D Alembert s principle and applications

Size: px
Start display at page:

Transcription

1 Chapter 1 D Alembert s principle and applications 1.1 D Alembert s principle The principle of virtual work states that the sum of the incremental virtual works done by all external forces F i acting in conjunction with virtual displacements δs i of the point on which the associated force is acting is zero: δw = i F i δs i = 0. (1.1.1) This technique is useful for solving statics problems, with static forces of constraint. A static force of constraint is one that does no work on the system of interest, but merely holds a certain part of the system in place. In a statics problem there are no accelerations. We can extend the principle of virtual work to dynamics problems, i.e., ones in which real motions and accelerations occur, by introducing the concept of inertial forces. For each parcel of matter in the system with mass m, Newton s second law states that F = ma. (1.1.2) We can make this dynamics problem look like a statics problem by defining an inertial force and rewriting equation (1.1.2) as F = ma (1.1.3) F total = F + F = 0. (1.1.4) D Alembert s principle is just the principle of virtual work with the inertial forces added to the list of forces that do work: δw = i F i δs i + j F j δs j = 0. (1.1.5) 1

3 CHAPTER 1. D ALEMBERT S PRINCIPLE AND APPLICATIONS 3 m s M Figure 1.1.2: Sketch of Atwood s machine. from which we get the governing equation d 2 φ dt + g sin φ 2 R = 0. (1.1.9) (This could equally well have been expressed in terms of s rather than φ.) Atwood s machine D Alembert s principle makes the venerable Atwood s machine, illustrated in figure 1.1.2, trivial to analyze. The state of the machine is determined by the positions of the two masses along the U-shaped coordinate s looping over the frictionless pulley with the string. The work done by gravity on the left-hand mass under the displacement δs is δw L = mgδs, while the gravity acting on the right-hand mass produces work δw R = +Mgδs. The inertial work on the two masses gives δw I = (M + m)(d 2 s/dt 2 )δs, resulting in or δw = [ (M m)g (M + m)(d 2 s/dt 2 ) ] δs = 0 (1.1.10) d 2 s dt = g M m 2 M + m. (1.1.11) Note that the force of constraint by the pulley (which is assumed to be free to rotate but held rigidly in place and with negligible moment of inertia) does not enter the problem at all. 1.2 Distributed forces So far we have dealt with a limited number of forces that each act at a point on the system of interest. However, forces like gravity as well as inertial forces act on each mass point in the system, making the calculation of the virtual work more complex.

4 CHAPTER 1. D ALEMBERT S PRINCIPLE AND APPLICATIONS 4 dr dφ r i R φ F mass element fixed axis Figure 1.2.1: Sketch for rotating disk with angular acceleration Falling mass reconsidered Let s return to the simple case of a mass falling in a uniform gravitational field. If the mass is extended but not rotating, the vertical displacement of each mass element m i is the same: δz. The work due to gravity on each point is therefore the same: δw Gi = m i gδz. In this case the work due to the inertial force associated with the vertical acceleration is also simple: δw Ii = m i (d 2 z/dt 2 )δz where we have recognized that the accelerations associated with each point d 2 z i /dt 2 are all the same as that of some reference point z fixed to the object. There are also forces exerted on each mass element by neighboring mass elements that do work. However, as we now sum over all mass elements, these internal forces cancel by virtue of Newton s third law. Performing this sum, we find that δw = ( g + d 2 z/dt 2) m i δz = ( g + d 2 z/dt 2) mδz, (1.2.1) where m is the total mass of the object. This gives rise to the expected result Rotating disk and moment of inertia i d 2 z = g. (1.2.2) dt2 Figure shows a rotating disk with angular acceleration induced by a force F applied on the right side of the disk. The work done by the force with an angular displacement δφ is δw F = RF δφ. the work done by the inertial force on mass element dm i is δw Ii = dm i r i (d 2 φ/dt 2 )r i δφ where r i is the radius at which the mass element is located. Ignoring internal forces between mass elements as before, the total virtual work is therefore [ ] δw = RF i dm i r 2 i (d 2 φ/dt 2 ) δφ (1.2.3)

5 CHAPTER 1. D ALEMBERT S PRINCIPLE AND APPLICATIONS 5 y center of mass (x,y ) (X,Y) (x,y) mass element x Figure 1.2.2: Sketch for parallel axis theorem. The fixed point denoted by the cross becomes the center of mass. and the governing equation is where the moment of inertia is I d2 φ = RF (1.2.4) dt2 I = i dm i r 2 i. (1.2.5) Using the methods of calculus, we write dm i = ρr i drdφdz where the (constant) mass density is ρ and the variable z is normal to the page. Upon letting the differentials become infinitesimal, I becomes w 2π R I = ρ r 3 drdφdz = πwr4 ρ, (1.2.6) 2 where w is the thickness of the disk. Recognizing that the mass of the disk is M = πr 2 wρ, elimination of the density results in I = MR2 2. (1.2.7) The moments of inertia for other common shapes may be obtained by similar methods Parallel axis theorem In the above case the moment of inertia was calculated about the center of mass of the disk. Sometimes we need to make this calculation for rotations about some other point. The parallel axis theorem shows how to do this once the moment of inertia about the center of mass has been calculated. Referring to figure 1.2.2, the moment of inertia about the origin of the illustrated mass, which is in the form of an irregularly shaped plate of thickness h normal to the page, is I = h r 2 dm = h r 2 ρdxdy = h (x 2 + y 2 )ρdxdy, (1.2.8)

6 CHAPTER 1. D ALEMBERT S PRINCIPLE AND APPLICATIONS 6 where in general the density ρ(x, y) may depend on position in the plane and where the bounds on the integral extend over the mass. Let us substitute (x, y) = (X, Y ) + (x, y ) where (X, Y ) points to a fixed location. The above integral then becomes I =(X 2 + Y 2 )h ρdxdy +2h (Xx + Y y )ρdx dy +h (x 2 + y 2 )ρdx dy. (1.2.9) (The change of variables in the integral is trivial, as dx = dx and dy = dy.) The first term on the right side of the equals sign is just the mass M of the object times the square of the distance from the origin to the fixed point R 2 = X 2 + Y 2. The third term is the moment of inertia about the fixed point. Anticipating that this point will become the center of mass, we donote the moment of inertia about this point I CM. The second term can be written in the form of a dot product 2(X, Y ) h (x, y )ρdx dy (1.2.10) which must be zero for all choices of the original origin if (X, Y ) is to become the location of the center of mass. To see why this is so, substitute (x, y ) = (x, y) (X, Y ) in the integral in equation (1.2.10) and change from primed to unprimed integrand variables: h (x, y)ρdxdy (X, Y )h ρdxdy = 0. (1.2.11) The coefficient of (X, Y ) is just the mass of the object, whereas the first term is just the mass times mass-weighted average of (x, y). This is just the mass times the center of mass, and therefore (X, Y ) = h (x, y)ρdxdy (1.2.12) M is just the position of the center of mass. Equation (1.2.9) becomes I = MR 2 + I CM (1.2.13) a statement of the parallel axis theorem: the moment of inertia about an arbitrary axis (for a rotation axis normal to the x-y plane) is just the moment of inertia for rotations about the center of mass (also normal to the x-y plane) plus the mass times the square of the distance between the arbitrary axis and the center of mass Disk rolling down ramp The problem of a disk rolling down a ramp under the influence of gravity can be solved economically using the parallel axis theorem. Two real forces act on the disk, gravity and

7 CHAPTER 1. D ALEMBERT S PRINCIPLE AND APPLICATIONS 7 s φ M R θ P a Figure 1.2.3: Sketch of a disk rolling down a ramp. the force (with normal and tangential components) of the ramp on the disk. Since in rolling motion the point P on the disk in contact with the ramp (see figure 1.2.3) is not moving, the force of the ramp on the disk is one of constraint and does no work. Since the point P is stationary, the motion of the disk over a short interval can be expressed as a rotation about the point P. The work done by the gravitational force as the disk moves a distance δs down the ramp is δw G = Mg sin φδs = MgR sin φδθ and the work due to the integral of the inertial force acting on all pieces of the disk is δw I = I(d 2 θ/dt 2 )δθ in analogy with the disk in section 1.2.2, where the moment of inertia is that appropriate for rotation about the point P in figure Using the parallel axis theorem, we have and hence δw = I = MR 2 + MR2 2 (MgR sin φ 3MR2 2 Noting that ds = Rdθ, this leads to the governing equation (1.2.14) ) d 2 θ δθ = 0. (1.2.15) dt 2 d 2 s 2g sin φ =. (1.2.16) dt2 3 Thus, the acceleration down the ramp in rolling motion is less than would be expected from frictionless sliding, g sin φ Motion of solid bodies in two dimensions The inertial virtual work in general for a solid body in two-dimensional rotation and translation can be written as the sum of the works for each mass element of the solid: δw I = i m i d 2 r i dt 2 δr i (1.2.17) where r i is the position vector of the ith mass element. Let us make an initially arbitrary split of this position vector as follows: r i = R + r i (1.2.18)

8 CHAPTER 1. D ALEMBERT S PRINCIPLE AND APPLICATIONS 8 where R represents a pivot point, to be chosen later. Substituting this into equation (1.2.17) results in a rather complex expression δw I = ( ) d 2 R m i dt δr + d2 R 2 dt 2 δr + d2 r dt δr + d2 r 2 dt 2 δr. (1.2.19) i This can be reduced to δw I = M d2 R dt 2 δr M d2 R dt 2 δr CM M d2 r CM dt 2 δr i m i d 2 r i dt 2 δr i (1.2.20) where the position of the center of mass relative to the pivot point is r CM = 1 m i r M i. (1.2.21) We are now faced with choosing a pivot point that simplifies equation (1.2.20). The most obvious choice is to take the pivot point as the center of mass of the object. With this choice, r CM = 0, since the position of the center of mass relative to the center of mass is the zero vector. In this case, the inertial virtual work is δw I = M d2 R CM dt 2 i d 2 φ δr CM I CM δφ (1.2.22) dt2 where R CM is the position of the center of mass of the object relative to the original origin. The first term in equation (1.2.22) is the virtual inertial work that would occur if all of the mass were concentrated at the center of mass. The second term is the virtual work for rotations about the center of mass, such as was computed in section The variable I CM is the moment of inertia about the center of mass and φ is the corresponding rotation angle. Another choice that is useful in certain situations occurs when the pivot point R is fixed in space, so that d 2 R/dt 2 = 0 and δr = 0. If the mass element located at the pivot point is instantaneously stationary, then equation (1.2.20) reduces to δw I = I d2 φ δφ (1.2.23) dt2 at that instant, as was done in section for the disk rolling down the ramp. In that case the pivot point is the point of contact of the disk with the ramp at a particular time and the moment of inertia I is that appropriate to rotations about that point. Since R is fixed, all of the motion of each mass element is contained in changes in r i with time. In section we implicitly assumed that the gravitational force, which acts separately on each mass element of the disk, can be considered to act solely on the center of mass, i.e., the center of the disk. This seems obvious in the case of a disk, but is less obvious for a more irregularly shaped object. We now prove that the gravitational force effectively acts on the center of mass of an object regardless of its shape.

9 CHAPTER 1. D ALEMBERT S PRINCIPLE AND APPLICATIONS 9 F a stationary N F a moving N v F s F k Figure 1.3.1: Two cases of friction. On the left the object is stationary and the frictional force F s is in balance with the applied force F a. On the right the object is moving and the frictional force F k is related to the normal force on the object N. The applied force is not necessarily equal to the frictional force. The total gravitational work due to small virtual displacements of mass elements can be written δw G = i dm i g δr i =Mg δr CM (1.2.24) since the mass-weighted average of the positions of mass elements is simply the center of mass. One note of caution: The above result holds for any force that acts uniformly across the body in question. However, if the force is non-uniform, then the resulting virtual work is more complex. An important example is the total gravitational force on a body in a non-uniform gravitational field. 1.3 Effects of friction The laws of friction are empirical and are not satisfied exactly. There are two cases, static and kinetic friction. For kinetic friction on an object in contact with a surface, the frictional force is directed opposite the velocity of the object (assuming that the surface is at rest) and has magnitude of F k = µ k N (1.3.1) where N is the normal force exerted by the surface on the object and µ k is the dimensionless coefficient of kinetic friction. In the static case the frictional force is that needed to keep the object stationary in view of the other forces acting on the object. There is an upper limit on the magnitude of the static frictional force equal to F s µ s N (1.3.2) where µ s is the coefficient of static friction. Generally it is true that µ s > µ k, (1.3.3)

10 CHAPTER 1. D ALEMBERT S PRINCIPLE AND APPLICATIONS 10 y b CM??? a x Figure 1.4.1: Triangle for which the center of mass is to be computed. m T 2b g m Figure 1.4.2: Two masses attached by a string in a variable gravitational field. which means that the transition from the static to the kinetic case as the applied force is increased is abrupt, with an instantaneous jump in the acceleration from zero to a finite value. Note that static friction does no virtual work, and thus can be ignored. This is not true with kinetic friction, as displacements of the object occur at the point where the frictional force acts. 1.4 Problems 1. Compute the location of the center of mass of the triangular piece of steel of uniform thickness illustrated in figure pivot point φ R/2 R M g Figure 1.4.3: The disk is free to rotate in the plane of the page around the illustrated pivot point.

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

Physics 1A Lecture 10C

Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013

PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be

Lecture L22-2D Rigid Body Dynamics: Work and Energy

J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

Physics 201 Homework 8

Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass

Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of

Mechanics 1: Conservation of Energy and Momentum

Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

PHY231 Section 1, Form B March 22, 2012

1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.

Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems

AP Physics: Rotational Dynamics 2

Name: Assignment Due Date: March 30, 2012 AP Physics: Rotational Dynamics 2 Problem A solid cylinder with mass M, radius R, and rotational inertia 1 2 MR2 rolls without slipping down the inclined plane

Angular acceleration α

Angular Acceleration Angular acceleration α measures how rapidly the angular velocity is changing: Slide 7-0 Linear and Circular Motion Compared Slide 7- Linear and Circular Kinematics Compared Slide 7-

Solution Derivations for Capa #11

Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

Torque Analyses of a Sliding Ladder

Torque Analyses of a Sliding Ladder 1 Problem Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (May 6, 2007) The problem of a ladder that slides without friction while

11. Rotation Translational Motion: Rotational Motion:

11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational

Lab 7: Rotational Motion

Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME-9472), string with loop at one end and small white bead at the other end (125

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is

Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.4-9.6, 10.1-10.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of

Practice Exam Three Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,

Acceleration due to Gravity

Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

8.012 Physics I: Classical Mechanics Fall 2008

MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE

PHY121 #8 Midterm I 3.06.2013

PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

SOLID MECHANICS DYNAMICS TUTORIAL MOMENT OF INERTIA. This work covers elements of the following syllabi.

SOLID MECHANICS DYNAMICS TUTOIAL MOMENT OF INETIA This work covers elements of the following syllabi. Parts of the Engineering Council Graduate Diploma Exam D5 Dynamics of Mechanical Systems Parts of the

Rotational Inertia Demonstrator

WWW.ARBORSCI.COM Rotational Inertia Demonstrator P3-3545 BACKGROUND: The Rotational Inertia Demonstrator provides an engaging way to investigate many of the principles of angular motion and is intended

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

Chapter 28 Fluid Dynamics

Chapter 28 Fluid Dynamics 28.1 Ideal Fluids... 1 28.2 Velocity Vector Field... 1 28.3 Mass Continuity Equation... 3 28.4 Bernoulli s Principle... 4 28.5 Worked Examples: Bernoulli s Equation... 7 Example

Chapter 6 Work and Energy

Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion

S. Widnall 6.07 Dynamics Fall 009 Version.0 Lecture L - Degrees of Freedom and Constraints, Rectilinear Motion Degrees of Freedom Degrees of freedom refers to the number of independent spatial coordinates

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

PHYS 211 FINAL FALL 2004 Form A

1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

AP Physics C. Oscillations/SHM Review Packet

AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

Chapter 11 Equilibrium

11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of

Force on Moving Charges in a Magnetic Field

[ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

3600 s 1 h. 24 h 1 day. 1 day

Week 7 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

Awell-known lecture demonstration1

Acceleration of a Pulled Spool Carl E. Mungan, Physics Department, U.S. Naval Academy, Annapolis, MD 40-506; mungan@usna.edu Awell-known lecture demonstration consists of pulling a spool by the free end

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

Newton s Law of Motion

chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally

VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

Chapter 6 Circular Motion

Chapter 6 Circular Motion 6.1 Introduction... 1 6.2 Cylindrical Coordinate System... 2 6.2.1 Unit Vectors... 3 6.2.2 Infinitesimal Line, Area, and Volume Elements in Cylindrical Coordinates... 4 Example

Vector surface area Differentials in an OCS

Calculus and Coordinate systems EE 311 - Lecture 17 1. Calculus and coordinate systems 2. Cartesian system 3. Cylindrical system 4. Spherical system In electromagnetics, we will often need to perform integrals

Lecture-IV. Contact forces & Newton s laws of motion

Lecture-IV Contact forces & Newton s laws of motion Contact forces: Force arises from interaction between two bodies. By contact forces we mean the forces which are transmitted between bodies by short-range

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

Lecture L3 - Vectors, Matrices and Coordinate Transformations

S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

Let s first see how precession works in quantitative detail. The system is illustrated below: ...

lecture 20 Topics: Precession of tops Nutation Vectors in the body frame The free symmetric top in the body frame Euler s equations The free symmetric top ala Euler s The tennis racket theorem As you know,

State of Stress at Point

State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

Unified Lecture # 4 Vectors

Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,

Center of Gravity. We touched on this briefly in chapter 7! x 2

Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.

Physics 41 HW Set 1 Chapter 15

Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

Fric-3. force F k and the equation (4.2) may be used. The sense of F k is opposite

4. FRICTION 4.1 Laws of friction. We know from experience that when two bodies tend to slide on each other a resisting force appears at their surface of contact which opposes their relative motion. The

Chapter 18 Static Equilibrium

Chapter 8 Static Equilibrium 8. Introduction Static Equilibrium... 8. Lever Law... Example 8. Lever Law... 4 8.3 Generalized Lever Law... 5 8.4 Worked Examples... 7 Example 8. Suspended Rod... 7 Example

Review D: Potential Energy and the Conservation of Mechanical Energy

MSSCHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Fall 2005 Review D: Potential Energy and the Conservation of Mechanical Energy D.1 Conservative and Non-conservative Force... 2 D.1.1 Introduction...

Exam 1 Practice Problems Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8 Spring 13 Exam 1 Practice Problems Solutions Part I: Short Questions and Concept Questions Problem 1: Spark Plug Pictured at right is a typical

Problem Set 5 Work and Kinetic Energy Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics Physics 8.1 Fall 1 Problem Set 5 Work and Kinetic Energy Solutions Problem 1: Work Done by Forces a) Two people push in opposite directions on

CHAPTER 24 GAUSS S LAW

CHAPTER 4 GAUSS S LAW 4. The net charge shown in Fig. 4-40 is Q. Identify each of the charges A, B, C shown. A B C FIGURE 4-40 4. From the direction of the lines of force (away from positive and toward

Unit 4 Practice Test: Rotational Motion

Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle

PHYSICS 111 HOMEWORK SOLUTION, week 4, chapter 5, sec 1-7. February 13, 2013

PHYSICS 111 HOMEWORK SOLUTION, week 4, chapter 5, sec 1-7 February 13, 2013 0.1 A 2.00-kg object undergoes an acceleration given by a = (6.00î + 4.00ĵ)m/s 2 a) Find the resultatnt force acting on the object

Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7

Lecture 6 Weight Tension Normal Force Static Friction Cutnell+Johnson: 4.8-4.12, second half of section 4.7 In this lecture, I m going to discuss four different kinds of forces: weight, tension, the normal

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and non-contact forces. Whats a

Simple Harmonic Motion

Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights

If you put the same book on a tilted surface the normal force will be less. The magnitude of the normal force will equal: N = W cos θ

Experiment 4 ormal and Frictional Forces Preparation Prepare for this week's quiz by reviewing last week's experiment Read this week's experiment and the section in your textbook dealing with normal forces

Rotational Motion: Moment of Inertia

Experiment 8 Rotational Motion: Moment of Inertia 8.1 Objectives Familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body

HW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions

HW Set VI page 1 of 9 10-30 A 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 10-33 ). The bullet emerges from the

Ph\sics 2210 Fall 2012 - Novcmbcr 21 David Ailion

Ph\sics 2210 Fall 2012 - Novcmbcr 21 David Ailion Unid: Discussion T A: Bryant Justin Will Yuan 1 Place answers in box provided for each question. Specify units for each answer. Circle correct answer(s)

E X P E R I M E N T 8

E X P E R I M E N T 8 Torque, Equilibrium & Center of Gravity Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics, Exp 8:

PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013

PHYSICS 111 HOMEWORK SOLUTION #9 April 5, 2013 0.1 A potter s wheel moves uniformly from rest to an angular speed of 0.16 rev/s in 33 s. Find its angular acceleration in radians per second per second.

Electromagnetism Laws and Equations

Electromagnetism Laws and Equations Andrew McHutchon Michaelmas 203 Contents Electrostatics. Electric E- and D-fields............................................. Electrostatic Force............................................2

Figure 1.1 Vector A and Vector F

CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

Lecture L5 - Other Coordinate Systems

S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L5 - Other Coordinate Systems In this lecture, we will look at some other common systems of coordinates. We will present polar coordinates

Chapter 7 Homework solutions

Chapter 7 Homework solutions 8 Strategy Use the component form of the definition of center of mass Solution Find the location of the center of mass Find x and y ma xa + mbxb (50 g)(0) + (10 g)(5 cm) x

Chapter 9 Circular Motion Dynamics

Chapter 9 Circular Motion Dynamics 9. Introduction Newton s Second Law and Circular Motion... 9. Universal Law of Gravitation and the Circular Orbit of the Moon... 9.. Universal Law of Gravitation... 3

1. A wire carries 15 A. You form the wire into a single-turn circular loop with magnetic field 80 µ T at the loop center. What is the loop radius?

CHAPTER 3 SOURCES O THE MAGNETC ELD 1. A wire carries 15 A. You form the wire into a single-turn circular loop with magnetic field 8 µ T at the loop center. What is the loop radius? Equation 3-3, with

Determination of Acceleration due to Gravity

Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two

Eðlisfræði 2, vor 2007

[ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 28. Sources of Magnetic Field Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the deadline

Problem Set V Solutions

Problem Set V Solutions. Consider masses m, m 2, m 3 at x, x 2, x 3. Find X, the C coordinate by finding X 2, the C of mass of and 2, and combining it with m 3. Show this is gives the same result as 3

LAB 6: GRAVITATIONAL AND PASSIVE FORCES

55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.

Chapter 5. Gravitation Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13. 5.1 Newton s Law of Gravitation We have already studied the effects of gravity through the

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for

State Newton's second law of motion for a particle, defining carefully each term used.

5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

Problem 6.40 and 6.41 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani

Problem 6.40 and 6.4 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani 6.40 A wheel with fine teeth is attached to the end of a spring with constant k and unstretched length

Rotation: Moment of Inertia and Torque

Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn

Physics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5

Solutions to Homework Questions 5 Chapt19, Problem-2: (a) Find the direction of the force on a proton (a positively charged particle) moving through the magnetic fields in Figure P19.2, as shown. (b) Repeat

Modeling Mechanical Systems

chp3 1 Modeling Mechanical Systems Dr. Nhut Ho ME584 chp3 2 Agenda Idealized Modeling Elements Modeling Method and Examples Lagrange s Equation Case study: Feasibility Study of a Mobile Robot Design Matlab

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

WORK DONE BY A CONSTANT FORCE

WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newton-meter (Nm) = Joule, J If you exert a force of

Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

Lecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6

Lecture 16 Newton s Second Law for Rotation Moment of Inertia Angular momentum Cutnell+Johnson: 9.4, 9.6 Newton s Second Law for Rotation Newton s second law says how a net force causes an acceleration.

1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D

Chapter 28: MAGNETIC FIELDS 1 Units of a magnetic field might be: A C m/s B C s/m C C/kg D kg/c s E N/C m 2 In the formula F = q v B: A F must be perpendicular to v but not necessarily to B B F must be

Physics 1120: Simple Harmonic Motion Solutions

Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured

APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications

2.016 Hydrodynamics Reading #2. 2.016 Hydrodynamics Prof. A.H. Techet

Pressure effects 2.016 Hydrodynamics Prof. A.H. Techet Fluid forces can arise due to flow stresses (pressure and viscous shear), gravity forces, fluid acceleration, or other body forces. For now, let us