Walrasian Demand. u(x) where B(p, w) = {x R n + : p x w}.

Size: px
Start display at page:

Download "Walrasian Demand. u(x) where B(p, w) = {x R n + : p x w}."

Transcription

1 Walrasian Demand Econ 2100 Fall 2015 Lecture 5, September 16 Outline 1 Walrasian Demand 2 Properties of Walrasian Demand 3 An Optimization Recipe 4 First and Second Order Conditions

2 Definition Walrasian Demand Given a utility function u : R n + R, the Walrasian demand correspondence x : R n ++ R + R n + is defined by x (p, w) = arg max x B p,w u(x) where B(p, w) = {x R n + : p x w}. Exercise Assumptions: goods are perfectly divisible; consumption is non negative; income is non negative; prices are strictly positive; the total price of consumption cannot exceed income; prices are linear in consumption. Think of possible violations. Suppose w = $100. There are two commodities, electricity and food. Each unit of food costs $1. The first 20Kwh electricity cost $1 per Kwh, but the price of each incremetal unit of electricity is $1.50 per Kwh. Write the consumer s budget set formally and draw it.

3 Proposition Walrasian Demand Is Convex If u is quasiconcave, then x (p, w) is convex. If u is strictly quasiconcave, then x (p, w) is unique. Proof. Same as before (u (stricly) quasiconcave means (strictly) convex). Suppose x, y x (p, w) and pick α [0, 1]. First convexity: need to show αx + (1 α)y x (p, w). x y by definition of x (p, w ). u is quasiconcave, thus is convex and αx + (1 α)y y. y z for any z B(p, w ) by definition of x (p, w ). Transitivity implies αx + (1 α)y z for any z B(p, w ); thus αx + (1 α)y x (p, w ). Now uniqueness. x, y x (p, w ) and x y imply αx + (1 α)y y for any α (0, 1) because u is strictly quasiconcave ( is strictly convex). Since B(p, w ) is convex, αx + (1 α)y B(p, w ), contradicting y x (p, w ).

4 Walrasian Demand Is Non-Empty and Compact Proposition If u is continuous, then x (p, w) is nonempty and compact. We already proved this as well. Proof. Define A by A = B(p, w) = {x R n + : p x w} This is a closed and bounded (i.e. compact, set) and x (p, w) = C (A) = C (B(p, w)) where are the preferences represented by u. Then x (p, w) is the set of maximizers of a continuous function over a compact set.

5 Walrasian Demand: Examples How do we find the Walrasian Demand? Need to solve a constrained maximization problem, usually using calculus. Question 2, Problem Set 3; due next Monday. For each of the following utility functions, find the Walrasian demand correspondence. (Hint: pictures may help) 1 u(x) = n i=1 x αi i with α i > 0 (Cobb-Douglas). 2 u(x) = min{α 1 x 1, α 2 x 2,..., α n x n } with α i > 0 (generalized Leontief). 3 u(x) = n i=1 α i x i for α i > 0 (generalized linear). 4 u(x) = [ n i=1 α i x ρ i ] 1 ρ (generalized CES). Can we do the second one using calculus? How about the third? Do we need calculus? Always draw a picture. Constant elasticity of substitution (CES) preferences are the most commonly used homothetic preferences. Many preferences are a special case of CES.

6 An Optimization Recipe How to solve max f (x) subject to g i (x) 0 with i = 1,.., m 1 Write the Langrange function L : R n R m R as m L (x, λ) = f (x) λ i g i (x) 2 Write the First Order Conditions: n 1 { }} { L (x, λ) = f (x) i=1 m λ i g i (x) = 0 i=1 } {{ } f (x) x j m i=1 g λ i (x) i x =0 for all j=1,..,n j 3 Write constraints, inequalities for λ, and complementary slackness conditions: g i (x) 0 with i = 1,.., m λ i 0 with i = 1,.., m λ i g i (x) = 0 with i = 1,.., m 4 Find the x and λ that satisfy all these and you are done...hopefully.

7 The Recipe In Action: Cobb-Dougals Utility Compute Walrasian demand when the utility function is u(x 1, x 2 ) = x α 1 x 1 α 2 Here x (p, w) is the solution to 1 The Langrangian is max x 1 α x 1 α 2 x 1,x 2 {p 1x 1+p 2x 2 w, x 1 0, x 2 0} L (x, λ) = x1 α x 1 α 2 λ w (p 1 x 1 + p 2 x 2 w) ( λ 1 x 1 ) ( λ 2 x 2 ) 2 The First Order Conditions for x is: L (x, λ) = {{ } 2 1 αx α 1 1 x 1 α 2 λ w p 1 + λ 1 (1 α) x α 1 x α 2 λ w p 2 + λ 2 = α u(x1,x2) x 1 λ w p 1 + λ 1 (1 α) u(x1,x2) x 2 λ w p 2 + λ 2 3 The constraints, inequalities for λ, and complementary slackness are: p 1 x 1 + p 2 x 2 w 0 x 1 0, and x 2 0 λ w 0, λ 1 0, and λ 2 0 λ w (p 1 x 1 + p 2 x 2 w) = 0, λ 1 x 1 = 0, and λ 2 x 2 = 0 4 Find a solution to the above (easy for me to say). = 0

8 The Recipe In Action: Cobb-Dougals Utility Compute Walrasian demand when the utility function is u(x 1, x 2 ) = x1 αx 1 α 2 We must solve: α u(x1,x2) x 1 λ w p 1 + λ 1 = 0 and (1 α) u(x1,x2) x 2 λ w p 2 + λ 2 = 0 p 1 x 1 + p 2 x 2 w 0 x 1 0, x 2 0 and λ w 0, λ 1 0, λ 2 0 λ w (p 1 x 1 + p 2 x 2 w) = 0 and λ 1 x 1 = 0, λ 2 x 2 = 0 x (p, w) must be strictly positive (why?), hence λ 1 = λ 2 = 0. The budget constraint must bind (why?), hence λ w 0. Therefore the top two equalities become αu(x 1, x 2 ) = λ w p 1 x 1 and (1 α) u(x 1, x 2 ) = λ w p 2 x 2 Dividing one by the other and use Full Expenditure. α 1 α = p1x1 p 2x 2 Summing both sides and using Full Expenditure we get Some algebra then yields u(x 1, x 2 ) = λ w (p 1 x 1 + p 2 x 2 ) = λ w w x1 (p, w) = αw, x (1 α) w 2 (p, w) =, and λ w = p 1 p 2 ( ) α ( α 1 α p 1 p 2 ) 1 α

9 Marginal Rate of Substitution The First Order Conditions for utility maximization take the form: utility ( function ) λ budget budget ( constraint constraint ) non negativity λ non negativity ( constraints constraints ) = 0 If the non-negativity constraints hold, the correspoding multipliers equal 0. Then, at a solution x, the expression above is: u (x ) x j λ w p j = 0 for all j = 1,.., n One way to rearrange this expression gives u(x ) x j u(x ) x k = p j p k for any j, k This is the familiar condition about equalizing marginal rates of substituitons across goods.

10 Marginal Utility Per Dollar Spent Again, the First Order Conditions for utility maximization take the form u (x ) x j λ w p j λ j = 0 for all j = 1,.., n Another way to rearrange it gives u(x ) x j = λ w + λ j If not, there are goods j and k for which for all j = 1,.., n p j p j In words, if any two goods are consumed in strictly positive amounts, the marginal utility per dollar spent must be equal across them. u(x ) u(x ) x j p j < x k p k Then DM can spend ε less on j and ε more on k so that the budget constraint still holds (why?). By Taylor s theorem, the utility at this new choice is u (x )+ u (x ) x j ( εpj ) + u (x ) x k ( ) ε +o (ε) = u (x )+ε p k u(x ) x k p k which implies that x is not an optimum. Think about the case in which some goods are consumed in zero amount. u(x ) x j + p j

11 Luca s Rough Guide to Convex Optimization Where does the recipe come from? Roee told you, but here is my informal summary. Question Let f : R n + R be a continuous, increasing, and quasi-concave function, and let C R n be a convex set. We want to find a solution to the following problem: where max f (x) x C C = {x R n : g i (x) 0 with i = 1,..., N} This is the most general way to state a maximization problem. Examples 1 If C = R n, we have an unconstrained problem. 2 If you have constraints like h (x) b, define g j (x) = h (x) b. 3 If you have constraints like h (x) b, define g j (x) = [h (x) b]. 4 If you have constraints like h (x) = b, define g j (x) = h (x) b and g k (x) = [h (x) b] and rewrite as {g j (x) 0 and g k (x) 0}.

12 Simple Geometry Observations A level curve for some function f : R n + R is given by f (x) = c for some c R. The better than set is (x) = {y R n : f (y) f (x)}. Draw C and some level curves (when are better than sets convex?). The tangent plane to C at a point is a plane through the point that does not intersect the interior of C. The tangent to the level curves at a point is a plane through the point that does not intersect the interior of (x). At a maximum, level curves and constraint set are tangent to the same plane.

13 Geometry In Action Definition An hyperplane is H = {x R n : γ (x y) = 0}. Fix x on the boundary of C, the tangent to C at x is a supporting hyperplane. Definition An hyperplane H supports C at a point x if C is a strict subset of H = {x R n : γ (x y) 0} The tangent to the better than set at x is also a supporting hyperplane. Definition An hyperplane H supports the better than set at x if (x) is a strict subset of H + = {x R n : γ (x y) 0} Supporting Hyperplane Theorem A non-empty convex set has at least one supporting hyperplane. An optimum is a point x where the same hyperlane supports C and (x).

14 Details To Remember If the better than set or the constraint sets are not convex: big trouble. If functions are not differentiable: small trouble. If the geometry still works we can find a more general theorem (see convex analysis). When does the recipe fail? If the constraint qualification condition fails. If the objective function is not quasi concave. This means you must check the second order conditions when in doubt. these have to do with the matrix of second derivatives; look at Section M.K in MWG for details (boring and mechanical, but one needs to know them); Varian also has a good quick and dirty guide.

15 Summary Convex Optimization Summary When x is a solution of the problem max f (x) subject to g i (x) 0 i = 1,.., m then with m L (x, λ) = f (x ) λ i g i (x ) = 0 i=1 λ i 0 and λ i g i (x ) = 0 for each i = 1,.., m and m Dx 2 L (x, λ) = D 2 f (x ) λ i D 2 g i (x ) is negative semidefinite on {z R n : g i (x ) z = 0 for each i = 1,.., m}......provided constraint qualification holds. i=1

16 Demand and Indirect Utility Function The Walrasian demand correspondence x : R n ++ R + R n + is defined by x (p, w) = arg max u(x) where B(p, w) = {x x B(p,w ) Rn + : p x w}. Definition Given a continuous utility function u : R n + R, the indirect utility function v : R n ++ R + R is defined by Results v(p, w) = u(x (p, w)) where x (p, w) arg max x B(p,w ) u(x). This indirect utility function measures changes in the optimized value of the objective function as the parameters (prices and wages) change and the consumer adjusts her optimal consumption accordingly. The Walrasian demand correspondence is upper hemi continuous To prove this we need properties that characterize continuity for correspondences. The indirect utility function is continuous. To prove this we need properties that characterize continuity for correspondences.

17 Berge s Theorem of the Maximum The theorem of the maximum lets us establish the previous two results. Theorem (Theorem of the Maximum) If f : X R is a continuous function and ϕ : Q X is a continuous correspondence with nonempty and compact values, then the mapping x : Q X defined by x (q) = arg max x ϕ(q) f (x) is an upper hemicontinuous correspondence and the mapping v : Q R defined by is a continuous function. v(q) = max x ϕ(q) f (x) Berge s Theorem is useful when exogenous parameters enter the optimization problem only through the constraints, and do not directly enter the objective function. This happens in the consumer s problem: prices and income do not enter the utility function, they only affect the budget set.

18 Properties of Walrasian Demand Proposition If u(x) is continuous, then x (p, w) is upper hemicontinuous and v(p, w) is continuous. Proof. Apply Berge s Theorem: If u : R n + R a continuous function and B (p, w) : R n ++ R + R n + is a continuous correspondence with nonempty and compact values. Then: (i): x : R n ++ R + R n + defined by x (p, w) = arg max x B(p,w ) u(x) is an upper hemicontinuous correspondence and (ii): v : R n ++ R + R defined by v(p, w) = max x B(p,w ) u(x) is a continuous function. We need continuity of the correspondence from price-wage pairs to budget sets. We must show that B : R n ++ R + R n + defined by B(p, w ) = {x R n + : p x w } is continuous and we are done.

19 Continuity for Correspondences Reminder from math camp. Definition A correspondence ϕ : X Y is upper hemicontinuous at x X if for any neighborhood V Y containing ϕ(x), there exists a neighborhood U X of x such that ϕ(x ) V for all x U. lower hemicontinuous at x X if for any neighborhood V Y such that ϕ(x) V, there exists a neighborhood U X of x such that ϕ(x ) V for all x U. A correspondence is upper (lower) hemicontinuous if it is upper (lower) hemicontinuous for all x X. A correspondence is continuous if it is both upper and lower hemicontinuous.

20 Conditions for Continuity (from Math Camp) The following suffi cient conditions are sometimes easier to use. Proposition (A) Suppose X R m and Y R n. A compact-valued correspondence ϕ : X Y is upper hemicontinuous if, and only if, for any domain sequence x j x and corresponding range sequence y j such that y j ϕ(x j ), there exists a convergent subsequence {y jk } such that lim y jk ϕ(x). Note that compactness of the image is required. Proposition (B) Suppose A R m, B R n, and f : A B. Then ϕ is lower hemicontinuous if, and only if, for all {x m } A such that x m x A and y ϕ(x), there exist y m ϕ(x m ) such that y m y.

21 Continuity for Correspondences: Examples Exercise Suppose ϕ : R R is defined by: ϕ(x) = { {1} if x < 1 [0, 2] if x 1. Prove that ϕ is upper hemicontinuous, but not lower hemicontinuous. Exercise Suppose ϕ : R R is defined by: ϕ(x) = { {1} if x 1 [0, 2] if x > 1. Prove that ϕ is lower hemicontinuous, but not upper hemicontinuous.

22 Continuity of the Budget Set Correspondence Question 4, Problem Set 3; due next Monday. Show that the correspondence from price-wage pairs to budget sets, B : R n ++ R + R n + defined by is continuous. B(p, w) = {x R n + : p x w} First show that B(p, w) is upper hemi continuous. Then show that B(p, w) is lower hemi continuous. In both cases, use the propositions in the previous slide (and Bolzano-Weierstrass). There was a very very similar problem in math camp (PS 6, #9).

23 Econ 2100 Fall 2015 Problem Set 3 Due 21 September, Monday, at the beginning of class 1. Prove that if u represents, then: (a) is weakly monotone if and only if u is nondecreasing; is strictly monotone if and only if u is strictly increasing. (b) is convex if and only if u is quasiconcave; is strictly convex if and only if u is strictly quasiconcave. (c) u is quasi-linear if and only 1. (x, m) (x, m ) if and only if m m, for all x R n 1 and all m, m R; 2. (x, m) (x, m ) if and only if (x, m+m ) (x, m +m ), for all x R n 1 and m, m, m R; 3. for all x, x R n 1, there exist m, m R such that (x, m) (x, m ). (d) a continuous is homothetic if and only if it is represented by a utility function that is homogeneous of degree Consider a setting with 2 goods. For each of the following utility functions, find the Walrasian demand correspondence. (Hint: draw pictures) (a) u(x) = n i=1 x α i i with α i > 0. (Cobb-Douglas) (b) u(x) = min{α 1 x 1, α 2 x 2,..., α n x n } with α i > 0. (generalized Leontief) (c) u(x) = n i=1 α ix i with α i > 0. (linear) ] 1 ρ (d) u(x) = [ n i=1 α ix ρ (CES) i From now on consider CES preferences when n = Show that CES preferences are homothetic. 2. Show that these preferences become linear when ρ = 1, and Leontieff as ρ. 3. Assume strictly positive consumption and show that these preferences become Cobb-Douglas as ρ 1. [Hint: use L Hopital Rule] 4. Compute the Walrasian Demand when ρ < Verify that when ρ < 1 the Walrasian Demand converges to the Walrasian Demands for Leontieff and Cobb-Douglas utility functions as ρ and ρ 0 repectively. 6. The elasticity of substitution between x 1 and x 2 is ξ 1,2 = [ ] x 1 (p,w) x 2 (p,w) p 1 p 2 p 1 p 2 x 1 (p,w) x 2 (p,w) Prove that for CES preferences ξ 1,2 = 1 1 ρ. What is ξ 1,2 for linear, Leontieff, and Cobb- Douglas preferences? 1

24 3. (Properties of Differentiable Walrasian Demand) Assume that the Walrasian demand x (p, w) is a differentiable function. (a) Show that for each (p, w), n i=1 x k (p, w) p i + w x k (p, w) p i w = 0 for k = 1,..., n Hint: x is homogeneous of degree 0 in (p, w). What does this imply? (This is a special case of Euler s formula for functions that are homogeneous of degree r. See MWG M.B for more.) (b) Suppose in addition that is locally nonsatiated. Show that for each (p, w), n k=1 x k (p, w) p k + x i (p, w) = 0 for i = 1,..., n and p i n k=1 x k (p, w) p k w = 1. Give a simple intuitive (short) version of these two results (sometimes called Cournot and Engel aggregation, respectively) in words. 4. Prove that the correspondence from price-wage pairs to budget sets, B : R n ++ R + R n + defined by is continuous. B(p, w) = {x R n + : p x w} 5. Suppose a consumer can choose to move to either Philadelphia or Queens. The same n goods are available in both locations, and he must make all of his purchases in the location where he chooses to move. The prices may differ, however; let p denote the price vector in Philadelphia, and let q denote the price vector in Queens. Notice that he can decide where to move, but he cannot purchase some goods in Philadelphia and other goods in Queens. (a) Describe the consumer s budget set B(p, q, w) for fixed p, q R n ++ and wealth w R +. (b) Suppose the consumer s utility function u : R n + R is continuous. Prove the following: The Walrasian demand correspondence, which is now defined on two prices and wealth, x : R n ++ R n ++ R + R n +, defined by x (p, q, w) = arg max u(x) x B(p,q,w) is upper hemicontinuous; and the indirect utility function, v : R n ++ R n ++ R + R, defined by v(p, q, w) = max u(x) x B(p,q,w) is continuous. (c) Prove or disprove the following: If the consumer s utility function is strictly quasiconcave, then x (p, q, w) 1. 2

Economics 2020a / HBS 4010 / HKS API-111 FALL 2010 Solutions to Practice Problems for Lectures 1 to 4

Economics 2020a / HBS 4010 / HKS API-111 FALL 2010 Solutions to Practice Problems for Lectures 1 to 4 Economics 00a / HBS 4010 / HKS API-111 FALL 010 Solutions to Practice Problems for Lectures 1 to 4 1.1. Quantity Discounts and the Budget Constraint (a) The only distinction between the budget line with

More information

Notes V General Equilibrium: Positive Theory. 1 Walrasian Equilibrium and Excess Demand

Notes V General Equilibrium: Positive Theory. 1 Walrasian Equilibrium and Excess Demand Notes V General Equilibrium: Positive Theory In this lecture we go on considering a general equilibrium model of a private ownership economy. In contrast to the Notes IV, we focus on positive issues such

More information

2.3 Convex Constrained Optimization Problems

2.3 Convex Constrained Optimization Problems 42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

More information

Cost Minimization and the Cost Function

Cost Minimization and the Cost Function Cost Minimization and the Cost Function Juan Manuel Puerta October 5, 2009 So far we focused on profit maximization, we could look at a different problem, that is the cost minimization problem. This is

More information

Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all.

Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all. 1. Differentiation The first derivative of a function measures by how much changes in reaction to an infinitesimal shift in its argument. The largest the derivative (in absolute value), the faster is evolving.

More information

Deriving Demand Functions - Examples 1

Deriving Demand Functions - Examples 1 Deriving Demand Functions - Examples 1 What follows are some examples of different preference relations and their respective demand functions. In all the following examples, assume we have two goods x

More information

Advanced Microeconomics

Advanced Microeconomics Advanced Microeconomics Ordinal preference theory Harald Wiese University of Leipzig Harald Wiese (University of Leipzig) Advanced Microeconomics 1 / 68 Part A. Basic decision and preference theory 1 Decisions

More information

Name. Final Exam, Economics 210A, December 2011 Here are some remarks to help you with answering the questions.

Name. Final Exam, Economics 210A, December 2011 Here are some remarks to help you with answering the questions. Name Final Exam, Economics 210A, December 2011 Here are some remarks to help you with answering the questions. Question 1. A firm has a production function F (x 1, x 2 ) = ( x 1 + x 2 ) 2. It is a price

More information

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results

More information

Multi-variable Calculus and Optimization

Multi-variable Calculus and Optimization Multi-variable Calculus and Optimization Dudley Cooke Trinity College Dublin Dudley Cooke (Trinity College Dublin) Multi-variable Calculus and Optimization 1 / 51 EC2040 Topic 3 - Multi-variable Calculus

More information

Economics 121b: Intermediate Microeconomics Problem Set 2 1/20/10

Economics 121b: Intermediate Microeconomics Problem Set 2 1/20/10 Dirk Bergemann Department of Economics Yale University s by Olga Timoshenko Economics 121b: Intermediate Microeconomics Problem Set 2 1/20/10 This problem set is due on Wednesday, 1/27/10. Preliminary

More information

Constrained optimization.

Constrained optimization. ams/econ 11b supplementary notes ucsc Constrained optimization. c 2010, Yonatan Katznelson 1. Constraints In many of the optimization problems that arise in economics, there are restrictions on the values

More information

Lecture Notes on Elasticity of Substitution

Lecture Notes on Elasticity of Substitution Lecture Notes on Elasticity of Substitution Ted Bergstrom, UCSB Economics 210A March 3, 2011 Today s featured guest is the elasticity of substitution. Elasticity of a function of a single variable Before

More information

Metric Spaces. Chapter 7. 7.1. Metrics

Metric Spaces. Chapter 7. 7.1. Metrics Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

More information

15 Kuhn -Tucker conditions

15 Kuhn -Tucker conditions 5 Kuhn -Tucker conditions Consider a version of the consumer problem in which quasilinear utility x 2 + 4 x 2 is maximised subject to x +x 2 =. Mechanically applying the Lagrange multiplier/common slopes

More information

Problem Set II: budget set, convexity

Problem Set II: budget set, convexity Problem Set II: budget set, convexity Paolo Crosetto paolo.crosetto@unimi.it Exercises will be solved in class on January 25th, 2010 Recap: Walrasian Budget set, definition Definition (Walrasian budget

More information

Definition and Properties of the Production Function: Lecture

Definition and Properties of the Production Function: Lecture Definition and Properties of the Production Function: Lecture II August 25, 2011 Definition and : Lecture A Brief Brush with Duality Cobb-Douglas Cost Minimization Lagrangian for the Cobb-Douglas Solution

More information

Date: April 12, 2001. Contents

Date: April 12, 2001. Contents 2 Lagrange Multipliers Date: April 12, 2001 Contents 2.1. Introduction to Lagrange Multipliers......... p. 2 2.2. Enhanced Fritz John Optimality Conditions...... p. 12 2.3. Informative Lagrange Multipliers...........

More information

Practice with Proofs

Practice with Proofs Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using

More information

Critical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima.

Critical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima. Lecture 0: Convexity and Optimization We say that if f is a once continuously differentiable function on an interval I, and x is a point in the interior of I that x is a critical point of f if f (x) =

More information

Economics 326: Duality and the Slutsky Decomposition. Ethan Kaplan

Economics 326: Duality and the Slutsky Decomposition. Ethan Kaplan Economics 326: Duality and the Slutsky Decomposition Ethan Kaplan September 19, 2011 Outline 1. Convexity and Declining MRS 2. Duality and Hicksian Demand 3. Slutsky Decomposition 4. Net and Gross Substitutes

More information

Schooling, Political Participation, and the Economy. (Online Supplementary Appendix: Not for Publication)

Schooling, Political Participation, and the Economy. (Online Supplementary Appendix: Not for Publication) Schooling, Political Participation, and the Economy Online Supplementary Appendix: Not for Publication) Filipe R. Campante Davin Chor July 200 Abstract In this online appendix, we present the proofs for

More information

TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

More information

Chapter 4 Online Appendix: The Mathematics of Utility Functions

Chapter 4 Online Appendix: The Mathematics of Utility Functions Chapter 4 Online Appendix: The Mathematics of Utility Functions We saw in the text that utility functions and indifference curves are different ways to represent a consumer s preferences. Calculus can

More information

Separation Properties for Locally Convex Cones

Separation Properties for Locally Convex Cones Journal of Convex Analysis Volume 9 (2002), No. 1, 301 307 Separation Properties for Locally Convex Cones Walter Roth Department of Mathematics, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam

More information

Follow links for Class Use and other Permissions. For more information send email to: permissions@pupress.princeton.edu

Follow links for Class Use and other Permissions. For more information send email to: permissions@pupress.princeton.edu COPYRIGHT NOTICE: Ariel Rubinstein: Lecture Notes in Microeconomic Theory is published by Princeton University Press and copyrighted, c 2006, by Princeton University Press. All rights reserved. No part

More information

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)! Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

More information

U = x 1 2. 1 x 1 4. 2 x 1 4. What are the equilibrium relative prices of the three goods? traders has members who are best off?

U = x 1 2. 1 x 1 4. 2 x 1 4. What are the equilibrium relative prices of the three goods? traders has members who are best off? Chapter 7 General Equilibrium Exercise 7. Suppose there are 00 traders in a market all of whom behave as price takers. Suppose there are three goods and the traders own initially the following quantities:

More information

In this section, we will consider techniques for solving problems of this type.

In this section, we will consider techniques for solving problems of this type. Constrained optimisation roblems in economics typically involve maximising some quantity, such as utility or profit, subject to a constraint for example income. We shall therefore need techniques for solving

More information

Constrained Optimisation

Constrained Optimisation CHAPTER 9 Constrained Optimisation Rational economic agents are assumed to make choices that maximise their utility or profit But their choices are usually constrained for example the consumer s choice

More information

Consumer Theory. The consumer s problem

Consumer Theory. The consumer s problem Consumer Theory The consumer s problem 1 The Marginal Rate of Substitution (MRS) We define the MRS(x,y) as the absolute value of the slope of the line tangent to the indifference curve at point point (x,y).

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

Mathematical Induction. Mary Barnes Sue Gordon

Mathematical Induction. Mary Barnes Sue Gordon Mathematics Learning Centre Mathematical Induction Mary Barnes Sue Gordon c 1987 University of Sydney Contents 1 Mathematical Induction 1 1.1 Why do we need proof by induction?.... 1 1. What is proof by

More information

Introductory Notes on Demand Theory

Introductory Notes on Demand Theory Introductory Notes on Demand Theory (The Theory of Consumer Behavior, or Consumer Choice) This brief introduction to demand theory is a preview of the first part of Econ 501A, but it also serves as a prototype

More information

To give it a definition, an implicit function of x and y is simply any relationship that takes the form:

To give it a definition, an implicit function of x and y is simply any relationship that takes the form: 2 Implicit function theorems and applications 21 Implicit functions The implicit function theorem is one of the most useful single tools you ll meet this year After a while, it will be second nature to

More information

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces

More information

Duality of linear conic problems

Duality of linear conic problems Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least

More information

A FIRST COURSE IN OPTIMIZATION THEORY

A FIRST COURSE IN OPTIMIZATION THEORY A FIRST COURSE IN OPTIMIZATION THEORY RANGARAJAN K. SUNDARAM New York University CAMBRIDGE UNIVERSITY PRESS Contents Preface Acknowledgements page xiii xvii 1 Mathematical Preliminaries 1 1.1 Notation

More information

Lecture 2: Consumer Theory

Lecture 2: Consumer Theory Lecture 2: Consumer Theory Preferences and Utility Utility Maximization (the primal problem) Expenditure Minimization (the dual) First we explore how consumers preferences give rise to a utility fct which

More information

Numerisches Rechnen. (für Informatiker) M. Grepl J. Berger & J.T. Frings. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl J. Berger & J.T. Frings. Institut für Geometrie und Praktische Mathematik RWTH Aachen (für Informatiker) M. Grepl J. Berger & J.T. Frings Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2010/11 Problem Statement Unconstrained Optimality Conditions Constrained

More information

Consumer Theory: The Mathematical Core

Consumer Theory: The Mathematical Core Consumer Theory: The Mathematical Core Dan McFadden, C13 Suppose an individual has a utility function U(x) which is a function of non-negative commodity vectors x = (x 1,x,...,x N ), and seeks to maximize

More information

Lecture 5 Principal Minors and the Hessian

Lecture 5 Principal Minors and the Hessian Lecture 5 Principal Minors and the Hessian Eivind Eriksen BI Norwegian School of Management Department of Economics October 01, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 5 Principal Minors and

More information

Follow links for Class Use and other Permissions. For more information send email to: permissions@pupress.princeton.edu

Follow links for Class Use and other Permissions. For more information send email to: permissions@pupress.princeton.edu COPYRIGHT NOTICE: Ariel Rubinstein: Lecture Notes in Microeconomic Theory is published by Princeton University Press and copyrighted, c 2006, by Princeton University Press. All rights reserved. No part

More information

Math 4310 Handout - Quotient Vector Spaces

Math 4310 Handout - Quotient Vector Spaces Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable

More information

Scalar Valued Functions of Several Variables; the Gradient Vector

Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions vector valued function of n variables: Let us consider a scalar (i.e., numerical, rather than y = φ(x = φ(x 1,

More information

Convex analysis and profit/cost/support functions

Convex analysis and profit/cost/support functions CALIFORNIA INSTITUTE OF TECHNOLOGY Division of the Humanities and Social Sciences Convex analysis and profit/cost/support functions KC Border October 2004 Revised January 2009 Let A be a subset of R m

More information

1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. 1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since

More information

The Envelope Theorem 1

The Envelope Theorem 1 John Nachbar Washington University April 2, 2015 1 Introduction. The Envelope Theorem 1 The Envelope theorem is a corollary of the Karush-Kuhn-Tucker theorem (KKT) that characterizes changes in the value

More information

Introduction to Topology

Introduction to Topology Introduction to Topology Tomoo Matsumura November 30, 2010 Contents 1 Topological spaces 3 1.1 Basis of a Topology......................................... 3 1.2 Comparing Topologies.......................................

More information

SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA

SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA This handout presents the second derivative test for a local extrema of a Lagrange multiplier problem. The Section 1 presents a geometric motivation for the

More information

Several Views of Support Vector Machines

Several Views of Support Vector Machines Several Views of Support Vector Machines Ryan M. Rifkin Honda Research Institute USA, Inc. Human Intention Understanding Group 2007 Tikhonov Regularization We are considering algorithms of the form min

More information

24. The Branch and Bound Method

24. The Branch and Bound Method 24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NP-complete. Then one can conclude according to the present state of science that no

More information

Linear Programming Notes V Problem Transformations

Linear Programming Notes V Problem Transformations Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material

More information

What is Linear Programming?

What is Linear Programming? Chapter 1 What is Linear Programming? An optimization problem usually has three essential ingredients: a variable vector x consisting of a set of unknowns to be determined, an objective function of x to

More information

UCLA. Department of Economics Ph. D. Preliminary Exam Micro-Economic Theory

UCLA. Department of Economics Ph. D. Preliminary Exam Micro-Economic Theory UCLA Department of Economics Ph. D. Preliminary Exam Micro-Economic Theory (SPRING 2011) Instructions: You have 4 hours for the exam Answer any 5 out of the 6 questions. All questions are weighted equally.

More information

1 Calculus of Several Variables

1 Calculus of Several Variables 1 Calculus of Several Variables Reading: [Simon], Chapter 14, p. 300-31. 1.1 Partial Derivatives Let f : R n R. Then for each x i at each point x 0 = (x 0 1,..., x 0 n) the ith partial derivative is defined

More information

Vector and Matrix Norms

Vector and Matrix Norms Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty

More information

(Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties

(Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties Lecture 1 Convex Sets (Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties 1.1.1 A convex set In the school geometry

More information

Economics 2020a / HBS 4010 / HKS API-111 Fall 2011 Practice Problems for Lectures 1 to 11

Economics 2020a / HBS 4010 / HKS API-111 Fall 2011 Practice Problems for Lectures 1 to 11 Economics 2020a / HBS 4010 / HKS API-111 Fall 2011 Practice Problems for Lectures 1 to 11 LECTURE 1: BUDGETS AND REVEALED PREFERENCE 1.1. Quantity Discounts and the Budget Constraint Suppose that a consumer

More information

MINIMIZATION OF ENTROPY FUNCTIONALS UNDER MOMENT CONSTRAINTS. denote the family of probability density functions g on X satisfying

MINIMIZATION OF ENTROPY FUNCTIONALS UNDER MOMENT CONSTRAINTS. denote the family of probability density functions g on X satisfying MINIMIZATION OF ENTROPY FUNCTIONALS UNDER MOMENT CONSTRAINTS I. Csiszár (Budapest) Given a σ-finite measure space (X, X, µ) and a d-tuple ϕ = (ϕ 1,..., ϕ d ) of measurable functions on X, for a = (a 1,...,

More information

On Lexicographic (Dictionary) Preference

On Lexicographic (Dictionary) Preference MICROECONOMICS LECTURE SUPPLEMENTS Hajime Miyazaki File Name: lexico95.usc/lexico99.dok DEPARTMENT OF ECONOMICS OHIO STATE UNIVERSITY Fall 993/994/995 Miyazaki.@osu.edu On Lexicographic (Dictionary) Preference

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing

More information

The Real Business Cycle Model

The Real Business Cycle Model The Real Business Cycle Model Ester Faia Goethe University Frankfurt Nov 2015 Ester Faia (Goethe University Frankfurt) RBC Nov 2015 1 / 27 Introduction The RBC model explains the co-movements in the uctuations

More information

3. Mathematical Induction

3. Mathematical Induction 3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

More information

6.254 : Game Theory with Engineering Applications Lecture 2: Strategic Form Games

6.254 : Game Theory with Engineering Applications Lecture 2: Strategic Form Games 6.254 : Game Theory with Engineering Applications Lecture 2: Strategic Form Games Asu Ozdaglar MIT February 4, 2009 1 Introduction Outline Decisions, utility maximization Strategic form games Best responses

More information

1 Portfolio mean and variance

1 Portfolio mean and variance Copyright c 2005 by Karl Sigman Portfolio mean and variance Here we study the performance of a one-period investment X 0 > 0 (dollars) shared among several different assets. Our criterion for measuring

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete

More information

Continuity of the Perron Root

Continuity of the Perron Root Linear and Multilinear Algebra http://dx.doi.org/10.1080/03081087.2014.934233 ArXiv: 1407.7564 (http://arxiv.org/abs/1407.7564) Continuity of the Perron Root Carl D. Meyer Department of Mathematics, North

More information

Second degree price discrimination

Second degree price discrimination Bergals School of Economics Fall 1997/8 Tel Aviv University Second degree price discrimination Yossi Spiegel 1. Introduction Second degree price discrimination refers to cases where a firm does not have

More information

Lecture 7: Finding Lyapunov Functions 1

Lecture 7: Finding Lyapunov Functions 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski Lecture 7: Finding Lyapunov Functions 1

More information

October 3rd, 2012. Linear Algebra & Properties of the Covariance Matrix

October 3rd, 2012. Linear Algebra & Properties of the Covariance Matrix Linear Algebra & Properties of the Covariance Matrix October 3rd, 2012 Estimation of r and C Let rn 1, rn, t..., rn T be the historical return rates on the n th asset. rn 1 rṇ 2 r n =. r T n n = 1, 2,...,

More information

Metric Spaces Joseph Muscat 2003 (Last revised May 2009)

Metric Spaces Joseph Muscat 2003 (Last revised May 2009) 1 Distance J Muscat 1 Metric Spaces Joseph Muscat 2003 (Last revised May 2009) (A revised and expanded version of these notes are now published by Springer.) 1 Distance A metric space can be thought of

More information

REVIEW OF MICROECONOMICS

REVIEW OF MICROECONOMICS ECO 352 Spring 2010 Precepts Weeks 1, 2 Feb. 1, 8 REVIEW OF MICROECONOMICS Concepts to be reviewed Budget constraint: graphical and algebraic representation Preferences, indifference curves. Utility function

More information

Representation of functions as power series

Representation of functions as power series Representation of functions as power series Dr. Philippe B. Laval Kennesaw State University November 9, 008 Abstract This document is a summary of the theory and techniques used to represent functions

More information

E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

More information

A NEW LOOK AT CONVEX ANALYSIS AND OPTIMIZATION

A NEW LOOK AT CONVEX ANALYSIS AND OPTIMIZATION 1 A NEW LOOK AT CONVEX ANALYSIS AND OPTIMIZATION Dimitri Bertsekas M.I.T. FEBRUARY 2003 2 OUTLINE Convexity issues in optimization Historical remarks Our treatment of the subject Three unifying lines of

More information

The Steepest Descent Algorithm for Unconstrained Optimization and a Bisection Line-search Method

The Steepest Descent Algorithm for Unconstrained Optimization and a Bisection Line-search Method The Steepest Descent Algorithm for Unconstrained Optimization and a Bisection Line-search Method Robert M. Freund February, 004 004 Massachusetts Institute of Technology. 1 1 The Algorithm The problem

More information

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Peter Richtárik Week 3 Randomized Coordinate Descent With Arbitrary Sampling January 27, 2016 1 / 30 The Problem

More information

Pacific Journal of Mathematics

Pacific Journal of Mathematics Pacific Journal of Mathematics GLOBAL EXISTENCE AND DECREASING PROPERTY OF BOUNDARY VALUES OF SOLUTIONS TO PARABOLIC EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS Sangwon Seo Volume 193 No. 1 March 2000

More information

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a 88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small

More information

Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS

Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS Sensitivity Analysis 3 We have already been introduced to sensitivity analysis in Chapter via the geometry of a simple example. We saw that the values of the decision variables and those of the slack and

More information

Sample Midterm Solutions

Sample Midterm Solutions Sample Midterm Solutions Instructions: Please answer both questions. You should show your working and calculations for each applicable problem. Correct answers without working will get you relatively few

More information

Solving Systems of Linear Equations

Solving Systems of Linear Equations LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how

More information

MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform

MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform MATH 433/533, Fourier Analysis Section 11, The Discrete Fourier Transform Now, instead of considering functions defined on a continuous domain, like the interval [, 1) or the whole real line R, we wish

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

More information

ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2015

ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2015 ECON 459 Game Theory Lecture Notes Auctions Luca Anderlini Spring 2015 These notes have been used before. If you can still spot any errors or have any suggestions for improvement, please let me know. 1

More information

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO NIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Examination in: Trial exam Partial differential equations and Sobolev spaces I. Day of examination: November 18. 2009. Examination hours:

More information

Choice under Uncertainty

Choice under Uncertainty Choice under Uncertainty Part 1: Expected Utility Function, Attitudes towards Risk, Demand for Insurance Slide 1 Choice under Uncertainty We ll analyze the underlying assumptions of expected utility theory

More information

Lecture 13: Risk Aversion and Expected Utility

Lecture 13: Risk Aversion and Expected Utility Lecture 13: Risk Aversion and Expected Utility Uncertainty over monetary outcomes Let x denote a monetary outcome. C is a subset of the real line, i.e. [a, b]. A lottery L is a cumulative distribution

More information

constraint. Let us penalize ourselves for making the constraint too big. We end up with a

constraint. Let us penalize ourselves for making the constraint too big. We end up with a Chapter 4 Constrained Optimization 4.1 Equality Constraints (Lagrangians) Suppose we have a problem: Maximize 5, (x 1, 2) 2, 2(x 2, 1) 2 subject to x 1 +4x 2 =3 If we ignore the constraint, we get the

More information

1 Solving LPs: The Simplex Algorithm of George Dantzig

1 Solving LPs: The Simplex Algorithm of George Dantzig Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

More information

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver Høgskolen i Narvik Sivilingeniørutdanningen STE637 ELEMENTMETODER Oppgaver Klasse: 4.ID, 4.IT Ekstern Professor: Gregory A. Chechkin e-mail: chechkin@mech.math.msu.su Narvik 6 PART I Task. Consider two-point

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for

More information

CHAPTER 4 Consumer Choice

CHAPTER 4 Consumer Choice CHAPTER 4 Consumer Choice CHAPTER OUTLINE 4.1 Preferences Properties of Consumer Preferences Preference Maps 4.2 Utility Utility Function Ordinal Preference Utility and Indifference Curves Utility and

More information

Linear Programming Problems

Linear Programming Problems Linear Programming Problems Linear programming problems come up in many applications. In a linear programming problem, we have a function, called the objective function, which depends linearly on a number

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Charlie Frogner 1 MIT 2011 1 Slides mostly stolen from Ryan Rifkin (Google). Plan Regularization derivation of SVMs. Analyzing the SVM problem: optimization, duality. Geometric

More information

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a

More information

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number

More information

The Cobb-Douglas Production Function

The Cobb-Douglas Production Function 171 10 The Cobb-Douglas Production Function This chapter describes in detail the most famous of all production functions used to represent production processes both in and out of agriculture. First used

More information