Angular kinematics-moment of Inertia

Similar documents
PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.

11. Rotation Translational Motion: Rotational Motion:

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Angular acceleration α

Center of Gravity. We touched on this briefly in chapter 7! x 2

Physics 1A Lecture 10C

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is

Physics 201 Homework 8

Chapter 11. h = 5m. = mgh mv Iω 2. E f. = E i. v = 4 3 g(h h) = m / s2 (8m 5m) = 6.26m / s. ω = v r = 6.

Lecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6

Practice Exam Three Solutions

PHY231 Section 2, Form A March 22, Which one of the following statements concerning kinetic energy is true?

PHYS 211 FINAL FALL 2004 Form A

PHY231 Section 1, Form B March 22, 2012

Rotational Inertia Demonstrator

Problem 6.40 and 6.41 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani

Solution Derivations for Capa #11

PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

HW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions

PHY121 #8 Midterm I

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

226 Chapter 15: OSCILLATIONS

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Rotation: Moment of Inertia and Torque

VELOCITY, ACCELERATION, FORCE

PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013

Lecture Presentation Chapter 7 Rotational Motion

8.012 Physics I: Classical Mechanics Fall 2008

Lab 7: Rotational Motion

AP Physics: Rotational Dynamics 2

Welcome back to Physics 211. Physics 211 Spring 2014 Lecture ask a physicist

Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis

C B A T 3 T 2 T What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

So if ω 0 increases 3-fold, the stopping angle increases 3 2 = 9-fold.

Ph\sics 2210 Fall Novcmbcr 21 David Ailion

Chapter 8: Rotational Motion of Solid Objects

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Chapter 3.8 & 6 Solutions

Physics 41 HW Set 1 Chapter 15

Dynamics of Rotational Motion


Torque Analyses of a Sliding Ladder

3600 s 1 h. 24 h 1 day. 1 day

Chapter 6 Work and Energy

Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis

Unit 4 Practice Test: Rotational Motion

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

SOLID MECHANICS DYNAMICS TUTORIAL MOMENT OF INERTIA. This work covers elements of the following syllabi.

Tennessee State University

Lab 8: Ballistic Pendulum

Chapter 4. Forces and Newton s Laws of Motion. continued

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Problem Set V Solutions

At the skate park on the ramp

Columbia University Department of Physics QUALIFYING EXAMINATION

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

D Alembert s principle and applications

If all three collisions below are totally inelastic, which one(s) will bring the car on the left to a complete halt?

3 Work, Power and Energy

Physics 1120: Simple Harmonic Motion Solutions

EXPERIMENT: MOMENT OF INERTIA

CHAPTER 15 FORCE, MASS AND ACCELERATION

TOP VIEW. FBD s TOP VIEW. Examination No. 2 PROBLEM NO. 1. Given:

Linear Motion vs. Rotational Motion

Physics Exam 2 Chapter 5N-New

BHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science.

Chapter 7 Homework solutions

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)

Acceleration due to Gravity

EDUH SPORTS MECHANICS

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7)

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Phys222 Winter 2012 Quiz 4 Chapters Name

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 1111, Exam 3 Section 1 Version 1 December 6, 2005 Total Weight: 100 points

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.

Force on Moving Charges in a Magnetic Field

Presentation of problem T1 (9 points): The Maribo Meteorite

Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s

If you put the same book on a tilted surface the normal force will be less. The magnitude of the normal force will equal: N = W cos θ

B) 286 m C) 325 m D) 367 m Answer: B

E X P E R I M E N T 8

Review Assessment: Lec 02 Quiz

circular motion & gravitation physics 111N

m i: is the mass of each particle

1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D

KE =? v o. Page 1 of 12

Rotational Motion: Moment of Inertia

Simple Harmonic Motion

Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6. Instructions: 1. In the formula F = qvxb:

Chapter H - Problems

Exam 1 Practice Problems Solutions

CHARGED PARTICLES & MAGNETIC FIELDS - WebAssign

Sample Questions for the AP Physics 1 Exam

Physics Midterm Review Packet January 2010

Chapter 6. Work and Energy

Transcription:

Angular kinematics-moment of Inertia Announcements: CAPA Set #9 due next Tuesday + CAPA Set #10 due next Friday. Exam MC scores and Exam solutions will available on D2L soon. Covering Material in Chap. 10 this week and part of next. Web page: http://www.colorado.edu/physics/phys1110/phys1110_sp12/

Center of Mass Calculations A 60 cm length of uniform wire of 60 g mass, is bent into a right triangle. The x- and y- coordinates of the center of mass, in cm, are closest to: A) (8,3) B) (8,5) C) (9,4) D) (10,3) E) (10,5) x cm = r cm = m i r i m i (10g)(0) + (24g)(12cm) + (26g)(12cm) 60g =10cm y cm = (10g)(5cm) + (24g)(0) + (26g)(5cm) 60g = 3cm

Work Problem An 8.0 Kg block is released from rest, v 1 =0 m/s, on a rough incline. The block moves a distance of 1.6 m down the incline, in a time interval of 0.80 sec, and acquires a velocity of v 2 =4.0 m/s. The average rate at which the friction force does work during the 0.80 sec time interval is closest to: A) Zero B) -18W C) -20 W D) -22 W E) -24 W Average work = E f E i Δt E i = mgh = (8kg)(9.8 m )(1.6msin(40)) = 80.8J 2 s E f = 1 2 mv 2 =.5(8kg)(4 m s )2 = 64J = 64J 80.6J.8s = 16.6J.8s = 20.8J

Exam questions Your exam score Exam questions can be addressed to TA s or the professors (Dan Dessau or myself) Exams will be returned in recitation next Thursday For A&S students last day to drop the course without petitioning the Dean is Mar. 23 next Friday.

Angular kinematics The same equations which were derived for constant linear (or translational) acceleration apply for constant angular (or rotational) acceleration Constant linear acceleration only! x = x 0 + v 0x t + 1 2 a xt 2 Missing Variables Position Final v time Constant angular acceleration only!

Relationships to linear acceleration What about acceleration? If speed is then We know that centripetal (or radial) acceleration is. Using v = rω, this can be rewritten as. Total linear acceleration is composed of both tangential and radial acceleration which are always perpendicular to each other.

Clicker question 1 Set frequency to BA CD slows from angular velocity of 4 rad/s (dust has speed of 20 cm/s) to a stop in 4 seconds with constant angular acceleration. What is the dust speed halfway through deceleration? A. 4 cm/s B. 5 cm/s C. 10 cm/s D. 20 cm/s E. None of the above 5 cm

Clicker question 1 Set frequency to BA CD slows from angular velocity of 4 rad/s (dust has speed of 20 cm/s) to a stop in 4 seconds with constant angular acceleration. What is the dust speed halfway through deceleration? A. 4 cm/s B. 5 cm/s C. 10 cm/s D. 20 cm/s E. None of the above At t=2 seconds the angular velocity is: This gives a linear velocity of 5 cm

Clicker question 2 Set frequency to BA CD has an angular acceleration of -1 rad/s 2 and an angular velocity of 2 rad/s. What is the magnitude of the acceleration of the dust particle? A. 20 cm/s 2 B. 5 cm/s 2 C. 21 cm/s 2 D. 0.8 cm/s 2 E. None of the above 5 cm

Clicker question 2 of the acceleration of the dust particle? A. 20 cm/s 2 B. 5 cm/s 2 C. 21 cm/s 2 D. 0.8 cm/s 2 E. None of the above Set frequency to BA CD has an angular acceleration of -1 rad/s 2 and an angular velocity of 2 rad/s. What is the magnitude 5 cm Total acceleration is composed of radial and tangential acceleration.

Kinetic Energy of Rotation If we have a object spinning, then it must have some kinetic energy, but we can t apply KE = mv 2 /2. The center of mass is not moving. So we have to develop an expression for the moving energy. K = 1 2 m 1v 1 2 + 1 2 m 2v 2 2 + 1 2 m 3v 3 2 +... K = 1 2 m 2 iv i Note v i is not the same for all particles in the object, we solve this by writing v i =ωr i. K = 1 2 m 2 iv i = 1 m i (ωr i ) 2 = 1 2 2 ( 2 m i r i )ω 2

Kinetic Energy of Rotation Cont. K = 1 2 m 2 iv = 1 i 2 ( 2 m i r i )ω 2 Term in the parentheses tells us how the mass of a rotating body is distributed about its axis of rotation and we call it rotational inertia or Moment of Inertia. I = m i r i 2 (moment of inertia) K = 1 2 Iω 2 Note this is due to pure rotation. If the object is also translating, then we 1 have to add 2 Mv 2 CoM ; where M = m i

Moment of inertia Consider an object of mass m at the end of a massless rod of length R spinning around an axis with angular velocity ω. What is the kinetic energy of the mass? R m For a particle which is a distance R from the axis (or pivot) the moment of inertia is As the particle moves further out (R increases), ω doesn t change but velocity increases so kinetic energy increases. This comes from the moment of inertia increasing

Moment of inertia If you have a bunch of particles rotating about an axis, can find the total moment of inertia by adding up the moment of inertia of all the particles If there is a smooth distribution of matter then the sum becomes an integral but the idea is the same. Remember that r is the distance from the axis. Therefore, the moment of inertia depends on the axis location.

Moment of inertia (ring & cylindrical shell) Rings and cylindrical shells (hollow cylinders) behave like a bunch of little particles all located at a distance of R from the axis. This is only true for the axis shown.

Moment of inertia What about a solid sphere spinning about it s axis? Not all of the bits of matter are at a distance R from the axis. End up with something less than MR 2. (solid sphere) A hollow sphere of radius R still doesn t have all bits of matter a distance of R from the axis. (hollow sphere) Moments of inertia for other bodies can be found in Table 10.2 in Halliday and Resnick I = r 2 dm

I = MR 2 I = 1 2 M(R 12 + R 2 2 ) I = 1 2 MR2 I = 1 4 MR2 + 1 12 ML2 I = 1 12 ML2 I = 2 5 MR2 I = 2 3 MR2 I = 1 2 MR2 I = 1 12 M(a2 + b 2 )

Moment of Inertia Demos Any freely sliding object will beat any rotating object on the same incline because none of its potential energy is given to rotational kinetic energy. Objects which contain a liquid which does not roll with the can, means that most of the liquid effectively slides down the incline inside the rolling can. The can of liquid therefore has very little rotational inertia compared to its mass. A solid object on the other hand, is made to rotate, giving the can more rotational inertia. It will rotate more slowly! We will find that for an object rolling down an incline plane a = g sinθ (1+ I cm mr 2 )

Clicker question 3 Set frequency to BA For a rotating object, kinetic energy is. If a ring, solid sphere, and a hollow sphere, each with mass M and radius R, are rolled down the same incline, which will have the largest kinetic energy at the bottom. Assume no energy is lost to friction. A. ring B. solid sphere C. hollow sphere D. All will have the same E. Impossible to tell

Clicker question 3 Set frequency to BA For a rotating object, kinetic energy is. If a ring, solid sphere, and a hollow sphere, each with mass M and radius R, are rolled down the same incline, which will have the largest kinetic energy at the bottom. Assume no energy is lost to friction. A. ring B. solid sphere C. hollow sphere D. All will have the same E. Impossible to tell By conservation of energy, they will all have the same kinetic energy. They all start with potential energy of Mgh and end with that amount of kinetic energy. Since K is equal and I is not equal, this means ω is not equal.

Parallel axis theorem The moments of inertia for a ring, hoop, solid sphere, and hollow sphere were for an axis through the center of mass What if the axis is not through the center of mass? If the axis is parallel to the center of mass axis then can use the parallel axis theorem. = moment of inertia for an axis through the center of mass = distance between the two parallel axes