B) 286 m C) 325 m D) 367 m Answer: B
|
|
|
- Bertram Newton
- 10 years ago
- Views:
Transcription
1 Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of air resistance is equal to zero N. C) the effect of gravity has died down. D) the force of air resistance is equal to the weight of the parachutist. 2) A force of 120 N is applied to an object whose mass is 30 kg. The object's acceleration is A) 3600 m/s 2. B) 150 m/s 2. C) 4.0 m/s 2. D) 0.25 m/s 2. 3) A 30.0-kg load is being lifted with constant speed using the ideal pulley arrangement shown in Figure. What is the magnitude of the force F? A) 147 N B) 25.7 N C) 384 N D) 390 N Answer: 147 N 4) A ball is thrown up into the air. At the highest point in its trajectory, the net force acting on it is A) equal to its weight. B) greater than its weight. C) less than its weight, but not zero N. D) zero N. 5) A fireman is sliding down a fire pole. As he speeds up, he tightens his grip on the pole, thus increasing the vertical frictional force that the pole exerts on the fireman. When this force equals the weight of the fireman, what happens? A) The fireman comes to a stop. B) The fireman descends with slower and slower speed. C) The fireman descends with a smaller acceleration. D) The fireman continues to descend, but with constant speed. 6) A person has a mass of 45 kg. How much does she weigh on the Moon, where g = 1.62 m/s 2? A) 45 N B) 73 N C) 7.4 N D) 440 N 7) A 40.0-kg crate is being raised by means of a rope. Its upward acceleration is 2.00 m/s 2. What is the force exerted by the rope on the crate? A) 312 N B) 392 N C) 472 N D) 552 N
2 8) A kg person steps on a scale in an elevator. The scale reads 460 N. What is the magnitude of the acceleration of the elevator? A) 9.81 m/s 2 B) 46.9 m/s 2 C) m/s 2 D) m/s 2 9) What does the word "normal" mean in the phrase "normal force"? A) the force that is usually exerted by a surface B) the total force exerted by a surface C) the component of the force exerted by a surface parallel to the surface D) the component of the force exerted by a surface perpendicular to the surface 10) A 40.0-kg suitcase is being pulled along the ground by means of a strap which exerts a force of 10.0 N at an angle of 51.0 above the horizontal. What is the normal force exerted by the ground? A) 17.1 N B) 15.7 N C) 384 N D) 398 N 11) A 3.00-kg mass and a 5.00-kg mass hang vertically at the ends of a rope that goes over an ideal pulley. If the masses are released from rest, how long does it take for the 3.00-kg mass to rise by 1.00 m? A) s B) s C) s D) s 12) An object of weight W is in free-fall close to the surface of Earth. What is the force that the object exerts on Earth? A) A force greater than W B) A force less than W C) A force equal to W D) No force at all 13) Two objects have masses m and 5m, respectively. They both are placed side by side on a frictionless inclined plane and allowed to slide down from rest. A) It takes the lighter object 5 times longer to reach the bottom of the incline than the heavier. B) It takes the heavier object 5 times longer to reach the bottom of the incline than the lighter. C) The two objects reach the bottom of the incline at the same time. D) You cannot predict in what order the two objects will reach the bottom of the incline. 14) A m 1 =3.0-kg and a m 2 =5.0-kg box rest side-by-side on a smooth, level floor. A horizontal force of 32 N is applied to the m 1 =3.0-kg box pushing it against the m 2 =5.0-kg box, and, as a result, both boxes slide along the floor. How large is the contact force between the two boxes? A) 12 N B) 20 N C) 32 N
3 D) 0 N 15) In Figure above, masses m 1 and m 2 are such that m 1 > m 2 and they lay on a level, frictionless surface. We can apply a horizontal force F either from the left or from the right. The contact force between masses m 1 and m 2 is A) larger when F is applied from the left. B) larger when F is applied from the right. C) the same in either case. D) impossible to determine based on this data. 16) A 2-kg ball is moving with a constant speed of 5 m/s in a horizontal circle whose radius is 50 cm. What is the magnitude of the net force on the ball? A) 0 N B) 20 N C) 40 N D) 100 N 17) Refer to Figure below. Block A has a mass of m A =2.00 kg and rests on a rough table and is connected to block B, which has a mass of m B =3.00 kg, after passing over an ideal pulley, as shown. Block B is released from rest. The coefficient of kinetic friction between block A and the table is What is the acceleration of the masses? A) 3.92 m/s 2 B) 4.71 m/s 2 C) 5.89 m/s 2 D) 6.54 m/s 2 18) Refer to Figure below. Block A has a mass of 7.00 kg, block B has a mass of 5.00 kg and block C has a mass of 4.00 kg. The pulleys are ideal and there is no friction between block B and the table. What is the acceleration of the masses? A) m/s 2 B) 1.97 m/s 2 C) 1.84 m/s 2 D) 0 m/s 2 19) Refer to Figure below. Block A has a mass of 5.00 kg, block B has a mass of 3.00 kg and block C has a mass of 2.00 kg. The pulleys are ideal and there is no friction between block B and the table. What is the tension in the string connecting blocks A and B? A) 13.7 N B) 34.3 N C) 25.5 N D) 38.3 N 20) A person throws a ball horizontally from the top of a building that is 40.0 m high. The initial velocity of the ball is 100 m/s. What is the horizontal distance that the ball travels before hitting the ground? A) 100 m
4 B) 286 m C) 325 m D) 367 m 21) A rock is thrown at some angle above the horizontal with a certain velocity. It reaches its highest point and starts falling down. What is the magnitude of the acceleration of the rock just before it hits the ground? A) 0 B) 9.8 C) 19.6 D) There is not enough information to answer the question. 22) A rock is thrown upwards at an angle of 40e with respect to the horizontal. As the rock is rising in its trajectory, the vertical component of its velocity A) increases. B) decreases. C) remains the same. D) None of the other choices is correct. 23) A bullet is fired from ground level with a speed of 150 m/s at an angle 30.0e above the horizontal at a location where g = 10.0 m/s 2. What is the vertical component of its velocity when it is at the highest point of its trajectory? A) 0 m/s B) 75.0 m/s C) 130 m/s D) 150 m/s 24) A ball is thrown with a velocity of 40 m/s at an angle of 30e above the horizontal and attains a certain range R. At what other angle will this ball attain the same range keeping its initial velocity the same? A) 15e B) 90e C) 120e D) 60e Diff: 1 Page Ref: Sec ) For general projectile motion, which statement is true when the projectile is at the highest point of its trajectory? A) Its acceleration is zero. B) Its velocity is perpendicular to the acceleration. C) Its velocity and acceleration are both zero. D) The horizontal and vertical components of its velocity are zero. 26) A projectile is shot from the edge of a vertical cliff 60.0 m above the ocean. It has a speed of 100 m/s and is fired at an angle of 35.0e above the horizontal. How far from the foot of the vertical cliff does the projectile hit the water? A) 126 m B) 312 m C) 684 m D) 1080 m
5 27) A child throws a ball with an initial speed of 8.00 m/s at an angle of 40.0e above the horizontal. The ball leaves her hand 1.00 m above the ground. At what angle below the horizontal does the ball approach the ground? A) 35.1e B) 38.6e C) 48.0e D) 40.0e 28) An athlete participates in a discus throw competition during an Olympiad that takes place in a city where acceleration due to gravity is 9.80 m/s 2. He throws the discus with an initial velocity of 20.0 m/s at an angle of 30.0e above the horizontal. Neglecting the height of the discus at the point of release, what is the range of the discus? A) 35.3 m B) 20.4 m C) 40.0 m D) 60.0 m 29) Marcia uses a bow to shoot an arrow with initial velocity of magnitude v 0 and at an angle θ above the horizontal. When the arrow returns to the same height from which it started, A) the speed of the arrow is twice v 0. B) the speed of the arrow is 9.8 times larger than v 0. C) the speed of the arrow is again v 0. D) the speed of the arrow is 2 v 0. 30) A ball rolls over the edge of a table with a horizontal velocity v m/s. The height of the table is 1.6 m and the horizontal range of the ball from the base of the table is 20 m. What is the magnitude and direction of the ball's acceleration right after it leaves the table? A) 4.9 m/s 2 downward B) 0 m/s 2 downward C) 19.6 m/s 2 downward D) 9.8 m/s 2 downward
Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion
Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law
Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
AP Physics C Fall Final Web Review
Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of
Chapter 4: Newton s Laws: Explaining Motion
Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state
Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel
Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the
PHY121 #8 Midterm I 3.06.2013
PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension
F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26
Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,
C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N
Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a
10.1 Quantitative. Answer: A Var: 50+
Chapter 10 Energy and Work 10.1 Quantitative 1) A child does 350 J of work while pulling a box from the ground up to his tree house with a rope. The tree house is 4.8 m above the ground. What is the mass
Chapter 7: Momentum and Impulse
Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting
Supplemental Questions
Supplemental Questions The fastest of all fishes is the sailfish. If a sailfish accelerates at a rate of 14 (km/hr)/sec [fwd] for 4.7 s from its initial velocity of 42 km/h [fwd], what is its final velocity?
AP Physics - Chapter 8 Practice Test
AP Physics - Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on
Projectile Motion 1:Horizontally Launched Projectiles
A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched Projectiles Two
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed
9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J
1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9
Review Chapters 2, 3, 4, 5
Review Chapters 2, 3, 4, 5 4) The gain in speed each second for a freely-falling object is about A) 0. B) 5 m/s. C) 10 m/s. D) 20 m/s. E) depends on the initial speed 9) Whirl a rock at the end of a string
5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.
5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will
HW Set II page 1 of 9 PHYSICS 1401 (1) homework solutions
HW Set II page 1 of 9 4-50 When a large star becomes a supernova, its core may be compressed so tightly that it becomes a neutron star, with a radius of about 20 km (about the size of the San Francisco
At the skate park on the ramp
At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises
Worksheet #1 Free Body or Force diagrams
Worksheet #1 Free Body or Force diagrams Drawing Free-Body Diagrams Free-body diagrams are diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation.
PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?
1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always
WWW.MIAMI-BEST-MATH-TUTOR.COM E-MAIL: [email protected] CONTACT NUMBER: (786)556-4839 PHYSICS I
WWW.MIAMI-BEST-MATH-TUTOR.COM PAGE 1 OF 10 WWW.MIAMI-BEST-MATH-TUTOR.COM E-MAIL: [email protected] CONTACT NUMBER: (786)556-4839 PHYSICS I PROJECTILE MOTION 4.1 1. A physics book slides off a horizontal
Newton s Law of Motion
chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating
Physics 11 Assignment KEY Dynamics Chapters 4 & 5
Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following
TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003
Phys - Vectors 11-13-2003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5-kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude
v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )
Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
PHY231 Section 1, Form B March 22, 2012
1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate
B Answer: neither of these. Mass A is accelerating, so the net force on A must be non-zero Likewise for mass B.
CTA-1. An Atwood's machine is a pulley with two masses connected by a string as shown. The mass of object A, m A, is twice the mass of object B, m B. The tension T in the string on the left, above mass
KE =? v o. Page 1 of 12
Page 1 of 12 CTEnergy-1. A mass m is at the end of light (massless) rod of length R, the other end of which has a frictionless pivot so the rod can swing in a vertical plane. The rod is initially horizontal
Serway_ISM_V1 1 Chapter 4
Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As
P211 Midterm 2 Spring 2004 Form D
1. An archer pulls his bow string back 0.4 m by exerting a force that increases uniformly from zero to 230 N. The equivalent spring constant of the bow is: A. 115 N/m B. 575 N/m C. 1150 N/m D. 287.5 N/m
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) A person on a sled coasts down a hill and then goes over a slight rise with speed 2.7 m/s.
Web review - Ch 3 motion in two dimensions practice test
Name: Class: _ Date: _ Web review - Ch 3 motion in two dimensions practice test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which type of quantity
Force Concept Inventory
Revised form 081695R Force Concept Inventory Originally published in The Physics Teacher, March 1992 by David Hestenes, Malcolm Wells, and Gregg Swackhamer Revised August 1995 by Ibrahim Halloun, Richard
Conceptual Questions: Forces and Newton s Laws
Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is
Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7
Lecture 6 Weight Tension Normal Force Static Friction Cutnell+Johnson: 4.8-4.12, second half of section 4.7 In this lecture, I m going to discuss four different kinds of forces: weight, tension, the normal
Curso2012-2013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía.
1. A body of mass m slides a distance d along a horizontal surface. How much work is done by gravity? A) mgd B) zero C) mgd D) One cannot tell from the given information. E) None of these is correct. 2.
Name Period WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS. 1. Stored energy or energy due to position is known as energy.
Name Period Date WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS 1. Stored energy or energy due to position is known as energy. 2. The formula for calculating potential energy is. 3. The three factors
Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!
Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! 1. A student holds her 1.5-kg psychology textbook out of a second floor classroom window until her arm is tired; then she releases
Steps to Solving Newtons Laws Problems.
Mathematical Analysis With Newtons Laws similar to projectiles (x y) isolation Steps to Solving Newtons Laws Problems. 1) FBD 2) Axis 3) Components 4) Fnet (x) (y) 5) Subs 1 Visual Samples F 4 1) F 3 F
PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.
PHYS 117- Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels
Physics Section 3.2 Free Fall
Physics Section 3.2 Free Fall Aristotle Aristotle taught that the substances making up the Earth were different from the substance making up the heavens. He also taught that dynamics (the branch of physics
Work, Energy and Power Practice Test 1
Name: ate: 1. How much work is required to lift a 2-kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill
8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential
8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential energy, e.g. a ball in your hand has more potential energy
AP Physics: Rotational Dynamics 2
Name: Assignment Due Date: March 30, 2012 AP Physics: Rotational Dynamics 2 Problem A solid cylinder with mass M, radius R, and rotational inertia 1 2 MR2 rolls without slipping down the inclined plane
Two-Body System: Two Hanging Masses
Specific Outcome: i. I can apply Newton s laws of motion to solve, algebraically, linear motion problems in horizontal, vertical and inclined planes near the surface of Earth, ignoring air resistance.
Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014
Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,
Practice Test SHM with Answers
Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one
Chapter 07 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Class: Date: Chapter 07 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An example of a vector quantity is: a. temperature. b. length. c. velocity.
Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion
Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.
Exam 1 Review Questions PHY 2425 - Exam 1
Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1H Rev Ques.doc - 1 - Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that
WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS
WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS 1. Stored energy or energy due to position is known as Potential energy. 2. The formula for calculating potential energy is mgh. 3. The three factors that
Physics 590 Homework, Week 6 Week 6, Homework 1
Physics 590 Homework, Week 6 Week 6, Homework 1 Prob. 6.1.1 A descent vehicle landing on the moon has a vertical velocity toward the surface of the moon of 35 m/s. At the same time it has a horizontal
CHAPTER 6 WORK AND ENERGY
CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From
Chapter 3 Falling Objects and Projectile Motion
Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave
Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis
* By request, but I m not vouching for these since I didn t write them Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis There are extra office hours today & tomorrow Lots of practice exams
circular motion & gravitation physics 111N
circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would
Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension
Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Conceptual Questions 1) Suppose that an object travels from one point in space to another. Make
Tennessee State University
Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.
If you put the same book on a tilted surface the normal force will be less. The magnitude of the normal force will equal: N = W cos θ
Experiment 4 ormal and Frictional Forces Preparation Prepare for this week's quiz by reviewing last week's experiment Read this week's experiment and the section in your textbook dealing with normal forces
III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument
III. Applications of Force and Motion Concepts Concept Review Conflicting Contentions 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument Qualitative Reasoning 1. Dropping Balls 2. Spinning Bug
Chapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting
Work-Energy Bar Charts
Name: Work-Energy Bar Charts Read from Lesson 2 of the Work, Energy and Power chapter at The Physics Classroom: http://www.physicsclassroom.com/class/energy/u5l2c.html MOP Connection: Work and Energy:
AP Physics 1 Midterm Exam Review
AP Physics 1 Midterm Exam Review 1. The graph above shows the velocity v as a function of time t for an object moving in a straight line. Which of the following graphs shows the corresponding displacement
PHYSICS 111 HOMEWORK SOLUTION, week 4, chapter 5, sec 1-7. February 13, 2013
PHYSICS 111 HOMEWORK SOLUTION, week 4, chapter 5, sec 1-7 February 13, 2013 0.1 A 2.00-kg object undergoes an acceleration given by a = (6.00î + 4.00ĵ)m/s 2 a) Find the resultatnt force acting on the object
Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.
Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular
Conservative vs. Non-conservative forces Gravitational Potential Energy. Work done by non-conservative forces and changes in mechanical energy
Next topic Conservative vs. Non-conservative forces Gravitational Potential Energy Mechanical Energy Conservation of Mechanical energy Work done by non-conservative forces and changes in mechanical energy
Projectile motion simulator. http://www.walter-fendt.de/ph11e/projectile.htm
More Chapter 3 Projectile motion simulator http://www.walter-fendt.de/ph11e/projectile.htm The equations of motion for constant acceleration from chapter 2 are valid separately for both motion in the x
LAB 6 - GRAVITATIONAL AND PASSIVE FORCES
L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies
Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m
Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of
Acceleration due to Gravity
Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision
TIME OF COMPLETION DEPARTMENT OF NATURAL SCIENCES. PHYS 1111, Exam 2 Section 1 Version 1 October 30, 2002 Total Weight: 100 points
TIME OF COMPLETION NAME DEPARTMENT OF NATURAL SCIENCES PHYS 1111, Exam 2 Section 1 Version 1 October 30, 2002 Total Weight: 100 points 1. Check your examination for completeness prior to starting. There
AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s
AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s Answer the multiple choice questions (2 Points Each) on this sheet with capital
PHYS 211 FINAL FALL 2004 Form A
1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each
LAB 6: GRAVITATIONAL AND PASSIVE FORCES
55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction
Catapult Engineering Pilot Workshop. LA Tech STEP 2007-2008
Catapult Engineering Pilot Workshop LA Tech STEP 2007-2008 Some Background Info Galileo Galilei (1564-1642) did experiments regarding Acceleration. He realized that the change in velocity of balls rolling
Review Assessment: Lec 02 Quiz
COURSES > PHYSICS GUEST SITE > CONTROL PANEL > 1ST SEM. QUIZZES > REVIEW ASSESSMENT: LEC 02 QUIZ Review Assessment: Lec 02 Quiz Name: Status : Score: Instructions: Lec 02 Quiz Completed 20 out of 100 points
8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight
1. What is the average speed of an object that travels 6.00 meters north in 2.00 seconds and then travels 3.00 meters east in 1.00 second? 9.00 m/s 3.00 m/s 0.333 m/s 4.24 m/s 2. What is the distance traveled
Practice final for Basic Physics spring 2005 answers on the last page Name: Date:
Practice final for Basic Physics spring 2005 answers on the last page Name: Date: 1. A 12 ohm resistor and a 24 ohm resistor are connected in series in a circuit with a 6.0 volt battery. Assuming negligible
Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s
Problem Set 1 1.1 A bicyclist starts from rest and after traveling along a straight path a distance of 20 m reaches a speed of 30 km/h. Determine her constant acceleration. How long does it take her to
Physics 1401 - Exam 2 Chapter 5N-New
Physics 1401 - Exam 2 Chapter 5N-New 2. The second hand on a watch has a length of 4.50 mm and makes one revolution in 60.00 s. What is the speed of the end of the second hand as it moves in uniform circular
4 Gravity: A Force of Attraction
CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?
Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work.
PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance
HW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions
HW Set VI page 1 of 9 10-30 A 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 10-33 ). The bullet emerges from the
Friction and Gravity. Friction. Section 2. The Causes of Friction
Section 2 Friction and Gravity What happens when you jump on a sled on the side of a snow-covered hill? Without actually doing this, you can predict that the sled will slide down the hill. Now think about
Recitation Week 4 Chapter 5
Recitation Week 4 Chapter 5 Problem 5.5. A bag of cement whose weight is hangs in equilibrium from three wires shown in igure P5.4. wo of the wires make angles θ = 60.0 and θ = 40.0 with the horizontal.
Chapter 3.8 & 6 Solutions
Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled
Resistance in the Mechanical System. Overview
Overview 1. What is resistance? A force that opposes motion 2. In the mechanical system, what are two common forms of resistance? friction and drag 3. What is friction? resistance that is produced when
A) N > W B) N = W C) N < W. speed v. Answer: N = W
CTN-12. Consider a person standing in an elevator that is moving upward at constant speed. The magnitude of the upward normal force, N, exerted by the elevator floor on the person's feet is (larger than/same
PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013
PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be
Problem Set #8 Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.01L: Physics I November 7, 2015 Prof. Alan Guth Problem Set #8 Solutions Due by 11:00 am on Friday, November 6 in the bins at the intersection
5. Unable to determine. 6. 4 m correct. 7. None of these. 8. 1 m. 9. 1 m. 10. 2 m. 1. 1 m/s. 2. None of these. 3. Unable to determine. 4.
Version PREVIEW B One D Kine REVIEW burke (1111) 1 This print-out should have 34 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Jogging
Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)
Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in
1. Mass, Force and Gravity
STE Physics Intro Name 1. Mass, Force and Gravity Before attempting to understand force, we need to look at mass and acceleration. a) What does mass measure? The quantity of matter(atoms) b) What is the
Work, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions
Work, Power, Energy Multiple Choice PSI Physics Name Multiple Choice Questions 1. A block of mass m is pulled over a distance d by an applied force F which is directed in parallel to the displacement.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. (Use g = 9.8 m/s2.) 1) A 21 kg box must be slid across the floor. If
Midterm Exam 1 October 2, 2012
Midterm Exam 1 October 2, 2012 Name: Instructions 1. This examination is closed book and closed notes. All your belongings except a pen or pencil and a calculator should be put away and your bookbag should
Ph\sics 2210 Fall 2012 - Novcmbcr 21 David Ailion
Ph\sics 2210 Fall 2012 - Novcmbcr 21 David Ailion Unid: Discussion T A: Bryant Justin Will Yuan 1 Place answers in box provided for each question. Specify units for each answer. Circle correct answer(s)
Uniformly Accelerated Motion
Uniformly Accelerated Motion Under special circumstances, we can use a series of three equations to describe or predict movement V f = V i + at d = V i t + 1/2at 2 V f2 = V i2 + 2ad Most often, these equations
