@gmail.com Sandrine Idlas idlas@kth.se Joakim Jalap jjalap@kth.se May 8, 2012 1 Introduction A solar cell

More information

USING MERCURY PROBES TO CHARACTERIZE USJ LAYERS

USING MERCURY PROBES TO CHARACTERIZE USJ LAYERS USING MERCURY PROBES TO CHARACTERIZE USJ LAYERS James T.C. Chen and Wei Liu Four Dimensions, Inc. Hayward, CA 94545 It is well established that uniformity and dosage of drain-source ion implantation on

More information

Excitons Types, Energy Transfer

Excitons Types, Energy Transfer Excitons Types, Energy Transfer Wannier exciton Charge-transfer exciton Frenkel exciton Exciton Diffusion Exciton Energy Transfer (Förster, Dexter) Handout (for Recitation Discusssion): J.-S. Yang and

More information

Introduction to VLSI Fabrication Technologies. Emanuele Baravelli

Introduction to VLSI Fabrication Technologies. Emanuele Baravelli Introduction to VLSI Fabrication Technologies Emanuele Baravelli 27/09/2005 Organization Materials Used in VLSI Fabrication VLSI Fabrication Technologies Overview of Fabrication Methods Device simulation

More information

Applied Physics of solar energy conversion

Applied Physics of solar energy conversion Applied Physics of solar energy conversion Conventional solar cells, and how lazy thinking can slow you down Some new ideas *************************************************************** Our work on semiconductor

More information

Silicon, the test mass substrate of tomorrow? Jerome Degallaix The Next Detectors for Gravitational Wave Astronomy Beijing - 2015

Silicon, the test mass substrate of tomorrow? Jerome Degallaix The Next Detectors for Gravitational Wave Astronomy Beijing - 2015 Silicon, the test mass substrate of tomorrow? Jerome Degallaix The Next Detectors for Gravitational Wave Astronomy Beijing - 2015 Program of the talk... What we have now What we know about silicon What

More information

Graduate Student Presentations

Graduate Student Presentations Graduate Student Presentations Dang, Huong Chip packaging March 27 Call, Nathan Thin film transistors/ liquid crystal displays April 4 Feldman, Ari Optical computing April 11 Guerassio, Ian Self-assembly

More information

Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010)

Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010) Modern Physics (PHY 3305) Lecture Notes Modern Physics (PHY 3305) Lecture Notes Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010) Review

More information

Lecture 3: Electron statistics in a solid

Lecture 3: Electron statistics in a solid Lecture 3: Electron statistics in a solid Contents Density of states. DOS in a 3D uniform solid.................... 3.2 DOS for a 2D solid........................ 4.3 DOS for a D solid........................

More information

SiC activities at Linköping University

SiC activities at Linköping University SiC activities at Linköping University A. Henry and E. Janzén SiC : Prof. Erik Janzen growth (bulk and epi) defect and characterisation Nitride : Prof. Bo Monemar growth optical characterisation Electronic

More information

FUNDAMENTAL PROPERTIES OF SOLAR CELLS

FUNDAMENTAL PROPERTIES OF SOLAR CELLS FUNDAMENTAL PROPERTIES OF SOLAR CELLS January 31, 2012 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals of

More information

Sample Exercise 12.1 Calculating Packing Efficiency

Sample Exercise 12.1 Calculating Packing Efficiency Sample Exercise 12.1 Calculating Packing Efficiency It is not possible to pack spheres together without leaving some void spaces between the spheres. Packing efficiency is the fraction of space in a crystal

More information

Near IR Absorption in Heavily Doped Silicon An Empirical Approach

Near IR Absorption in Heavily Doped Silicon An Empirical Approach Near IR Absorption in Heavily Doped Silicon An Empirical Approach R. Aaron Falk OptoMetrix, Inc., Renton, Washington Abstract Backside failure analysis techniques rely heavily on transmission of near infrared

More information

Semiconductors, diodes, transistors

Semiconductors, diodes, transistors Semiconductors, diodes, transistors (Horst Wahl, QuarkNet presentation, June 2001) Electrical conductivity! Energy bands in solids! Band structure and conductivity Semiconductors! Intrinsic semiconductors!

More information

Nanoscale Resolution Options for Optical Localization Techniques. C. Boit TU Berlin Chair of Semiconductor Devices

Nanoscale Resolution Options for Optical Localization Techniques. C. Boit TU Berlin Chair of Semiconductor Devices berlin Nanoscale Resolution Options for Optical Localization Techniques C. Boit TU Berlin Chair of Semiconductor Devices EUFANET Workshop on Optical Localization Techniques Toulouse, Jan 26, 2009 Jan 26,

More information

INSTITUTE FOR APPLIED PHYSICS Physical Practice for Learners of Engineering sciences Hamburg University, Jungiusstraße 11

INSTITUTE FOR APPLIED PHYSICS Physical Practice for Learners of Engineering sciences Hamburg University, Jungiusstraße 11 INSTITUTE FOR APPIED PHYSICS Physical Practice for earners of Engineering sciences Hamburg University, Jungiusstraße 11 Hall effect 1 Goal Characteristic data of a test semiconductor (Germanium) should

More information

Developments in Photoluminescence Characterisation for Silicon PV

Developments in Photoluminescence Characterisation for Silicon PV Developments in Photoluminescence Characterisation for Silicon PV School of Photovoltaic and Solar Energy Engineering Bernhard Mitchell 1, Thorsten Trupke 1,2, Jürgen W. Weber 2, Johannes Greulich 3, Matthias

More information

Semiconductor Physics

Semiconductor Physics 10p PhD Course Semiconductor Physics 18 Lectures Nov-Dec 2011 and Jan Feb 2012 Literature Semiconductor Physics K. Seeger The Physics of Semiconductors Grundmann Basic Semiconductors Physics - Hamaguchi

More information

Goals What parameters can we examine? Sintering? Material? What methods can we use to characterize the differences?

Goals What parameters can we examine? Sintering? Material? What methods can we use to characterize the differences? Background Photoelectrochemical solar cells are devices consisting of a photoelectrode, a redox electrolyte, and a counter electrode. i Semiconducting materials such as single-crystal and polycrystal n-

More information

GaN based Blue Laser diode

GaN based Blue Laser diode GaN based Blue Laser diode ECE 355 presentation Seiyon Kim Dept. of ECE and Microelectronics Lab Outline -Motivation: Why we need BLUE lasers? -Material property: GaN vs. other wide bandgap materials -Growth

More information

Outline. Energy consumption Silicon solar cells Photovoltaic effect Thin film solar cells Dye sensitized solar cells Conclusions

Outline. Energy consumption Silicon solar cells Photovoltaic effect Thin film solar cells Dye sensitized solar cells Conclusions Outline Energy consumption Silicon solar cells Photovoltaic effect Thin film solar cells Dye sensitized solar cells Conclusions What is energy? Basic quantitative property describing a physical system

More information

Photovoltaic and Photoelectrochemical Solar Cells

Photovoltaic and Photoelectrochemical Solar Cells Photovoltaic and Photoelectrochemical Solar Cells EDDIE FOROUZAN, PH.D. ARTIN ENGINEERING AND CONSULTING GROUP, INC. 7933 SILVERTON AVE. #715 SAN DIEGO, CA 92128 PSES San Diego Chapter 2012-02-10 History

More information

Unit 12 Practice Test

Unit 12 Practice Test Name: Class: Date: ID: A Unit 12 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1) A solid has a very high melting point, great hardness, and

More information

Exploring the deposition of oxides on silicon for photovoltaic cells by pulsed laser deposition

Exploring the deposition of oxides on silicon for photovoltaic cells by pulsed laser deposition Applied Surface Science 186 2002) 453±457 Exploring the deposition of oxides on silicon for photovoltaic cells by pulsed laser deposition Lianne M. Doeswijk a,*, Hugo H.C. de Moor b, Horst Rogalla a, Dave

More information

Broadband THz Generation from Photoconductive Antenna

Broadband THz Generation from Photoconductive Antenna Progress In Electromagnetics Research Symposium 2005, Hangzhou, China, August 22-26 331 Broadband THz Generation from Photoconductive Antenna Qing Chang 1, Dongxiao Yang 1,2, and Liang Wang 1 1 Zhejiang

More information

Electronic Structure and the Periodic Table Learning Outcomes

Electronic Structure and the Periodic Table Learning Outcomes Electronic Structure and the Periodic Table Learning Outcomes (a) Electronic structure (i) Electromagnetic spectrum and associated calculations Electromagnetic radiation may be described in terms of waves.

More information

New Semiconductor Device Evaluation System for Failure Analysis of Sub-nanometer Areas

New Semiconductor Device Evaluation System for Failure Analysis of Sub-nanometer Areas Hitachi Review Vol. 52 (2003), No. 3 133 New Semiconductor Device Evaluation System for Failure Analysis of Sub-nanometer Areas Takeo Kamino Tsuyoshi Onishi Kaoru Umemura Kyoichiro Asayama Kazutoshi Kaji

More information

Wafer-based silicon PV technology Status, innovations and outlook

Wafer-based silicon PV technology Status, innovations and outlook Wafer-based silicon PV technology Status, innovations and outlook Wim Sinke ECN Solar Energy, Utrecht University & European PV Technology Platform www.ecn.nl Contents Wafer-based silicon photovoltaics

More information

Defect Engineering in Semiconductors

Defect Engineering in Semiconductors Defect Engineering in Semiconductors Silicon Technology: problems of ultra large-scale l integration i Gettering in silicon Defect engineering in HgCdTe Near-surface defects in GaAs after diamond saw-cutting

More information

Lecture Light Emitting Diodes.

Lecture Light Emitting Diodes. Lecture 19-20 Light Emitting Diodes. Today: 1. Carrier recombination in semiconductors. 2. p-n junctions with carrier injection. Light-emitting diodes (LEDs). Questions you should be able to answer by

More information

Semiconductors, Insulators and Metals

Semiconductors, Insulators and Metals CHAPTER 2 ENERGY BANDS AND EFFECTIVE MASS Semiconductors, insulators and metals Semiconductors Insulators Metals The concept of effective mass Prof. Dr. Beşire GÖNÜL Semiconductors, Insulators and Metals

More information

Module 6 : PHYSICS OF SEMICONDUCTOR DEVICES Lecture 34 : Intrinsic Semiconductors

Module 6 : PHYSICS OF SEMICONDUCTOR DEVICES Lecture 34 : Intrinsic Semiconductors Module 6 : PHYSICS OF SEMICONDUCTOR DEVICES Lecture 34 : Intrinsic Semiconductors Objectives In this course you will learn the following Intrinsic and extrinsic semiconductors. Fermi level in a semiconductor.

More information

Organic semiconductors

Organic semiconductors Plastic (Organic) Solar Cells: Accomplishments, Challenges, and Strategies Sumit Chaudhary Assistant Professor Department of Electrical and Computer Engineering Materials Science and Engineering Iowa State

More information

Lasers in Solar Manufacturing

Lasers in Solar Manufacturing Lasers in Solar Manufacturing The Cutting-Edge of Green Solar Panel Production Superior Reliability & Performance P1 (below) and P3 (right) layer patterning in a-si thin-film panels Talisker and Paladin

More information

Lecture 22: Integrated circuit fabrication

Lecture 22: Integrated circuit fabrication Lecture 22: Integrated circuit fabrication Contents 1 Introduction 1 2 Layering 4 3 Patterning 7 4 Doping 8 4.1 Thermal diffusion......................... 10 4.2 Ion implantation.........................

More information

MCEN Fall 2003.

MCEN Fall 2003. Basic types of solid materials. Overview The theory of bands provides a basis for understanding the classification and physical properties of solid materials such as electrical conductivity, optical behavior

More information

Conductivity of silicon can be changed several orders of magnitude by introducing impurity atoms in silicon crystal lattice.

Conductivity of silicon can be changed several orders of magnitude by introducing impurity atoms in silicon crystal lattice. CMOS Processing Technology Silicon: a semiconductor with resistance between that of conductor and an insulator. Conductivity of silicon can be changed several orders of magnitude by introducing impurity

More information

Laserbearbeitung von dünnen Schichten auf Rolle-zu-Rolle-Anlagen

Laserbearbeitung von dünnen Schichten auf Rolle-zu-Rolle-Anlagen Laserbearbeitung von dünnen Schichten auf Rolle-zu-Rolle-Anlagen Dr. Frank Allenstein 3D-Micromac AG 3D-Micromac At a Glance 141 employees in R&D, manufacturing and service Worldwide more than 300 industrial

More information

Project 2B Building a Solar Cell (2): Solar Cell Performance

Project 2B Building a Solar Cell (2): Solar Cell Performance April. 15, 2010 Due April. 29, 2010 Project 2B Building a Solar Cell (2): Solar Cell Performance Objective: In this project we are going to experimentally measure the I-V characteristics, energy conversion

More information

2 Absorbing Solar Energy

2 Absorbing Solar Energy 2 Absorbing Solar Energy 2.1 Air Mass and the Solar Spectrum Now that we have introduced the solar cell, it is time to introduce the source of the energy the sun. The sun has many properties that could

More information

The fabrication of a monolithic transistor includes the following steps.

The fabrication of a monolithic transistor includes the following steps. The fabrication of a monolithic transistor includes the following steps. 1. Epitaxial growth 2. Oxidation 3. Photolithography 4. Isolation diffusion 5. Base diffusion 6. Emitter diffusion 7. Contact mask

More information

Analog & Digital Electronics Course No: PH-218

Analog & Digital Electronics Course No: PH-218 Analog & Digital Electronics Course No: PH-218 Lecture 1: Semiconductor Materials Course Instructors: Dr. A. P. VAJPEYI Department of Physics, Indian Institute of Technology Guwahati, India 1 Semiconductors

More information

Physics 610/Chemistry 678 Semiconductor Processing and Characterization Quiz I July 18, 2014

Physics 610/Chemistry 678 Semiconductor Processing and Characterization Quiz I July 18, 2014 Physics 610/Chemistry 678 Semiconductor Processing and Characterization Quiz I July 18, 2014 Part I: Short-answer questions on basic principles. (5 points each) 1. Briefly describe the CZ method and the

More information

Graphene a material for the future

Graphene a material for the future Graphene a material for the future by Olav Thorsen What is graphene? What is graphene? Simply put, it is a thin layer of pure carbon What is graphene? Simply put, it is a thin layer of pure carbon It has

More information

OLED display. Ying Cao

OLED display. Ying Cao OLED display Ying Cao Outline OLED basics OLED display A novel method of fabrication of flexible OLED display Potentials of OLED Suitable for thin, lightweight, printable displays Broad color range Good

More information

Structure and properties of transparent conductive ZnO films grown by pulsed laser

Structure and properties of transparent conductive ZnO films grown by pulsed laser Structure and properties of transparent conductive ZnO films grown by pulsed laser deposition (PLD) by Yu Hsiu, Lin A dissertation submitted to the University of Birmingham for the degree of Master of

More information

Light management for photovoltaics. Ando Kuypers, TNO Program manager Solar

Light management for photovoltaics. Ando Kuypers, TNO Program manager Solar Light management for photovoltaics Ando Kuypers, TNO Program manager Solar Global energy consumption: 500 ExaJoule/Year Solar irradiation on earth sphere: 5.000.000 ExaJoule/year 2 Capturing 0,01% covers

More information

EE 332 Photovoltaic Cell Design Iowa State University Electrical and Computer Engineering Dept

EE 332 Photovoltaic Cell Design Iowa State University Electrical and Computer Engineering Dept EE 332 Photovoltaic Cell Design Iowa State University Electrical and Computer Engineering Dept Authors: Bai Rui, Senior Electrical Engineering Cui Qiaoya, Senior Electrical Engineering Chris Krantz, Senior

More information

Processing of Semiconducting Materials Prof. Pallab Banerji Department of Metallurgy and Material Science Indian Institute of Technology, Kharagpur

Processing of Semiconducting Materials Prof. Pallab Banerji Department of Metallurgy and Material Science Indian Institute of Technology, Kharagpur Processing of Semiconducting Materials Prof. Pallab Banerji Department of Metallurgy and Material Science Indian Institute of Technology, Kharagpur Lecture - 8 Diffusion and Ion Implantation II (Refer

More information

Technology Developments Towars Silicon Photonics Integration

Technology Developments Towars Silicon Photonics Integration Technology Developments Towars Silicon Photonics Integration Marco Romagnoli Advanced Technologies for Integrated Photonics, CNIT Venezia - November 23 th, 2012 Medium short reach interconnection Example:

More information

Arizona Institute for Renewable Energy & the Solar Power Laboratories

Arizona Institute for Renewable Energy & the Solar Power Laboratories Arizona Institute for Renewable Energy & the Solar Power Laboratories International Photovoltaic Reliability Workshop July 29-31, Tempe AZ Christiana Honsberg, Stephen Goodnick, Stuart Bowden Arizona State

More information

Photonics for High-efficiency Crystalline Silicon Solar Cells

Photonics for High-efficiency Crystalline Silicon Solar Cells Photonics for High-efficiency Crystalline Silicon Solar Cells Stefan Glunz Fraunhofer Institute for Solar Energy Systems ISE Workshop Nanophotonics - essential ingredient for efficient and cost-effective

More information

Graphene electronics. Johannes Svensson Nanoelectronics FFF160

Graphene electronics. Johannes Svensson Nanoelectronics FFF160 Graphene electronics Johannes Svensson Nanoelectronics FFF160 - Graphene production - Mechanical exfoliation - Epitaxial growth - Chemical vapor deposition - Transport characteristics - High frequency

More information

Intrinsic and Extrinsic Semiconductors, Fermi-Dirac Distribution Function, the Fermi level and carrier concentrations

Intrinsic and Extrinsic Semiconductors, Fermi-Dirac Distribution Function, the Fermi level and carrier concentrations ENEE 33, Spr. 09 Supplement I Intrinsic and Extrinsic Semiconductors, Fermi-Dirac Distribution Function, the Fermi level and carrier concentrations Zeynep Dilli, Oct. 2008, rev. Mar 2009 This is a supplement

More information

Plasmonic Photovoltaic

Plasmonic Photovoltaic Plasmonic Photovoltaic Justus C. Ndukaife, Arthur Teng Solar Power Current world consumption of electric energy is around 12 13 TW. The Earth receives more solar energy in one hour than the energy used

More information

A metal-free polymeric photocatalyst for hydrogen production from water under visible light

A metal-free polymeric photocatalyst for hydrogen production from water under visible light A metal-free polymeric photocatalyst for hydrogen production from water under visible light Xinchen Wang, Kazuhiko Maeda, Arne Thomas, Kazuhiro Takanabe, Gang Xin, Johan M. Carlsson, Kazunari Domen, Markus

More information

Manufacturing c-si Solar Cells with Lasers

Manufacturing c-si Solar Cells with Lasers Manufacturing c-si Solar Cells with Lasers 2 Manufacturing c-si Solar Cells with Lasers Choosing the right tool for the job Solutions to Make, Manage and Measure Light SM 1 Manufacturing c-si Solar Cells

More information

Defects Introduction. Bonding + Structure + Defects. Properties

Defects Introduction. Bonding + Structure + Defects. Properties Defects Introduction Bonding + Structure + Defects Properties The processing determines the defects Composition Bonding type Structure of Crystalline Processing factors Defects Microstructure Types of

More information

Photovoltaic Power: Science and Technology Fundamentals

Photovoltaic Power: Science and Technology Fundamentals Photovoltaic Power: Science and Technology Fundamentals Bob Clark-Phelps, Ph.D. Evergreen Solar, Inc. Renewable Energy Seminar, Nov. 2, 2006 Photovoltaic Principle Energy Conduction Band electron Energy

More information

Solar Cell Parameters and Equivalent Circuit

Solar Cell Parameters and Equivalent Circuit 9 Solar Cell Parameters and Equivalent Circuit 9.1 External solar cell parameters The main parameters that are used to characterise the performance of solar cells are the peak power P max, the short-circuit

More information

Ultrashort pulse laser processing current industrial applications and beyond

Ultrashort pulse laser processing current industrial applications and beyond Ultrashort pulse laser processing current industrial applications and beyond Stefan Nolte Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Str.

More information

Hard Condensed Matter WZI

Hard Condensed Matter WZI Hard Condensed Matter WZI Tom Gregorkiewicz University of Amsterdam VU-LaserLab Dec 10, 2015 Hard Condensed Matter Cluster Quantum Matter Optoelectronic Materials Quantum Matter Amsterdam Mark Golden Anne

More information

Modification of Pd-H 2 and Pd-D 2 thin films processed by He-Ne laser

Modification of Pd-H 2 and Pd-D 2 thin films processed by He-Ne laser Modification of Pd-H 2 and Pd-D 2 thin films processed by He-Ne laser V.Nassisi #, G.Caretto #, A. Lorusso #, D.Manno %, L.Famà %, G.Buccolieri %, A.Buccolieri %, U.Mastromatteo* # Laboratory of Applied

More information

Nanoparticle Deposition on Packaging Materials by the Liquid Flame Spray

Nanoparticle Deposition on Packaging Materials by the Liquid Flame Spray Nanoparticle Deposition on Packaging Materials by the Liquid Flame Spray Hannu Teisala a, Mikko Tuominen a, Mikko Aromaa b, Jyrki M. Mäkelä b, Milena Stepien c, Jarkko J. Saarinen c, Martti Toivakka c

More information

Diode Applications. This chapter teaches the employment of pn-junction diodes in various applications.

Diode Applications. This chapter teaches the employment of pn-junction diodes in various applications. Diode Applications This chapter teaches the employment of pn-junction diodes in various applications. Rectifier diodes Rectifier diodes are used, for example, in power supplies, AC-to-DC converters, and

More information

Photovoltaic effect: Diode IV-characteristics

Photovoltaic effect: Diode IV-characteristics Photovoltaic effect: Diode IV-characteristics By Stefan Clementz, 860421-0198, scl@kth.se Karl Jonsson, 871226-0390, karljo@kth.se Sammy Mannaa, 871216-0491, sammym@kth.se Instructor Tobias Övergaard,

More information

Quantitative Photoluminescence. Studies in. a-si:h/c-si Solar Cells

Quantitative Photoluminescence. Studies in. a-si:h/c-si Solar Cells Quantitative Photoluminescence Studies in a-si:h/c-si Solar Cells Von der Fakultät für Mathematik und Naturwissenschaften der Carl von Ossietzky Universität Oldenburg zur Erlangung des Grades und Titels

More information

CHEM 10113, Quiz 7 December 7, 2011

CHEM 10113, Quiz 7 December 7, 2011 CHEM 10113, Quiz 7 December 7, 2011 Name (please print) All equations must be balanced and show phases for full credit. Significant figures count, show charges as appropriate, and please box your answers!

More information

MOS (metal-oxidesemiconductor) 李 2003/12/19

MOS (metal-oxidesemiconductor) 李 2003/12/19 MOS (metal-oxidesemiconductor) 李 2003/12/19 Outline Structure Ideal MOS The surface depletion region Ideal MOS curves The SiO 2 -Si MOS diode (real case) Structure A basic MOS consisting of three layers.

More information