Energy Balances ChE Spring /13. closed: No transfer of mass across the system boundaries.

Similar documents
vap H = RT 1T 2 = kj mol kpa = 341 K

HEAT UNIT 1.1 KINETIC THEORY OF GASES Introduction Postulates of Kinetic Theory of Gases

Chapter 7 Energy and Energy Balances

Thermodynamics. Chapter 13 Phase Diagrams. NC State University

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor

= atm. 760 mm Hg. = atm. d. 767 torr = 767 mm Hg. = 1.01 atm

a) Use the following equation from the lecture notes: = ( J K 1 mol 1) ( ) 10 L

Thermochemistry. r2 d:\files\courses\ \99heat&thermorans.doc. Ron Robertson

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

ES-7A Thermodynamics HW 1: 2-30, 32, 52, 75, 121, 125; 3-18, 24, 29, 88 Spring 2003 Page 1 of 6

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

Chemistry 13: States of Matter

= 800 kg/m 3 (note that old units cancel out) J 1000 g = 4184 J/kg o C

Answer, Key Homework 6 David McIntyre 1

KINETIC MOLECULAR THEORY OF MATTER

Gases. States of Matter. Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large Chaotic (random)

CHAPTER 12. Gases and the Kinetic-Molecular Theory

State Newton's second law of motion for a particle, defining carefully each term used.

THE KINETIC THEORY OF GASES

Chapter 6 Thermodynamics: The First Law

momentum change per impact The average rate of change of momentum = Time interval between successive impacts 2m x 2l / x m x m x 2 / l P = l 2 P = l 3

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

Kinetic Theory of Gases

Phys222 W11 Quiz 1: Chapters Keys. Name:

Thermodynamics AP Physics B. Multiple Choice Questions

CHAPTER 14 THE CLAUSIUS-CLAPEYRON EQUATION

10.7 Kinetic Molecular Theory Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C

Chem 338 Homework Set #5 solutions October 10, 2001 From Atkins: 5.2, 5.9, 5.12, 5.13, 5.15, 5.17, 5.21

Problem Set 3 Solutions

Why? Intermolecular Forces. Intermolecular Forces. Chapter 12 IM Forces and Liquids. Covalent Bonding Forces for Comparison of Magnitude

CO MPa (abs) 20 C

Gases. Macroscopic Properties. Petrucci, Harwood and Herring: Chapter 6

So T decreases. 1.- Does the temperature increase or decrease? For 1 mole of the vdw N2 gas:

Problem Set MIT Professor Gerbrand Ceder Fall 2003

F321 MOLES. Example If 1 atom has a mass of x g 1 mole of atoms will have a mass of x g x 6.02 x = 7.

Energy Matters Heat. Changes of State

Chapter 1: Chemistry: Measurements and Methods

(1) The size of a gas particle is negligible as compared to the volume of the container in which the gas is placed.

Chapter 10 Temperature and Heat

Part B 2. Allow a total of 15 credits for this part. The student must answer all questions in this part.

10.7 Kinetic Molecular Theory Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory

Bomb Calorimetry. Example 4. Energy and Enthalpy

THE IDEAL GAS LAW AND KINETIC THEORY

State Newton's second law of motion for a particle, defining carefully each term used.

EXERCISES. 16. What is the ionic strength in a solution containing NaCl in c=0.14 mol/dm 3 concentration and Na 3 PO 4 in 0.21 mol/dm 3 concentration?

The Gas Laws. Our Atmosphere. Pressure = Units of Pressure. Barometer. Chapter 10

Problem Set 4 Solutions

Gas Laws. Heat and Temperature

AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1

CHEM 36 General Chemistry EXAM #1 February 13, 2002

Thermodynamics. Thermodynamics 1

CLASSICAL CONCEPT REVIEW 8

Chapter 12 - Liquids and Solids

18 Q0 a speed of 45.0 m/s away from a moving car. If the car is 8 Q0 moving towards the ambulance with a speed of 15.0 m/s, what Q0 frequency does a

Unit 3: States of Matter Practice Exam

TEACHER BACKGROUND INFORMATION THERMAL ENERGY

Fluid Mechanics: Static s Kinematics Dynamics Fluid

Unit 5 Practice Test. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

01 The Nature of Fluids

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

Chapter 28 Fluid Dynamics

CHEMISTRY. Matter and Change. Section 13.1 Section 13.2 Section The Gas Laws The Ideal Gas Law Gas Stoichiometry

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels

Molar Mass of Butane

CE 204 FLUID MECHANICS

Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004

Chapter 6 Work and Energy

CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g)

Final Exam CHM 3410, Dr. Mebel, Fall 2005

DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.

Gases and Kinetic-Molecular Theory: Chapter 12. Chapter Outline. Chapter Outline

1. Thermite reaction 2. Enthalpy of reaction, H 3. Heating/cooling curves and changes in state 4. More thermite thermodynamics

Boyle s law - For calculating changes in pressure or volume: P 1 V 1 = P 2 V 2. Charles law - For calculating temperature or volume changes: V 1 T 1

CHEM 120 Online Chapter 7

Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1

QUESTIONS THERMODYNAMICS PRACTICE PROBLEMS FOR NON-TECHNICAL MAJORS. Thermodynamic Properties

48 Practice Problems for Ch Chem 1C - Joseph

WEEK 1. Engineering Calculations Processes Process Variables

1 Introduction The Scientific Method (1 of 20) 1 Introduction Observations and Measurements Qualitative, Quantitative, Inferences (2 of 20)

Chapter Test B. Chapter: Measurements and Calculations

Prelab Exercises: Hooke's Law and the Behavior of Springs

ENERGY CONSERVATION The First Law of Thermodynamics and the Work/Kinetic-Energy Theorem

Thermodynamics - Example Problems Problems and Solutions

Organic Chemistry Calculations

Performing Calculatons

ME 201 Thermodynamics

CHEMISTRY GAS LAW S WORKSHEET

Test 5 Review questions. 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will

1 Introduction. Taking the logarithm of both sides of Equation 1.1:

k 2f, k 2r C 2 H 5 + H C 2 H 6

The Molar Mass of a Gas

4. Introduction to Heat & Mass Transfer

Composition of the Atmosphere. Outline Atmospheric Composition Nitrogen and Oxygen Lightning Homework

Energy and Chemical Reactions. Characterizing Energy:

Transcription:

Energy Balances ChE 2800 - Spring 2002 1/13 1 Basic Concepts Definitions: System: Any specified mass of material or piece(s) of equipment we wish to devote our attention to. closed: No transfer of mass across the system boundaries. open: Transfer of mass across the system boundaries is permitted. Surroundings: Anything that is not part of the system. Properites: A characteristic of the material that can be calculated or measured. extensive: A property that is the sum of the values of each of the subsystems comprising the whole system. A property dependent on system size. Example: mass or volume. intensive: A property whose value is not additive, and does not vary with system size. Example: temperature, pressure, density specific: An intensive property that is obtained by dividing an extensive property by the total amount of process material. Example: A liquid where V = 200 cm 3 and the mass = 200 g, then the specific volume ˆV = 1 cm 3 /g. State: A set of properites of the material at a point in time. depends only on the system s intensive properties. The state of a system 1.1 Work The term Work is used widely in casual conversation, but in this context we refer to a specific definition. Work is a form of energy that represents a transfer of energy between the system

Energy Balances ChE 2800 - Spring 2002 2/13 and surroundings. For a mechanical force: W = state 2 state 1 F dl (1) where F is an external force in the direction of l acting on the system, or a system force acting on the surroundings. The amount of work done by a system on its surroundings (or by the surroundings on the systems) is dependent upon the inital and final states of the system and the path taken to get from state 1 to state 2. For this reason, we say that work is a path function. Path function: A function who s final value is dependent on the path taken to get from the initial to final state. Example: work, heat. State function: A function that is only dependent upon the initial and final states of the system. Example: internal energy, enthalpy. 1.1.1 Illustration of work as a path function An ideal gas at 300 K and 500 kpa is enclosed in a cylinder capped by a frictionless piston. The gas slowly expands from 0.1 m 3 to 0.2 m 3. Calculate the work done by the gas on the piston if: Path 1: expansion occurs at constant pressure (p = 500 kpa) Path 2: expansion occurs at constant temperature (T = 300 K) Path 1 W = V2 V 1 F A A dl = V2 V 1 p dv (2) V2 W = p dv = p (V 2 V 1 ) (3) V 1 = 5.00 10 5 kpa (0.2 m 3 0.1 m 3 ) = 50kJ

Energy Balances ChE 2800 - Spring 2002 3/13 Remember 1 J = 1 N m. Path 2 V2 V2 nrt W = p dv = V 1 V 1 V = nrt ln(v 2 /V 1 ) dv (4) n = P V RT = (5.0 10 5 Pa)(0.1m 3 ) (300K)(8.314 Pa m 3 /mol K) = 20.0 mol (5) W = (20.0mol)(8.314 Pa m 3 /mol K)(300K) ln(0.2/0.1) = 34.57kJ (6) 1.2 Heat Heat (Q): The part of the total energy flow across a system boundary that is caused by a temperature difference between the system and its surroundings. Heat, like work, is a path function. 1.3 Kinetic Energy Kinetic energy (KE): The energy a system possesses because of a velocity difference between it and it s surroundings at rest. KE = 1 2 mv2 (7) where m is the mass of the object and v is the object s velocity relative to the reference state. 1.3.1 Example: Calculation of Kinetic Energy Water is pumped from a storage tank into a 4.0 cm ID tube at a rate of 0.001 m 3 /s. What is the kinetic energy of the water? Step 1, determine the linear velocity of the water v = V /A = 0.001m3 /s = 0.795 m/s (8) π(0.02) 2 m2

Energy Balances ChE 2800 - Spring 2002 4/13 Step 2, find the mass flow rate of mater ρ = m/v ; ρ V = ṁ; (1000 kg/m 3 )(0.001 m 3 /s) = 1.0 kg/s (9) Step 3, calculate the kinetic energy KE = 1 = 1 2ṁv2 2 (1.0 kg/s)(0.795 m/s)2 = 0.316 J/s (10) check units 1 N = kg m/s 2 1 J = N m Therefore: (kg m/s 2 )(m/s) = N m/s = J/s 1.4 Potential Energy Potential Energy (PE): The energy a system possesses because of forces exerted on its mass by gravitational or electromagnetic fields with respect to a reference surface. P E = mgh (11) where h is the distance from the reference surface, m is the mass of the object and g is the acceleration due to gravity (9.807 m/s 2 ). 1.4.1 Example: Calculation of Potential Energy Water is pumped from one reservoir to a second reservoir 10 m above the water level of the first. What is the increase in the potential energy of the water per kg of water moved (the increase in the specific PE of the water)? P E = mgh = (9.80 m/s 2 )(10m) = 98.0 J/kg (12)

Energy Balances ChE 2800 - Spring 2002 5/13 1.5 Internal Energy Internal Energy (U): A macroscopic measure of the molecular, atomic and subatomic energies contained within a fluid. Cannot be measured, but is instead calculated from other variables that can be measured, such as pressure, temperature and volume. U is a state function. From the Gibbs phase rule we know for a one componet, one phase system that specifying two intensive variables will definite U. Û is commonly defined in terms of T and ˆV Û = f(t, ˆV ) (13) Taking the derivative yields ( ) ( ) dû = Û Û dt + T ˆV ˆV d ˆV (14) T Note: C v = ( ) Û ; T V ( ) Û ˆV T 0 (15) Therefore, changes in Û can be calculated by integration of equation 14. 1.6 Enthalpy Û 2 Û1 = T2 T 1 C v dt (16) Enthalpy (H): Enthalpy, like U, is a state function and is defined: H = U + pv (17) for a one component, one phase system: H = f(t, p) (18) Taking the derivative yields: ( ) dĥ = Ĥ dt + T p ( ) Ĥ dp (19) p T

Energy Balances ChE 2800 - Spring 2002 6/13 Note: C p = ( ) Ĥ ; T p ( ) Ĥ p T 0 (20) Therefore, changes in Ĥ can be calculated by integration of equation 19. Ĥ 2 Ĥ1 = T2 T 1 C p dt (21) Again, we note that the absolute values of both U and H cannot be calculated directly. Only differences in U or H relative to a reference state may be calculated.

Energy Balances ChE 2800 - Spring 2002 7/13 2 Heat Capacities Definitions: Sensible heat: The heat that must be transfered to raise or lower the temperature of a substance(s). Q = U (closed system) (22) Q = Ḣ (open system) (23) Latent heat: The specific enthalpy change associated with a phase transition (e.g. liquidvapor) of a substance at constant T and P. Heat of vaporization ( Ĥv): The specific enthalpy difference between the liquid and vapor forms of a substance at a given T and P. Heat of fusion ( Ĥm): The specific enthalpy difference between the solid and liquid forms of a substance at a given T and P. NOTE: Both Ĥv and Ĥm are strong functions of T, but only weak functions of P. Knowing the sensible heat and the latent heat, it is possible to determine the change in internal energy ( U, closed system), or the enthalpy ( H, open system). The determination of U for a system that does not undergo a phase transition is straightforward. Û 2 Û1 = T2 This equation is valid under the following conditions: Exact for ideal gases A good approximation for liquids and solids Only valid for a non-ideal gas if V = constant. T 1 C v dt (24)

Energy Balances ChE 2800 - Spring 2002 8/13 We can write a similar expression for H: Ĥ 2 Ĥ1 = T2 This equation is valid under the following conditions: Exact for ideal gases Only valid for a non-ideal gas if P = constant. For liquids or solids: Ĥ 2 Ĥ1 = ˆV P + T 1 C p dt (25) T2 T 1 C p dt (26) However, the ˆV P term in the above equation is usually negligible compared to the second term. C p and C v are related to each other in the following way: For liquids and solids C p C v Ideal gases C p = C v + R 2.1 Example of a U Calculation from C v. 1 mol of liquid cyclohexane is stored in a covered beaker at 1 atm and 20 C. Calculate the energy input required to heat the cyclohexane to 60 C. For a closed system, the energy balance becomes: Q = n Û (27) U may be calculated from integration of 14. C p C v for liquid cyclohexane, taken from Table B.2 [kj/(mol C)]is: C v = 94.140 10 3 + 49.62 10 5 T 31.90 10 8 T 2 + 80.63 10 12 T 3 (28)

Energy Balances ChE 2800 - Spring 2002 9/13 Integration of 28 yields: Û = 94.140 10 3 (T 2 T 1 ) (29) 49.62 10 5 + (T2 2 T1 2 ) 2 31.90 10 8 (T2 3 T1 3 ) 3 80.63 10 12 + (T2 4 T1 4 ) 4 Since Q = n Û, Q =(1.0 mol)(4.582 kj/mol) = 4.582 kj Û = 4.582 kj/mol (30) If the fluid undergoes a change of phase (solid to liquid, liquid to vapor, etc), a more complex procedure to calculate the amount of heat required. 2.2 Hypothetical Process Paths Suppose we wish to calculate the heat required to turn solid phenol at 25 C and 1 atm to vapor at 300 C at 3 atm. Ĥ = Ĥ(vapor, 300 C, 1 atm) Ĥ(solid, 25 C, 3 atm) (31) Problem - we don t know Ĥ for each state. Fortunately Ĥ is a state function, so it doesn t matter what path we take to get from point A to point B. Ĥ can be evaluated by constructing a convenient alternate path. The change in the enthalpy for the process is simply the sum of the enthalpy changes for each leg of the hypothetical process path. Ĥ = Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4 + Ĥ5 + Ĥ6 (32)

Energy Balances ChE 2800 - Spring 2002 10/13 300 C, vapor, 1 atm dh6 300 C, vapor, 3 atm dh5 181.4 C, liquid dh4 181.4, vapor dh3 dh2 42.5 C, solid 42.5 C, liquid dh1 25 C, 1 atm, solid Figure 1: Hypothetical process path for the vaporization of Phenol. Red line denotes actual path, black line denotes the hypothetical process path. 2.3 Example of Ĥ Calculation 100 mol of liquid hexane at 25 C and 7 bar is vaporized and heated to 300 C at constant pressure. Step 1, collect data From table B.1, Ĥv = 28.85 kj/mol at 69 C. Find T boil (7 bar). Solve for T, T boil = 144 C. log p = (6.88555 1175.817 T + 224.867 ) (33) Since T boil T n boil, we need to construct a hypothetical process path to get from the initial to final states. The change in enthalpy for this process is given by: Ĥ = Ĥ1 + Ĥ2 + Ĥ3 (34) Step 2, determine the Ĥ values for each leg of our hypothetical process. Ĥ1 = ˆV P + 69 25 216.3 10 3 dt (35)

Energy Balances ChE 2800 - Spring 2002 11/13 300 C, 7 bar, vap dh3 69 C, 1 bar, liq dh2 69 C, 1 bar, vap dh1 25 C, 7 bar, liq Figure 2: Hypothetical process path for the vaporization of Hexane. ρ = 0.659 g/cm 3, ˆV = 1/ρ = 1.517 10 3 m 3 /kg. 100 mol*86.17 g/mol = 8617 g or 8.617 10 3 kg H 1 = (8.617) (1.517 10 3 )(1.01325 7.0) (1.01325 10 5 ) +100(0.2163(69 25)) (36) H 1 = 0.0785 kj/h + 951.7 kj/h (37) H 2 = (100)(28.85) = 2885 kj/h (38) H 3 = 300 69 137.44 10 3 + 40.85 10 5 T +23.92 10 8 T 2 + 57.66 10 12 T 3 dt (39) Sum values of H determined above: H 3 = 4714.85 kj/h (40) H = 0.0785 + 951.7 + 2885 + 4714.8 = 8551 kj/h (41)

Energy Balances ChE 2800 - Spring 2002 12/13 2.4 Estimation of Latent Heats Trouton s Rule: Ĥv 0.088T b (non polar fluids) where Ĥv = [kj/mol] and T b =[K]. 0.109T b (water, low MW alcohols) (42) For greater accuracy, one should use Chen s equation Ĥv = T b[0.0331(t b /T c ) 0.0327 + 0.0297 log P c ] 1.07 (T b /T c ) where Ĥv = [kj/mol], T b, T c =[K] and P c = [atm]. (43) If Ĥv is known for one temperature, Watson s Correlation can be used to predict Ĥv at a different temperature ( ) Tc T 0.38) 2 Ĥv(T 2 ) = Ĥv(T 1 ) (44) T c T 1 The following relationships can be used to predict heats ofr fusion ( Ĥm) when experimental data is not availible Ĥm 0.0092T m (metallic elements) 0.0025T m (inorganic compounds) 0.050T m (organic compounds) (45) 3 Energy Balances on Closed Systems Remember, a closed system is one where there is no transfer of material across the system boundary. In this case, the general balance equation beomes: accumulation = input output (46) or final system energy inital system energy = net energy transfered to system (47)

Energy Balances ChE 2800 - Spring 2002 13/13 initial system energy final system energy energy transfered U i + KE i + P E i (48) U f + KE f + P E f (49) Q + W (50) Combining the above equations we can write the energy balance for a closed system U + KE + P E = Q + W (51) NOTES: U depends almost entirely on chemical composition, temperature, and phase (gas, solid, liquid) of the system materials. For a closed system with no T, phase changes or chemical reactions, U 0 If the system is not accelerating or decelerating (v = 0), KE = 0. If the system is not rising or falling, P E = 0. If the system and its surroundings are at the same temperature, or the system is perfectly insultated, Q = 0. This kind of process is refered to as adiabatic. If there are no moving parts, electrical currents or radiation at the system boundary, W = 0. 4 Energy Balances for Open Systems In an open system, mass is allowed to cross the system boundaries. The general balance equation in this case becomes simply: input = output and H + KE + P E = Q + W (52)