Laurent Series Examples Monday, November 11, :00 PM

Similar documents
6. Define log(z) so that π < I log(z) π. Discuss the identities e log(z) = z and log(e w ) = w.

Differentiation and Integration

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all.

DIFFERENTIABILITY OF COMPLEX FUNCTIONS. Contents

Math 4310 Handout - Quotient Vector Spaces

DERIVATIVES AS MATRICES; CHAIN RULE

10.2 Series and Convergence

Mean value theorem, Taylors Theorem, Maxima and Minima.

Examples of Functions

Week 13 Trigonometric Form of Complex Numbers

Stanford Math Circle: Sunday, May 9, 2010 Square-Triangular Numbers, Pell s Equation, and Continued Fractions

On Chebyshev interpolation of analytic functions

3 Contour integrals and Cauchy s Theorem

A power series about x = a is the series of the form

Representation of functions as power series

Inner Product Spaces

1 if 1 x 0 1 if 0 x 1

COMPLEX NUMBERS. a bi c di a c b d i. a bi c di a c b d i For instance, 1 i 4 7i i 5 6i

The Math Circle, Spring 2004

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS

Lies My Calculator and Computer Told Me

Graphing calculators Transparencies (optional)

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A

Solving Linear Systems, Continued and The Inverse of a Matrix

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a

Course outline, MA 113, Spring 2014 Part A, Functions and limits Functions, domain and ranges, A Review (9 problems)

Algebraic and Transcendental Numbers

Linear and quadratic Taylor polynomials for functions of several variables.

Metric Spaces. Chapter Metrics

WORK SCHEDULE: MATHEMATICS 2007

Angles and Quadrants. Angle Relationships and Degree Measurement. Chapter 7: Trigonometry

Lecture 2: Homogeneous Coordinates, Lines and Conics

1.7 Graphs of Functions

MATH 132: CALCULUS II SYLLABUS

Metrics on SO(3) and Inverse Kinematics

OSTROWSKI FOR NUMBER FIELDS

Polynomial and Rational Functions

Complex Function Theory. Second Edition. Donald Sarason >AMS AMERICAN MATHEMATICAL SOCIETY

Appendix 3 IB Diploma Programme Course Outlines

3 e) x f) 2. Precalculus Worksheet P Complete the following questions from your textbook: p11: # Why would you never write 5 < x > 7?

INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 24

5.3 Improper Integrals Involving Rational and Exponential Functions

Notes on metric spaces

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

THE COMPLEX EXPONENTIAL FUNCTION

5544 = = = Now we have to find a divisor of 693. We can try 3, and 693 = 3 231,and we keep dividing by 3 to get: 1

3. Reaction Diffusion Equations Consider the following ODE model for population growth

Section 4.1 Rules of Exponents

Practice with Proofs

EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013

Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Math 1B, lecture 5: area and volume

MMGF30, Transformteori och analytiska funktioner

MISS. INDUCTION SEQUENCES and SERIES. J J O'Connor MT /10

In memory of Lars Hörmander

Section 1.3 P 1 = 1 2. = P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., =

6.4 Logarithmic Equations and Inequalities

NOTES ON LINEAR TRANSFORMATIONS

4/1/2017. PS. Sequences and Series FROM 9.2 AND 9.3 IN THE BOOK AS WELL AS FROM OTHER SOURCES. TODAY IS NATIONAL MANATEE APPRECIATION DAY

Estimated Pre Calculus Pacing Timeline

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Memoir on iterations of rational functions ( 1 ) Mémoire sur l itération des fonctions rationnelles ( 2 )

1 Norms and Vector Spaces

Higher Education Math Placement

Vieta s Formulas and the Identity Theorem

In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.

COMPLEX NUMBERS AND SERIES. Contents

Introduction to Fractions

Mathematics (Project Maths Phase 1)

Dear Accelerated Pre-Calculus Student:

Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs

GRE Prep: Precalculus

PYTHAGOREAN TRIPLES KEITH CONRAD

Geometric Optics Converging Lenses and Mirrors Physics Lab IV

The small increase in x is. and the corresponding increase in y is. Therefore

Math 461 Fall 2006 Test 2 Solutions

Today in Physics 217: the method of images

AP Calculus AB Syllabus

Lesson 26: Reflection & Mirror Diagrams

Euler s Formula Math 220

Math 241, Exam 1 Information.

APPLIED MATHEMATICS ADVANCED LEVEL

Homework 2 Solutions

LIES MY CALCULATOR AND COMPUTER TOLD ME

An important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate.

Walrasian Demand. u(x) where B(p, w) = {x R n + : p x w}.

Mathematics 31 Pre-calculus and Limits

CHAPTER 5 Round-off errors

First published in 2013 by the University of Utah in association with the Utah State Office of Education.

Solving Quadratic Equations

Chapter 17. Orthogonal Matrices and Symmetries of Space

Mathematical Methods of Engineering Analysis

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

Factorizations: Searching for Factor Strings

An Introduction to Partial Differential Equations in the Undergraduate Curriculum

Lecture 17: Conformal Invariance

TRIGONOMETRY Compound & Double angle formulae

Transcription:

Laurent Series Examples Monday, November 11, 2013 2:00 PM Homework 3 due Friday, November 15 at 5 PM. Most often, one is looking at Laurent series which are valid in a punctured neighborhood centered at a point ; so they converge in a domain for some R > 0. But recall that Laurent series more generally may only converge in some annulus, not necessarily a punctured neighborhood, but in any case the annulus of convergence of a Laurent series is governed by the location of the singularities. (Analogous theory to how the radius of convergence of a Taylor series is governed by the distance to the closest singularity). It is often useful to talk about a Laurent series ``in a punctured neighborhood of This simply means a domain of the form for some. This looks like a punctured neighborhood of the north pole on the Riemann sphere. How does one develop Laurent series for concrete functions? One can fall back to the definition given in the theorem about existence of Laurent series, but this is cumbersome. A more practical approach is simply to do formal power series manipulations, and these are justified by uniform convergence within any compact subset of the domain of convergence. Even differentiation is OK for complex analytic functions. Example:. About the point we can develop a Taylor series (just a special case of Laurent series expanded around non-singular points). As we saw, we can get it by just doing geometric series: New Section 2 Page 1

How about a Laurent series about one of the singularities, say The Laurent series expansion for f(z) about z=i can be written: This Laurent series converges for: either from the restriction on convergence of the geometric series, or more simply, the distance to the nearest singularity. New Section 2 Page 2

Let's expand this function as a Laurent series about The systematic way to develop such Laurent series is to develop power series in terms of which are valid when is small. Let's try to write our function in a way that has a sensible expansion for 1/z small. Why this manipulation? When you have denominators where one term is expected to dominate the other within the domain of convergence of the Laurent series, then it's cleanest to multiply/divide out by a factor that will make the main term =1. Now do geometric series w.r.t. term that is small in the neighborhood of the point of interest. Domain of convergence of this Laurent series is either by restriction of convergence of geometric series or by looking at the closest singularity to infinity. How classify a singularity at infinity? One classifies the singularity of f(z) at by how the function has its singularity at =0. The prefactor will be better explained when we do residue calculus; it arises from the fact that the Jacobian of the change of variables in integration is. Note the inclusion of the factor in the classification is not conventional; but without doing this, we can have "residues at infinity" for functions "analytic at infinity," which breaks the harmony of the language. Making this change of variable in our Laurent series about infinity, we have: New Section 2 Page 3

No principal part, so one can say that is a removable singularity of f(z). Or, a bit more boldly but justifiably, one can even say that f(z) is "analytic at infinity." Example:. Here we can just write the Taylor series about z=0, using the fact that so all derivatives evaluated at z=0 are 1. (no singularities in the finite complex plane). Since this series converges in a punctured neighborhood of infinity, it is also interpretable as a Laurent series about What kind of singularity is? It's an essential singularity, as is evident from having infinitely many positive powers. Example: There's an apparent singularity at z=0; let's try a Laurent series in a neighborhood of z=0. One can obtain the series expansion by just using the composition of the functions (known Laurent series about ) and. New Section 2 Page 4

Principal part has infinitely many terms, so is an essential singularity of f(z). And one can similarly check that is a removable singularity, and we can say that f(z) is analytic at infinity. Example: One can obtain the Taylor series about z=0 from the Taylor series for exponential by direct manipulation: converges for all Similarly for New Section 2 Page 5

converges for Example: Laurent series about the apparent singularity at z=0 (which we've before discussed should be a removable singularity). Simply divide the previous Laurent series by z. Converges for all No principal part, so z=0 is a removable singularity. Therefore, one can treat f(z) as analytic at z=0, if one defines f(0) = 1. Example: Let's compute a Laurent series about the singularity at New Section 2 Page 6

tan z has a pole of order one at One can compute higher order terms through more effort; involves something known as Bernoulli coefficients. Whatever it is...it converges for: either by considering the convergence of the geometric series (not so clear how to do this) or more simply the distance to the nearest singularity. Example: Laurent series for tangent, principal branch). about z=0. (inverse for Integrate term by term: New Section 2 Page 7

on the principal branch. This Taylor series can be seen, by the root test to converge for How see this in terms of singularities? Example: Fourier series is a special case of a Laurent series! Suppose that we have a function f(z) which is analytic over some annulus D containing the circle C(0,1). Then we can use Laurent series about to write: in D where: Let's focus on the behavior of f(z) on the circle C(0,1). Then the above expression is entirely related to the behavior of the function which we can think of as a complex function on the real axis which is periodic with period Let's rewrite the above Laurent series in terms of this periodic function: New Section 2 Page 8

which is the Euler-Fourier formula for Fourier coefficients. What this has shown is that if one is given a complex or real periodic function with period, and if one can find an analytic extension of that given function over an open annulus containing the circle of radius one under the mapping, then the Fourier series can be derived from the Laurent series results. What kinds of functions have such an "analytic extension"? Real analytic functions, which mean that realvalued Taylor series exist about each point, and actually they converge over some finite radius when extended to the complex plane. There are plenty of examples of real-valued functions that are infinitely smooth but not real-analytic. Classical example: Not real analytic at x=0! New Section 2 Page 9