Program Concept. What is a program? Function of Control Unit. Computer Components: Top Level View. Components Computer Architecture

Similar documents
Computer Systems Structure Input/Output

Chapter 1 Computer System Overview

MICROPROCESSOR. Exclusive for IACE Students iacehyd.blogspot.in Ph: /422 Page 1

Read this before starting!

COMPUTER ARCHITECTURE. Input/Output

Chapter 2 Logic Gates and Introduction to Computer Architecture

MICROPROCESSOR AND MICROCOMPUTER BASICS

Lizy Kurian John Electrical and Computer Engineering Department, The University of Texas as Austin

Learning Outcomes. Simple CPU Operation and Buses. Composition of a CPU. A simple CPU design

Central Processing Unit

(Refer Slide Time: 00:01:16 min)

CHAPTER 4 MARIE: An Introduction to a Simple Computer

Chapter 2 Basic Structure of Computers. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Microprocessor & Assembly Language

Computer Organization & Architecture Lecture #19

Chapter 02: Computer Organization. Lesson 04: Functional units and components in a computer organization Part 3 Bus Structures

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Question Bank Subject Name: EC Microprocessor & Microcontroller Year/Sem : II/IV

Serial Communications

COMPUTERS ORGANIZATION 2ND YEAR COMPUTE SCIENCE MANAGEMENT ENGINEERING UNIT 5 INPUT/OUTPUT UNIT JOSÉ GARCÍA RODRÍGUEZ JOSÉ ANTONIO SERRA PÉREZ

Computer Organization. and Instruction Execution. August 22

UMBC. ISA is the oldest of all these and today s computers still have a ISA bus interface. in form of an ISA slot (connection) on the main board.

Advanced Computer Architecture-CS501. Computer Systems Design and Architecture 2.1, 2.2, 3.2

PART B QUESTIONS AND ANSWERS UNIT I

What is a bus? A Bus is: Advantages of Buses. Disadvantage of Buses. Master versus Slave. The General Organization of a Bus

Chapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language

Chapter 11 I/O Management and Disk Scheduling

INPUT/OUTPUT ORGANIZATION

A+ Guide to Managing and Maintaining Your PC, 7e. Chapter 1 Introducing Hardware

DS1104 R&D Controller Board

Let s put together a Manual Processor

CHAPTER 7: The CPU and Memory

21152 PCI-to-PCI Bridge

Big Picture. IC220 Set #11: Storage and I/O I/O. Outline. Important but neglected

Interconnection Networks

Computer organization

COMPUTER HARDWARE. Input- Output and Communication Memory Systems

Chapter 1 Lesson 3 Hardware Elements in the Embedded Systems Chapter-1L03: "Embedded Systems - ", Raj Kamal, Publs.: McGraw-Hill Education

Computer Systems Structure Main Memory Organization

Machine Architecture and Number Systems. Major Computer Components. Schematic Diagram of a Computer. The CPU. The Bus. Main Memory.

Computer System: User s View. Computer System Components: High Level View. Input. Output. Computer. Computer System: Motherboard Level

Central Processing Unit (CPU)

Chapter 11 I/O Management and Disk Scheduling

Hello, and welcome to this presentation of the STM32 SDMMC controller module. It covers the main features of the controller which is used to connect

Design of a High Speed Communications Link Using Field Programmable Gate Arrays

Switch Fabric Implementation Using Shared Memory

Chapter 13. PIC Family Microcontroller

AUTOMATIC NIGHT LAMP WITH MORNING ALARM USING MICROPROCESSOR

Architectures and Platforms

CSE2102 Digital Design II - Topics CSE Digital Design II

Chapter 11: Input/Output Organisation. Lesson 06: Programmed IO

MACHINE ARCHITECTURE & LANGUAGE

Technical Note. Micron NAND Flash Controller via Xilinx Spartan -3 FPGA. Overview. TN-29-06: NAND Flash Controller on Spartan-3 Overview

To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC.

Series Six Plus Programmable Controller

EC313 - VHDL State Machine Example

A s we saw in Chapter 4, a CPU contains three main sections: the register section,

National CR16C Family On-Chip Emulation. Contents. Technical Notes V

The Central Processing Unit:

CPU Organisation and Operation

CHAPTER 11: Flip Flops

Quiz for Chapter 6 Storage and Other I/O Topics 3.10

Introduction. What is an Operating System?

Memory Elements. Combinational logic cannot remember

Programming Interface. for. Bus Master IDE Controller. Revision 1.0

Digitale Signalverarbeitung mit FPGA (DSF) Soft Core Prozessor NIOS II Stand Mai Jens Onno Krah

Von der Hardware zur Software in FPGAs mit Embedded Prozessoren. Alexander Hahn Senior Field Application Engineer Lattice Semiconductor

CSC 2405: Computer Systems II

Chapter 4 System Unit Components. Discovering Computers Your Interactive Guide to the Digital World

CPS104 Computer Organization and Programming Lecture 18: Input-Output. Robert Wagner

Computer Performance. Topic 3. Contents. Prerequisite knowledge Before studying this topic you should be able to:

Lesson-16: Real time clock DEVICES AND COMMUNICATION BUSES FOR DEVICES NETWORK

Exception and Interrupt Handling in ARM

CS 3530 Operating Systems. L02 OS Intro Part 1 Dr. Ken Hoganson

Instruction Set Architecture. Datapath & Control. Instruction. LC-3 Overview: Memory and Registers. CIT 595 Spring 2010

Lab #5: Design Example: Keypad Scanner and Encoder - Part 1 (120 pts)

Design and Verification of Nine port Network Router

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-17: Memory organisation, and types of memory

PCI-to-PCI Bridge Architecture Specification. Revision 1.1

ASYNCHRONOUS COUNTERS

AN 223: PCI-to-DDR SDRAM Reference Design

COMPUTER SCIENCE AND ENGINEERING - Microprocessor Systems - Mitchell Aaron Thornton

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT. COURSE CURRICULUM COURSE TITLE: COMPUTER ORGANIZATION AND ARCHITECTURE (Code: )

We r e going to play Final (exam) Jeopardy! "Answers:" "Questions:" - 1 -

MICROPROCESSOR BCA IV Sem MULTIPLE CHOICE QUESTIONS

UNIT 2 CLASSIFICATION OF PARALLEL COMPUTERS

Pentium vs. Power PC Computer Architecture and PCI Bus Interface

Traditional IBM Mainframe Operating Principles

PROGRAMMABLE LOGIC CONTROL

LADDER LOGIC/ FLOWCHART PROGRAMMING DIFFERENCES AND EXAMPLES

1. Computer System Structure and Components

INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET)

2011, The McGraw-Hill Companies, Inc. Chapter 5

Programming Logic controllers

IDE/ATA Interface. Objectives. IDE Interface. IDE Interface

Building a computer. Electronic Numerical Integrator and Computer (ENIAC)

Computer-System Architecture

Have both hardware and software. Want to hide the details from the programmer (user).

ARM Ltd 110 Fulbourn Road, Cambridge, CB1 9NJ, UK.

Storage. The text highlighted in green in these slides contain external hyperlinks. 1 / 14

Mutual Exclusion using Monitors

Transcription:

168 420 Computer Architecture Chapter 3 System Buses Program Concept Hardwired systems are inflexible General purpose hardware can do different tasks, given correct control signals Instead of re-wiring, supply a new set of control signals What is a program? A sequence of steps For each step, an arithmetic or logical operation is done For each operation, a different set of control signals is needed Function of Control Unit For each operation a unique code is provided e.g. ADD, MOVE A hardware segment accepts the code and issues the control signals We have a computer! Components Computer Components: Top Level View The Control Unit and the Arithmetic and Logic Unit constitute the Central Processing Unit Data and instructions need to get into the system and results out Input/output Temporary storage of code and results is needed Main memory 1

Instruction Cycle Two steps: Fetch Execute Fetch Cycle Program Counter (PC) holds address of next instruction to fetch Processor fetches instruction from memory location pointed to by PC Increment PC Unless told otherwise Instruction loaded into Instruction Register (IR) Processor interprets instruction and performs required actions Execute Cycle Example of Program Execution Processor-memory data transfer between CPU and main memory Processor I/O Data transfer between CPU and I/O module Data processing Some arithmetic or logical operation on data Control Alteration of sequence of operations e.g. jump Combination of above Instruction Cycle - State Diagram Interrupts Mechanism by which other modules (e.g. I/O) may interrupt normal sequence of processing Program e.g. overflow, division by zero Timer Generated by internal processor timer Used in pre-emptive multi-tasking I/O from I/O controller Hardware failure e.g. memory parity error 2

Program Flow Control Interrupt Cycle Added to instruction cycle Processor checks for interrupt Indicated by an interrupt signal If no interrupt, fetch next instruction If interrupt pending: Suspend execution of current program Save context Set PC to start address of interrupt handler routine Process interrupt Restore context and continue interrupted program Instruction Cycle (with Interrupts) - State Diagram Multiple Interrupts Disable interrupts Processor will ignore further interrupts whilst processing one interrupt Interrupts remain pending and are checked after first interrupt has been processed Interrupts handled in sequence as they occur Define priorities Low priority interrupts can be interrupted by higher priority interrupts When higher priority interrupt has been processed, processor returns to previous interrupt Multiple Interrupts - Sequential Multiple Interrupts - Nested 3

Connecting All the units must be connected Different type of connection for different type of unit Memory Input/Output CPU Memory Connection Receives and sends data Receives addresses (of locations) Receives control signals Read Write Timing Input/Output Connection(1) Similar to memory from computer s viewpoint Output Receive data from computer Send data to peripheral Input Receive data from peripheral Send data to computer Input/Output Connection(2) Receive control signals from computer Send control signals to peripherals e.g. spin disk Receive addresses from computer e.g. port number to identify peripheral Send interrupt signals (control) CPU Connection Reads instruction and data Writes out data (after processing) Sends control signals to other units Receives (& acts on) interrupts Buses There are a number of possible interconnection systems Single and multiple BUS structures are most common e.g. Control/Address/Data bus (PC) e.g. Unibus (DEC-PDP) 4

What is a Bus? Data Bus A communication pathway connecting two or more devices Usually broadcast Often grouped A number of channels in one bus e.g. 32 bit data bus is 32 separate single bit channels Power lines may not be shown Carries data Remember that there is no difference between data and instruction at this level Width is a key determinant of performance 8, 16, 32, 64 bit Address bus Control Bus Identify the source or destination of data e.g. CPU needs to read an instruction (data) from a given location in memory Bus width determines maximum memory capacity of system e.g. 8080 has 16 bit address bus giving 64k address space Control and timing information Memory read/write signal Interrupt request Clock signals Bus Interconnection Scheme Big and Yellow? What do buses look like? Parallel lines on circuit boards Ribbon cables Strip connectors on mother boards e.g. PCI Sets of wires 5

Single Bus Problems Traditional (ISA) (with cache) Lots of devices on one bus leads to: Propagation delays Long data paths mean that co-ordination of bus use can adversely affect performance If aggregate data transfer approaches bus capacity Most systems use multiple buses to overcome these problems High Performance Bus Bus Types Dedicated Separate data & address lines Multiplexed Shared lines Address valid or data valid control line Advantage - fewer lines Disadvantages More complex control Ultimate performance Bus Arbitration Centralised Arbitration More than one module controlling the bus e.g. CPU and DMA controller Only one module may control bus at one time Arbitration may be centralised or distributed Single hardware device controlling bus access Bus Controller Arbiter May be part of CPU or separate 6

Distributed Arbitration Timing Each module may claim the bus Control logic on all modules Co-ordination of events on bus Synchronous Events determined by clock signals Control Bus includes clock line A single 1-0 is a bus cycle All devices can read clock line Usually sync on leading edge Usually a single cycle for an event Synchronous Timing Diagram Asynchronous Timing Diagram PCI Bus PCI Bus Lines (required) Peripheral Component Interconnection Intel released to public domain 32 or 64 bit 50 lines Systems lines Including clock and reset Address & Data 32 time mux lines for address/data Interrupt & validate lines Interface Control Arbitration Not shared Direct connection to PCI bus arbiter Error lines 7

PCI Bus Lines (Optional) PCI Commands Interrupt lines Not shared Cache support 64-bit Bus Extension Additional 32 lines Time multiplexed 2 lines to enable devices to agree to use 64-bit transfer JTAG/Boundary Scan For testing procedures Transaction between initiator (master) and target Master claims bus Determine type of transaction e.g. I/O read/write Address phase One or more data phases PCI Read Timing Diagram PCI Bus Arbitration Foreground Reading Stallings, chapter 3 (all of it) www.pcguide.com/ref/mbsys/buses/ In fact, read the whole site! www.pcguide.com/ 8